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Abstract  Today’s asymmetric adversaries prefer to operate in urban environments where they attack and then 
dissipate under the cover of “urban fog.” Friendly forces may pursue, but armed pursuit may play to the enemy's 
benefit.   Endangering  civilians  is  often an intended secondary effect  of  asymmetric  and 4GW adversaries. 
Harassing, wounding, or killing civilians, even if unintended, can create a backlash of public sentiment  that 
erodes indigenous support for friendly forces. Thus, it is essential that friendly forces act with high confidence.  

Here we introduce VISHON: Vertical Integration of Sensors providing Human-on-the-loop Optimal kNowledge; 
a simulator modeling a collaborative system of sensors fused to provide vehicle tracking in urban environments. 
VISHON  applies  an  innovative  design  for  model  compression,  thus  allowing  a  substantial  reduction  in 
processing  requirements  for  the  discrete  simulation,  enabling  instantaneous  concurrent  feedback.   Using 
VISHON, the warfighter can actively engage in solving the problem of sensor allocation and placement in real-
time,  maximizing  confidence in  seeking and tracking targets  through the  urban fog.  VISHON will  make  a 
significant contribution to warfighters against an asymmetric adversary while minimizing the risk to innocent 
civilians. 

 1 INTRODUCTION
A scenario - Three members of Al Qaeda Iraq attempted to plant a bomb at a gathering 
in the parade grounds west of the Tigris River in Baghdad.  An Iraqi Police agent spots 
the three before they can fully carry out their plans.  The terrorists flee as he tries to 
pursue them.  They reach their vehicle, an early model, battered white Mercedes.  As 
the engine coughs then roars, the tires squeal and the terrorists are well on their way 
toward  escaping.   While  running  in  pursuit,  the  agent  calls  in  the  vehicle  to  his 
commander.  Breathless, he breaks off the chase, shaking his head in frustration as he 
knows, uncaptured, the bombers will bomb again.

Hoping for the best, but preparing for the worst, the US military had aerial surveillance 
assets already on station above the gathering.  Upon hearing the report of the fleeing 
terrorists, aerial assets are immediately assigned to track the vehicle with the aim of 
trailing it until it is clear of civilians where it can be captured or destroyed with little risk to innocent life. 

Aerial reconnaissance tracks the Mercedes as it drives on the Sinak Bridge across the 
Tigris River (Figure 1).  All is going well.  As the vehicle turns into the circle at Khulani 
Square, a communications glitch causes a loss of real time video for several seconds and 
the white Mercedes harboring the targets, disappears under the “cloak of the urban fog”. 
An operator in charge of the mission scans the re-acquired video stream from the UAV’s 
for the white Mercedes. Which white car has the terrorists (Figure 2)?  They must be 
sure.  Apprehending the terrorists may require deadly force.  If they begin tracking the 
wrong vehicle, the occupants of the vehicle may be mistakenly killed by the very people 
that are trying to protect them.  Furthermore, while the UAV operators are tracking the 
wrong vehicle, the terrorists will get away and almost certainly try to bomb, again. 

Assuming the current state-of-the-art in the component technologies were able to meet 
this challenge, would an operator have enough information in a timely manner to know 
what resources to request and how to best use those resources to re-acquire and secure the 

Figure 1: Suspects Fleeing

Figure 2: Khulani Square



target?

Once the information on the target has been received, an operator in charge of the mission to re-acquire and 
secure a target needs to rapidly make a decision on what resources to request for allocation and where, but how 
does she know?  How can she quantify the impact her decisions will have on the probability of success?  More 
importantly, if some resources are unavailable, how will this affect her ability to achieve the goal?  Are there 
alternative resources she can request and will those resources allow her to achieve her goal?  She must have 
confidence for success based on the utilization of a given set of resources to secure the target.  In addition, an 
operator needs to be able to communicate to the C2 that the lack of resource A will affect the probability of 
success, or be able to stress the importance of being allocated resource B for achieving a minimum confidence in 
successfully achieving the mission objectives. 

The problem space is too complex and dynamic for human operators acting under severe time constraints.  What 
is needed is a decision support system (DSS) that complements the operator.  The DSS will provide the fusion of 
the information and the probability of success – in real time.  This capability will substantially improve the odds 
of capturing fleeing suspects and will save innocent lives.

Following,  we  describe  research  in  progress  towards  the  development  of  VISHON:  Vertical  Integration  of 
Sensors providing Human-on-the-loop Optimal Knowledge.

 2 VISHON
Although the scenario above is fictional, it is representative of the problems experienced in current deployments 
where  an  asymmetric  enemy is  able  to  use  the  urban environment  to  their  advantage.  One  solution  to  the 
problem narrated above, and many others, is to employ multiple UAVs (or in the future, small or  micro-UAVs) 
as a cooperating pod.  In addition to cooperation, anticipated next generation UAVs will be able to process their 
sensor (typically video and still imagery) data locally and can cooperate to some degree with other UAVs in the 
same pod. In the context of the UAV roadmap [OSD05], our anticipated UAVs would occupy levels 4, 5, and 6 

Figure 3: Key technological components with Human-on-the-loop



on the scale given for autonomous capability.

Our VISHON system is situated in the broader context depicted in  Figure 3.  In the anticipated collaborative 
seeking  and  ISR process  depicted  in  Figure  3,  a  pod  of  cooperating  UAVs  is  collecting  sensor  data  and 
performing fusion without the direct involvement of the human operator.  Here, the human operator acts in a 
supervisory  role,  orchestrating  the  seeking  and  ISR process  primarily  through  resource  allocation,  but  not 
directly involved in the decisions executed by each UAV.  Rather than human-in-the-loop, such a configuration 
is coming to be known as human-on-the-loop [CSN04; D04; HRH04].

The shift from flying UAVs towards supervisory control of UAV pods is expected to produce unique challenges. 
An earlier Air Force Scientific Advisory Board study [JO03] made the observation: “Mission management is 
the key technology limitation and enabler.”  Our VISHON system, which we introduce in this paper, is a 
decision tool for aiding the supervisory human-on-the-loop operator by providing real-time advice.  The real-
time nature of VISHON is an absolute necessity as the problem of target tracking and re-acquisition in urban 
environments is quite difficult.  Once a target track is lost, the area of uncertainty grows quickly and every 
second holds the potential difference between successfully reacquiring the target and failure.

In building the real-time model, which is the core component of our VISHON system, we use a method similar 
to response surface methodology (RSM).  RSM [BW51] is a process which uses experimental design and high-
fidelity simulation to build lower-fidelity approximating models (i.e. the response surface) that attempt to isolate 
the critical input variables.  More specifically, we use an updated form of RSM, called the Modified Response 
Surface Methodology (MSRM) [BS04]  which is  tailored towards  automated  knowledge discovery from the 
simulation results.  In MSRM  the MSM cycle of design, experiment, and analysis is preceded by a search stage 
and succeeded by a generalization stage.  In the present context, the generalization stage is performed by an 
operation which we refer to as model compression.

 3 HIGH-FIDELITY SIMULATION
Our approach begins with a high-fidelity simulation of the contemporary urban operating environment fusing 
sensor information extracted across platform modalities, as depicted in  Figure 4.  Our urban traffic model is 
currently composed of two major elements: road networks and traversable terrain, and a model of driver intent. 
Complementary to the urban model, we also model the employed sensors and particular platform allocation, 
providing a classification accuracy and location accuracy of identified objects with some uncertainty on the 
confidence of that information. 

 3.1 Urban Model

The goal is to identify model inputs 
that we can quickly extract from a 
real-world  location  based  on  a 
known  road  network,  regional 
influences (such as cultural driving 
habits)  and current  events.   These 
inputs  should  appropriately 
influence the urban model in such a 
manner as occurs in real life.  With 
well defined inputs, our model is capable of generalizing across a range of valid locations.  This allows us to use 
a general model of traffic that does not need to capture all the details explicitly.

 3.1.1 Road networks and traversability

A map encompasses the area of interest, centered at the last identified target 
location. We use  a priori knowledge to capture the likelihood of traversable 
regions of the map.  For instance, areas on the map such as buildings and lakes 
are not traversable, and therefore should have likelihood for traversability of 0. 
Roads and parking lots have likelihood for traversability of 1.  Other regions, 
such as fields, can be assigned likelihood for traversability between 0 and 1.  If 

Figure 4: High-Fidelity Simulation

Figure 5: Traversability



a priori information is missing or incomplete, we assign a region’s traversability as 1, therefore eliminating the 
possibility of Type I errors and accepting the added complexity of Type II errors.

Figure 5 shows the upper-left quadrant of the Khulani square (left image) with its associated traversability map 
(right image).  In the traversability map, white regions, corresponding to roads, are fully traversable while black 
regions, corresponding to buildings and other structures, are not traversable.  Dark and light gray denote regions 
which can be traversed but with difficulty.

The goal is to identify model inputs that we can quickly extract from a real-world location based on a known 
road network,  regional  influences (such as cultural driving habits) and current  events.   These inputs should 
appropriately influence the traffic model in such a manner as occurs in real life.  With well defined inputs, our 
model is capable of generalizing across a range of valid locations.  This allows us to use a general model of 
traffic that does not need to capture all the details explicitly.

 3.1.2 Traffic flow and driver intent

Rather than anonymous, granular traffic flow as is common in cellular automata models (e.g. [SN98;BEF99]), 
our model must preserve both the identity and intent of each vehicle.  Thus, the start location, goal location, and 
urgency of travel are all factors dependent on driver’s intent.  A driver’s intent is modeled as an agent with 
beliefs, desires, and intentions (BDI) [ER01;RBB02].  Once we have identified the driver’s intent, we use a path 
planning algorithm (such as A*) to determine optimal travel paths.

 3.2 Target, Sensor, and Platform Allocation Model

Our experience with data collected in  real-time  from aerial  platforms  as  compared to  simulated,  controlled 
environment, or laboratory collected test data, has provided for us a good understanding of the challenges that 
face real-time sensor data collection.  These challenges include: sensor noise, environmental effects on sensor 
performance, geo-registration, feature extraction, and classification accuracy.  All of these challenges are sensor 
and platform dependent in terms of their specific impact on the sensor information.  However, generally across 
all  sensor  modalities,  these  challenges  can be  summed  up  as  an impact  on  the  classification  accuracy and 
location accuracy of an object with some uncertainty on the confidence of that information.

 3.2.1 Sensor models

Our model includes a collaboration of different sensor modalities for the tracking task.  To effectively track a 
moving target, both sensors on aerial platforms and stationary ground sensors can be deployed.   In general, 
sensors operate by collection of data, monitoring the visual, acoustic or other domains in a finite location within 
the environment.

Sensors deployed on aerial platforms generally rely solely on the visual domain, passively or actively capturing 
snapshots over different spectral frequencies at given time intervals over specific coverage areas of the terrain. 
High frame rate video can be captured providing high resolution imagery across the 3 wide bands in the visible 
spectrum.  Hyperspectral or multispectral imagery collects information in the visual spectrum in tighter spectral 
bins  providing  a  higher  spectral  resolution  at  the  cost  of  a  slower  acquisition  rate.  LIDAR introduces  the 
opportunity to collect information across a spectral channel in combination with a measurement on the distance 
of  objects  from the  sensor  and  can  therefore  provide  a  3-D image.   SAR and radar  are  additional  sensor 
modalities that are in operation today that can be utilized to collect information on the environment from aerial 
platforms.

In our high fidelity simulation, sensors types (classes) are generically modeled given an image capture range 
based on the sensors current location (defined by the allocation platform motion model, see below).  Each sensor 
type (class) is associated with specific features that through information processing techniques can be extracted 
from the sensed data, including both spatial and spectral properties of entities, or in the present context, vehicles 
in the simulation.  To model resolution differences between the capabilities of different sensor types to capture 
spatial or spectral information, the quality (accuracy) of the spatial and spectral information of a given sensor 
type (class) is captured through an associated standard deviation on the given feature type. 



 3.2.2 Modeling the target

We assume that objects of interest, including the target, can be described as a set of discrete features. Vehicles 
are an interesting target class, as there exists a range of different types of vehicles in an traffic environment, but 
it  is  not  unlikely that  similar  or  same type  vehicles will  co-exist,  as car  manufacturer  do not  make  unique 
vehicles but sell mass quantities of the same vehicle type and color.  Due to wear and tear or custom upgrades, 
individual vehicles may exhibit unique properties, however it is not likely that a fleeing suspect will choose to 
drive a supped up pink Cadillac as their intent is to blend into the traffic, not stand out.  License plates provide 
another opportunity for a unique fingerprint of a vehicle in a traffic environment, however these may be difficult 
to image from above due to resolution and angle of the vehicle from the sensor as license plates may be located 
on the back and/or front of the vehicle.  In some cases, vehicles may not even have license plates.

The range of features that describe a given entity is limited in our simulation to the set of sensor types deployed. 
Within this range, all entities are randomly assigned a specific description of values across the feature space. 
The target vehicle that we are tracking is also assigned a specific description across the same feature space, thus 
producing the likelihood of a non-unique target being tracked within the simulation.

 3.2.3 Platform allocation

In order to classify collected sensor information, we must have learned to discriminate across a set of vehicle 
classes.  The process of learning to identify which features provide class separability can be achieved through 
supervised training where we can estimate the density distribution of a vehicle class from some feature type as 
compared to another vehicle class.  For some features, certain classes will be easily distinguished, but may be 
inseparable in other features.  For instance, color may not be very distinguishing but profile geometry may be 
highly  distinguishing.   Provided  new sensor  information,  we  can  extract  a  given  feature  and  measure  the 
similarity of this feature across the classes.

 3.3 Track Fusion
The tracking of a target vehicle is accomplished by fusion of new sensor information from potentially multiple 
sensors with the area about which we expect the target to be.  Track fusion operates by constraining the area we 
are certain the target could currently be, based on motion physics and the traversable areas of the map.  With 
each passing moment, the area of possible target locations grows increasing our uncertainty on the exact target 
location.  When sensor information can be used to uniquely identify the target, the track fusion is a process of 
continuously updating the targets current location.  However, not all sensors may provide enough resolution 
across the feature space to uniquely identify a target, and in vehicle tracking, the target will probably not be a 
unique entity in the environment.  In order to effectively track a moving vehicle target, a track fusion model 
must  be employed  that  operates on constraint  of  the areas of  uncertainty of  possible location of the target, 
through acquisition of sensor information that can be used to reduce the area of uncertainty based on a high 
confidence that the target is not present at that location.

 3.3.1 Area of Uncertainty (AOU)

The area of uncertainty (AOU) is a continuously growing region that with high confidence we believe the target 
must lie within.  The growth of the area of uncertainty is limited by our expectation on the motion physics of a 
target and the traversable areas of the environment the target exists within.  Left unchecked, this area would 
rapidly grow to a size which would make re-acquisition of the target intractable.  In order to constrain the AOU, 
information must be collected in a timely manner that identifies regions of the AOU where wither we know with 
100% confidence the target is, or regions where we have a high confidence the target is not.  Because we do not 
assume the target in our simulation has a unique feature space, we rely on the latter for constraint of the AOU. 
With enough sensors deployed to cover the expanding AOU and collecting the right information in the right 
areas, the AOU can be constrained to a single point, thus identifying specifically the exact target location at a 
given point in time. 

 3.3.2 Evidential Reasoning Networks and Subjective Logic

21CSI’s  Evidential  Reasoning  Network or  ERN is  a  semantically  tagged belief  fusion  layer  for  evidential 
management  and  is  an  ideal  mechanism  for  sensor  fusion  in  the  presence  of  uncertainty.   ERN  is  also 



particularly well suited to integrating machine generated facts with human opinions making ERN an excellent 
technology for human-on-the-loop decision support systems.  Our colleagues have used ERN to great effect in 
previous work and we leave it to the interested reader to find a more complete ERN discussion in those works 
[OS07;LOZ07;ZOS07].  

ERN is a connectionist structure that requires an underlying belief algebra. 
In  the  present  context,  we  employ  an  ERN based  on  subjective  logic  to 
perform sensor  fusion  in  our  simulation.   Subjective  Logic  is  a  way  of 
thinking  about  uncertainty  that  builds  upon  the  basic  ideas  presented  by 
Dempster and Shafer [S76] to incorporate the subjectivity of all observations. 
Jøsang states  the  following,  “Although including uncertainty in  the  belief 
model is a significant step forward, it only goes half the way in realizing the 
real nature of human beliefs.  It is also necessary to take into account that 
beliefs always  are  held by individuals  and that  beliefs  for  this  reason are 
fundamentally subjective.”  Jøsang argues that the consensus combination rule generates more intuitively correct 
results than Dempster’s rule and the non-normalized version [J02]. 

In Subjective Logic,  we operate on opinions as opposed to facts.  An opinion x
A  of 

object x by a subject (agent) A is a 4-tuple of the belief bx
A , disbelief d x

A , uncertainty 
u x

A ,  and  relative  atomicity  a x
A  (with  respect  to  all  possible  states)  about  some 

statement,  x.  (Belief mass must sum to unity, thus bx
Ad x

Au x
A=1 .)  The object of the 

opinion defines  the  semantics  of  the  opinion and as  ERN operates  on opinions,  those 
semantics are explicitly preserved.  

ERNs  are  formed  by  linking  opinion  producers  (characterizing  software  agents  or  humans)  through  the 
operations of consensus and discount.  Consensus (Formula 1) fuses two or more opinions of the same semantics 
while discounting (Formula 2) is used to limit the influence of an opinion on the overall consensus.  Opinions of 
different types can be fused indirectly by an opinion producer which embodies sufficient domain knowledge to 
derive a new opinion.  

 4 MODEL COMPRESSION
Stochastic, discrete event simulations can model with very high fidelity.  However this fidelity comes with a cost 
in substantial computing power.  Paraphrasing an engineering maxim: A simulation can be high fidelity, require 
little  computing,  or  require  little  storage  volume  –  pick  any  two.   In  forward  deployed  conditions,  deep 
computing resources  will  likely be scarce or  non-existent.   Consequently,  we do not  expect  a  high-fidelity 
stochastic discrete event simulation to provide the real-time decision support needed by VISHON.

We  posit  that  it  is  possible  to  substantially  reduce  the 
processing  requirements  of  a  discrete  event  simulation 
with  only  a  modest  trade  off  in  fidelity  and  storage 
volume.  Using a methodology similar to MSRM, we build 
a  real-time  decision  module  by  long  running  loops  of 
experimentation conducted in the high fidelity simulation 
and then generalizing over the results of those simulations

In  Figure  6,  we  see  a  general  overview  of  the  model 
compression used to build VISHON.  With massive runs 
of the simulation we generate a result corpus.  This result 
corpus contains variations in all of the model parameters 
as well as the stochastic variations from each simulation 
run.  After using potentially thousands of hours of off line computing time to generate the result corpus, we 
randomly partition the corpus into training and testing sets.  The training set is used to induce the compressed 
model while the testing set is used to test the fidelity of the induced model.  The compressed model will be 
integral to an anticipated real-time decision support system that can be used by an operator to quantify the 

Figure 6: Model compression in VISHON
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uncertainty in target sensing and re-acquisition across multiple environments. 

 5 RESULTS AND DISCUSSION
In our parlance, a macro model is a high fidelity simulation which requires substantial computing resources to 
execute the model.  In the present context, the macro model is a stochastic, discrete simulation of urban traffic.  

In contrast to the macro model, we define the micro model as a compression of the macro model.  The micro 
model requires the same input parameters as the macro model and through execution produces the same type of 
output data as the macro model.  However, a micro model can be executed with substantially lower computing 
power and storage requirements.

 5.1 Macro Model
In this early version of VISHON, our macro model  is a stochastic discrete event simulation based on three 
inputs: road congestion, deployed sensors, and simulation end time. 

The road congestion input directly determines the number of entities within the simulation, based on a multiple 
of 10 vehicles per square mile.  So an input of 2 would translate to 2 * 10 vehicles per square mile.  Also the 
maximum speed of the entities are constrained by road congestion (y = exp(-x/10)), so as the roads get more 
congested the average speed of the vehicles will slow down.  Because all of the mobile sensors in the simulation 
travel at speeds much greater than the maximum vehicle speed, this is not a big impact on the model.  The start 
and end location of all vehicles along with intent (motivation which relates to speed) is randomly sampled.  In 
addition,  a  small  percentage of  the  vehicles  are  parked  cars  and  thus  they do not  move.   This  provides  a 
stochastic  process  on  what  types  of  vehicles  the  target  will  pass,  how close  they are  to  the  target  vehicle 
description, and how many are within AOU (even with a fixed road congestion input).

The simulation currently includes 4 different types of sensors with assigned allocation platforms: coverage area 
and platform speed,  a data acquisition rate,  and a set of features that  the sensor can collect with a defined 
variance on that feature upon collection.

The simulation currently includes 3 different features to define an entity: feature 1 (color) is assigned from a 3-
tuple of randomly sampled values (uniform distribution) from 0 to 1, feature 2 (size) is assigned from a uniform 
distribution with equal probability of a value from the discrete set of 4, 5, or 6, and feature 3 (shape) is assigned 
from a uniform distribution with equal probability of a value from the discrete set of 2, 4, or 8.

The following information was arbitrarily chosen: Sensor 1 only collects feature type 3 with a std of 0.1, a range 
of 0.3 square miles, a collection rate of 7 seconds, and a platform speed of 110 mph. Sensor 2 only collects 
feature type 2 with a std of 0.2, a range of 0.2 square miles, a collection rate of 8 seconds, and a platform speed 
of 140 mph.  Sensor 3 only collects feature type 1 with a std of 0.02, a range of 0.25 square miles, a collection 
rate of 6 seconds, and a platform speed of 210 mph.  Sensor 4 collects all 3 features with feature type 1 a std of 
0.01, feature type 2 a std of 0.5, and feature type 3 a std of 0.5, a range of 0.6 square miles, a collection rate of 
10  seconds,  and  a  platform  speed  of  400  mph.   In  follow  on  research,  these  parameters  will  be  more 
representative of sensors currently in the warfighter's inventory.

The allocation platform that is carrying the sensor moves towards a random point in the current AOU.  Each 
time a sensor collects data, the exact location of the sensor and therefore the sensor coverage area is then about 
the AOU but differs from simulation to simulation.

The sensor data collected from a given entity is based on the actual feature values of the entity but includes noise 
inherent to the sensor (the sensor feature std), which is samples from a Gaussian distribution with the actual 
value as the mean.

 5.2 Micro Model
Currently, our model compression engine is a perceptron neural network (NN), with 10 neurons in the hidden 
layer.  The micro-model NN was implemented using the netlab toolkit [NET03].   Using the corpus of results 
generated by simulations of the macro-model,  we trained the perceptron neural network using the conjugate 
gradient descent algorithm with =0.01  and 1,000 epochs.



In the future, we hope to expand our model compression engine and explore other techniques.  Techniques under 
consideration  include  standard  statistical  analysis,  function  approximation  with  artificial  neural  networks 
(ANNs), case-based reasoning, and multi-dimensional interpolation using the Kriging method [C90].

 5.3 Comparison
The Macro simulation model must be run thousands of times 
to provide a good estimate of the minimum expected track 
time.   This  would not  be  feasible  to  do  in  real-time  and 
therefore would be of no value to an operator who would be 
interested in the confidence in tracking a given target over a 
given  length  of  time.   However,  we  can  run  many 
simulations off-line, and from this data estimate the output 
confidence.  It is not feasible to run across the entire input 
space however (although ideal) but rather we can run many 
points  across  the  space  and  fit  a  model  to  this  data  to 
approximate the Macro model.

As a simple example, we evaluated the output over a fixed 
set of deployed sensors (types [2, 2, 2, 0]), changing only 
the value for the Road Congestion between 0 and 3.  We ran 
5 runs, repeating the Road Congestion value and calculated the mean from this set.  Figure 7 plots these mean 
values for the output vs. the input Road Congestion value (black points).  We then generated a micro-model of 
this data using the techniques described in the previous subsection.  

The  blue  circles  in  Figure  7 show results  from test 
inputs to our NN.  A linear fit has been drawn across 
the data (red line) to provide reference and demonstrate 
the  trend  that  as  the  Road  Congestion  increases,  the 
length of successful track time decreases.  As can be 
seen,  the  NN  micro-model  only  slightly  over-fit  the 
sparse training data set, but provides the same trend as 
the  linear  fit.   This  simple  example  provides  us 
opportunity  to  illustrate  our  method  graphically. 
Because we only repeated each input parameter value 5 
times, the residual error in our model, as observed by 
the distance of the black points in the figure below to 
the network result are between 2 and 4 seconds.  Had 
we run more data for training the network, the residual 
error would have decreased.

As another, slightly more complicated example, we ran 
our macro simulation across varying two different input 

variables, road congestion and the number of deployed sensors of type 4.  This simulation also deployed one of 
each of the first 3 sensor types.  Across this input parameter space, the output varies from  a minimum of 20 to a 
maximum of 180 seconds (the simulation end time).  In 
this example, we again ran each input set only 5 times, 
and too the mean of the output results, plotted by the 
black point sin the figure below.  We fit a NN to the 
training data space, whose surface has been plotted in 
Figure 8.

To compare  the Macro Simulation model  to  the NN 
micro-model, we randomly generated 100 input points 
and ran each 5 times through the macro simulation.  Of 
the 500 total runs through the macro simulation 88.8% 

Figure 7: Fit of ANN to Road Congestion Parameter

Figure 8: Fit of ANN to multiple parameters

Figure 9: micro model absolute error (seconds)



produced output whose length of time met or exceeded the NN output.  Figure 9 provides the error across all 
runs.  It  is clear from these results that the NN model  over fit  certain points in the input space, producing 
consistent error across all 5 repeated runs.  In general, however, the micro model approximated well the macro 
model producing errors less that or equal to 10 seconds 98.2% of the time.

Our objective is to embed the micro model into a real-time decision support system.  As such, our micro model 
must not only preserve much of the fidelity of the macro model, but must also possess the ability to execute very 
quickly.  In our final test, we compared the computing speed of the macro and micro models.

We randomly generated 50 sets of input parameters which were fed to both the macro and micro models.  In 
both models, we “tracked” the target for no more than 3 minutes of simulation time.  The macro model was able 
to complete the simulation test set in approximately 92 minutes.  With only one run, the stochastics of the 
simulation  may  dominate  the  output.  Typically,  multiple  replications  are  run  for  each  variation  of  input 
parameters in order to reduce variance.  With 20 replications,  the macro model would need approximately 30 
hours to produce good results.  In contrast to the macro model, our micro model NN was able to process all 50 
input parameter sets in 0.32 seconds.  Furthermore, the NN model is quite small and requires little primary and 
secondary storage.  Our micro model is fully realizable on forward deployed laptops and even hand-held (PDA) 
computers.

 6 CONCLUSION
Endangering civilians is often an intended secondary effect of asymmetric and 4GW adversaries.  Harassing, 
wounding,  or  killing  civilians,  even  if  unintended,  can  create  a  backlash  of  public  sentiment  that  erodes 
indigenous support for friendly forces. Thus, it is essential that friendly forces act with high confidence. The 
warfighter will use VISHON as a real-time aid for sensor employment  that will provide information on the 
confidence expected in tracking or seeking a vehicle as it travels through an urban environment. Knowing the 
level of confidence increases the warfighter's awareness and ultimately will lead to fewer incidents of harming 
civilians  and more successful engagements with the enemy.

Our vision for VISHON is to equip the warfighter with a real-time decision support tool that is effective in 
efficiently allocating scarce mobile sensor platforms.  Our solution approach is to use a high fidelity discrete 
simulation (macro model) that can be used with deep offline computing resources to generate a large results 
corpus.  This corpus is then used to build a micro-model that retains much of the fidelity of the original macro 
model, but is highly compressed and nearly instantly executable.  The very short execution duration allows the 
decision loop to process faster, leading to fewer escapes by those that wish to perpetrate mayhem.

Our preliminary research results, presented here, show much promise that our solution approach is feasible in 
terms of both fidelity and real-time computing requirements.  Further research is planned.
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