
13th ICCRTS
“C2 for Complex endeavors”

Automated Decision Support in a Complex  Informa-
tion Space.

Topic 4: Cognitive and Social Issues

Topic 8:  C2 Architectures

Topic 9:  Collaborative Technologies for Network-Centric Operations

Michael Senglaub, PhD
Sandia National Laboratories

PO Box 5800  MS 1161
Albuquerque, NM 87185

505-844-9244
mesengl@sandia.gov

 SAND2007-8130C

1

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed 
Martin Company,for the United States Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000.

mailto:mesengl@sandia.gov
mailto:mesengl@sandia.gov


Abstract
A decision support architecture and embedded func-

tionality is described that supports a decision maker in 
very complex environments dealing with massive 
amounts of disparate data, information and knowledge.  
To demonstrate some of the existing capabilities a cou-
ple of application domains are discussed.  The solution 
to this system is a hybrid solution employing a number 
of technologies that are based on Peircean reasoning, 
modal logic, and formal concept analysis.  The primary 
requirement of all the supporting technologies is that 
they have a basis in mathematical theory which ensures 
a validation process of the results based on mathemati-
cal solutions as opposed to conjecture or some form of 
utility function lacking verifiability.  While the capabil-
ity is rather robust in its present configuration, areas 
for further development and some research areas are 
identified with the intent of defining a complete decision 
support solution that is adequate for multiple domains 
and process configurations.

1. Introduction

The trend in combat C2 as well as emergency man-
agement situations is to increase the flow of data into 
command centers.  These data flows span dimensions of 
discipline, multi-national and government jurisdictions, 
with redundant sources, multiple protocol, and of vary-
ing levels of temporal importance. One problem facing 
the decision makers is a failure to transform data into 
information and knowledge prior to being integrated 
into the decision process.  A result is an increase in the 
cognitive loads imposed on the decision maker,  effec-
tively overwhelming the process and leading to sub-
optimal decisions.  This paper defines the theoretical 
foundations and the engineering solutions used in the 
decision aid being developed at Sandia national Labs. 
 This section articulates the paradigms used in the deci-
sion support solution.  In section 2, the theoretical 
foundations for the knowledge representation technol-
ogy is articulated.  Section 3 covers the theoretical 
foundations of the Peircean based reasoning engines as 
well as the J.S. Mill’s inspired knowledge operators.

Section 4 provides examples of applications in the 
domain of intelligence analysis and nuclear forensics.  
These examples begin to show the capability that cur-
rently exists,  using the hybridized algorithms.   Section 
5 provides extensions to the model to add greater flexi-
bility and robustness, followed by a section capturing 
some conclusion from the effort to date.  

1.1. Heuristics vs Physics

A fundamental difference in representing human be-
haviors in information systems involves the source of 
those theories of representation.  The source ranges 
from heuristics to physics and is similar to the problem 
in thermodynamics.  In thermodynamics the ‘laws’ of 
heat transfer between bodies are a heuristic representa-
tion of a molecular  phenomena.  In order to understand 
the physics of this energy transfer process requires an 
understanding of statistical physics,  Theories of human 
information processing can be found in the fields of 
cognitive psychology, neural-physiology or in philo-
sophical theories.  Modal logic and philosophy provide 
a heuristic assessment of the functions of human rea-
soning at what could be described as an engineering 
level.  The neural-physiological models are the ‘phys-
ics’ of human cognitive functionality, it defines the 
electrical-chemical dynamics of the processes associ-
ated with this functionality.  In the opinion of this 
author, cognitive psychology lies somewhere between 
these extremes.  One problem seems to be sets of overly 
constrained, and under controlled experiments in which 
too much physics is read into the results of these ex-
periments.  At best you can define a heuristic at a func-
tional level.  A review of inductive reasoning (Ref. 7) 
highlights these problems, whether or not that was the 
intent.

1.2. Decision making Paradigm

The effort described focuses on the problem of deci-
sion support technologies in command systems.  Deci-
sion support must be approached from a non-intrusive 
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perspective and support a model of command.   Our 
decision model is represented on the left in Figure 1.

While simplistic in design it captures a couple of key 
elements that seem to have been missed in the design of 
many decision aids.  The first is the fact that data/
information collected must be convolved with knowl-
edge in order to construct situational awareness.  The  
belief state representing situational awareness, provides 
the basis for decisions by a decision maker.  Second, a 
belief state, can be in error due to errors in the data/
information collected, or in the knowledge used to con-
volve that information.  Any system design and its sup-
porting logic systems must address both types of errors 
to deal with knowledge and belief modification.  

Finally, in order to mitigate cognitive loads, the in-
formation systems need to be able to convert data to 
information so that they can interface to the decision 
makers belief state and not interface to their reasoning 
functionality.  Having to reason about the information 
being collected adds to the cognitive load and ulti-
mately leads to information overload.  A well conceived 
design interface to the belief state would operate by 
postulating that a decision makers belief state may be in 
error.  E.g., ‘that pile of rocks on the side of the road 
may be an IED.’

2. Knowledge Representation

Development of reasoning based systems such as 
decision aids or data and information fusion engines 
requires attention to a knowledge representation tech-
nology that is flexible and enables one to transform the 
information into alternative representation domains to 
support the functional needs of a user community. In 
addition, the system must implement a robust suite of 
modal logics to ensure a theoretical rigor on all opera-
tions involving information and knowledge processed 
by the information system.

Our effort focused on the formal concept analysis 
technology with its strong mathematical foundations. 
Modifications or extensions permit us to treat continu-
ous valued attributes and, with minor changes in our 
system state paradigm, to easily integrate temporal in-
formation into our information and knowledge space. 
Most application domains require an extensive integra-
tion of modal logic into the system to deal with knowl-
edge, knowledge update, belief, belief revision and 
temporal logics. While not completely implemented, 
zero and first order solutions and a structure supporting 
these logics is in place.

This section lays the ground work for the robust 
knowledge representation domain used in our hybrid 
solution to information and decision support systems.
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Figure 1.  Model of the decision making process.



2.1. Ordered Set Theory

Interestingly order theory, with its roots in mathemat-
ics, seems to permeate all aspects of life.  Even in pure 
chaos there exists an underlying order which can be 
seen in the phase trajectories representing the dynamics 
of the system.  Order is not a property of an element but 
concerns the ability to compare objects.  This aspect of 
order, is the ability to compare elements to determine 
which is greater, smaller or equal.  Partially ordered set 
theory (Ref. 3) is based on a structure P = (P, ≤) consist-
ing of a set P and a binary relation ≤.   The resultant is a 
partial order if it is reflexive, antisymmetric and transi-
tive.  Therefore for all a, b, and c in P the following 
must hold:

(i) a # a

(ii) a # b and b # a&a = b

(iii) a # b and b # c&a # c   

Eqn 2.1

these relations define reflectivity, antisymmetry, and 
transitivity respectively.

A mathematical construct from order theory that has 
proven useful involves the ideal and the filter of an or-
dered set.  The definition for the ideal is the following; 
a subset L of P = (P, ≤)

6x! L, y # x& y ! L

6x,y! L,7z ! L : x# z and y # z  
Eqn 2.2

The definition for the filter is the following; a subset 
U of P = (P, ≤)

6x! U, x# y & y ! U

6x,y! U,7z ! U : z# x and z# y
Eqn 2.3

The mathematics of order theory and/or ordered set 
theory sets the stage for the foundation of formal con-
cept analysis.   In formal concept analysis we operate on 
sets of sets which adds a degree of complexity to the 
concept of partially ordered sets and the comparator 
operator.  The additional effort involves defining a bi-
nary relationship operator which compares a construct 
from formal concept analysis,  the formal concept.  In 
the remainder of this section we see the development of 
formal concept analysis and its use as a knowledge rep-
resentation technology.

2.2. Formal Concept Analysis

Formal concept analysis (FCA) is a knowledge  rep-
resentation development effort initiated by Ganter and 

Wille (Ref. 6) with foundations in ordered set and lat-
tice theory.  The mathematics of FCA lends itself to the 
rich representation capabilities of lattice theory. FCA is 
based on the idea of a formal context,  KFC, defined by 
a ‘triple’ as the one in equation 2.4.

KFC = (G, M, I )  Eqn 2.4

In this expression, G and M are sets of objects and 
attributes respectively and I is a binary relation between 
the two sets.   A formal context might be viewed as a 
block of information that is domain or topic consistent.  
E.g., it might represent the planets in our solar system, 
or the types of IED devices in common use.

The concept construct in formal concept analysis is a 
structure determined by its extent, a set of objects, and 
its intent, the corresponding set of attributes common to 
the set of objects.   Using the solar systems planets as 
the context, the concept consisting of the extent, 
A={earth, mars} possesses an intent, B, consisting of 
the common attributes,{small-size, near-the-sun,  has-
moon}.  This is an example of a concept (A,B).  Order-
ing is based on the idea, a concept is less general if the 
extent of (A1, B1) is a subset of the extent of concept 
(A2, B2).

Following on the tails of the description of a concept, 
an operator is defined, (⋅)′ which aids in the definition 
of formal concepts from the formal context.  

(A l) / {m ! M |(g,m)! I,6g ! A}

(B l) / {g ! G |(g,m)! I,6m ! B}  
Eqn 2.5

In this expression, the operator action on the object 
set A, produces the set of attributes common to objects 
within the ‘A’  set.  Likewise, application of the operator 
on a set of attributes B, produces the set of objects 
which posses those attributes in common.  This opera-
tor permits us to construct concepts associated with a 
particular context, providing a basis for constructing 
lattices for use in visual interpretations of information 
and knowledge within the knowledge base. 

The raw context must go through a formalization 
process in order to take advantage of the capabilities of 
lattice theory.  These capabilities provide a basis for 
aiding the analyst in understanding the collected data/
information.  This process requires the construction of a 
‘Begriff’  which represents all concepts in a context.    
This ‘Begriff’  is used in the construction of the lattice.  
The Begriff, B(G,M,I), is the ordered set of all concepts 
within a context.  A concept, consisting of the set-of-
sets (A,B), is defined by conditions in equation 2.6.
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(A,B) fc (G,M, I)
+

A 3 G, B 3 M

(A l) = B& (B l) = A  

 
Eqn 2.6

The ordering of the concepts in B(G,M,I) is defined 
in the next expression.

(A1,B1) # (A2,B2)

+

A13 A2 0 B2 3 B1  

 Eqn 2.7

An example of a lattice is provided from information  
developed by K. Wolff (Ref. 21) in his FCA tutorial. 
This example is a simple model capturing aspects of a 
knowledge base dealing with animals.  The data con-
sists of the following instances:

Lion={preying, mammal}, Finch={flying, bird}, Ea-
gle={preying, flying, bird}, Hare={mammal}, Ostri-
ch={bird}.  The cross table representation of this in-
formation is provided in Table 1.

Animals Preying Flying Bird mam-
malLion x x

Finch x x
Eagle x x x
Hare x

Ostrich x
Bee x

Table 1.  Cross-table of an animal context.

The lattice representation of this information pro-
duced by CONEXP (Ref. 25) is shown in Figure 2.

Figure 2.  Lattice of animal domain.

The expansion capability of this technology is cap-
tured by the “Bee” entry in the matrix.   The lattice prior 
to the addition of the information related to the bee con-
sists of information in Figure 2 with the upper right 
node (BEE) removed.  Expanding a knowledge base is 
a simple task in this technology.  Likewise,  the parsing 
of a lattice can be accomplished nearly as easily.  What 
this does is give us the ability to structure the lattice at 
varying levels of knowledge abstraction and when addi-
tional detailed information is of interest we can “zoom” 
into an object node to see the additional structure of the 
knowledge base under the selected node.  This me-
chanical process adds to the potential understanding of 
knowledge and data being worked with.

The situation we find in the real world is that attrib-
utes are often defined by continuous real, probabilistic 
temporal or even state variables.  Working with con-
tinuous real variables in formal concept analysis is 
achieved by defining a special construct called a “many 
valued context”(Ref. 5 & 19).   The structure of a many 
valued context is defined in the next expression.

Kmv= (G,M,W, I)  Eqn 2.8

G, M, and W are sets of objects, attributes, and at-
tribute values.   In this extension,  the set of all values an 
attribute may assume is defined by the domain of that 
attribute. 

D(m) / g d G |(g,m,w) d I,w d W   Eqn 2.9

The conditional expression may be read as,  the object 
g has the value w for attribute m.  To use many-valued 
contexts in formal concept analyses these attributes 
must go through a scaling process in order to generate a 
formal context that identifies the presence or absence of 
an attribute.  The scaling processes proposed in the lit-
erature, which is based on an inclusionary range, did 
not suite our needs.  In order to handle real continuous 
valued attributes we employed fuzzy set theory with 
overlapping sets.  The result of this approach resulted in 
our having to relax a condition imposed by Ganter(Ref. 
5).  

In his development he imposes a uniqueness on the 
attribute values as in the next expression.

(g,m,w1), (g,m,w2) ! I& w1 = w2  Eqn 2.10

Using overlapping fuzzy sets to define an attribute 
value requires us to relax this constraint which results 
in a more robust representation for real continuous at-
tributes.
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2.3. Mathematics of generating a Begriff.

Within the construct of this effort we have considered 
a context to represent a ‘related block’ of information, 
e.g. an explosives data set, or a sports car data set.  The 
idea of a related block of information becomes impor-
tant when we performed fuzzy variable transformations.  

The Begriff is the set of all concepts of a context.  
The set of concepts can be defined by an application of 
the ‘prime’ operator discussed in the previous sections.   
The first step in defining the Begriff is to define an at-
tribute set consisting of the intent of a context.  The 
power set of this attribute set provides the basis set on 
which the prime operator is applied to produce the ex-
tent of all concepts in a context. 

S = {Intent} formal context

Ps= {p} = {P (S)}
B = { {(pk) '}k
/ , {pk}}  

 Eqn 2.11

Ps represents the power set of the contexts intent, and B 
is the Begriff which is a partially ordered set of con-
cepts without duplications that may result from the 
process of applying the ‘prime’ operator on each mem-
ber of the power set.

A procedural approach to defining a Begriff can be 
found in Davey & Priestley’s (Ref. 3) book.   This ap-
proach relies on a process that uses a series of set inter-
sections as the context is processed.  The effect is the 
same while the equations above are a rigorous interpre-
tation of the process described.

2.4. FCA Variations

One of the first extensions implemented in the 
knowledge representation algorithms involves a modi-
fication of the interaction operator.   In the general defi-
nition of a formal concept, KFC, 

KFC = (G, M, I )  Eqn 2.12

The interaction operator I is replaced by a set of in-
teraction operators.  Each member of this set corre-
sponds to a specific ‘predicate’ in the information do-
main.   This permits us to correlate  information with a 
source or assign some descriptive property to the binary 
relationship between the objects and attributes.  The 
structure enables us to apply specially designed opera-
tors to blocks of information to enhance user under-
standing. 

The interaction operator is represented by a set of 
operators linked to a set of predicates.  

Is/ (P, Ip,X)   Eqn 2.13

In this expression P is the set of predicates, Ip is the set 
of interaction operators and X defines the linkage be-
tween predicates and interaction operators.   There is a 
degenerate form of the operator Is which represents all 
predicates and can be defined as a sum over all the 
predicate operators.

I= Ip
p

/
 

Eqn 2.14

The resultant operator is the same as the operator found 
in all the FCA literature.

There are a number of implications or interpretations 
that may be imposed on the system using this construct.  
The use of predicates in the implementation can be 
viewed as a means of organizing orthogonal informa-
tion while reducing the complexity of the information 
being processed by an analyst.  Consider the problem of 
IEDs,  we can define attributes associated with the 
predicate ‘is-constructed-using’ that provides insights 
into the construction, while a corresponding predicate 
“emits” provides information that is useful in the detec-
tion of the IED.  Attributes associated with the two 
predicates define knowledge associated with the IED.  
The predicates enable very different functions to be 
addressed in pursuit of solutions to a problem.

The most generic variation involves the attribute de-
scriptions themselves.   We have seen the modifications 
employed to enable treatment of attributes associated 
with real variables which is only one type of attribute 
needed to handle a broader class of problems.    We have 
included probabilistic variables which are treated in a 
manner identical to the real valued attributes.  The ar-
chitecture of the Peircean decision aid allows for the 
development of spectral attributes and a development 
effort has been proposed to permit state based attributes 
to be defined.  In another situation a spectral attribute, 
is intended to permit efforts in a problem domain in 
which we want to include such things as the acoustic 
spectrums of vehicles or seismic signatures when oper-
ating on geophysical problems.  

We intend to extend the class of attributes to include 
state dependent attributes as an alternative methodology 
for working temporal problems.   The philosophy of the 
system design is to use the mathematics most relevant 
to the problem being pursued.  In the case of temporal 
issues the trend towards temporal concept analysis 
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seems to overload FCA and not produce a capability 
that simplifies the problems encountered by an analyst / 
decision maker.  It is felt that the use of Markov type 
technologies at the attribute level would maximize the 
effectiveness of the FCA technology and augment it 
with a technology that is better suited to working on 
temporal issues.

2.5. Fuzzy set theory

Formal concept analysis is based on a binary rela-
tionship between objects and attributes, an attribute is 
associated  with an object or it is not.  The problem is 
that in real situations many of the attributes may be real 
or spectral in character among other types.  In order to 
transform real world information into a form amenable 
to FCA we use a process based on fuzzy set theory(Ref. 
8).  Within a context,  basically a block of information, 
we assume that a real attributes posseses common in-
terpretation.  Temperature in a materials context, might 
represent a melting temperature or a phase transition 
temperature.  This temperature should not be associated 
with the temperature defined to represent an engine 
operating temperature.  If all temperature interpreta-
tions were lumped and fuzzified over the combined 
range, significant biases could be introduced as well as 
introducing fidelity issues into the knowledge reposi-
tory.  

Fuzzy set theory is an extension of set theory in 
which the membership function associated with an ele-
ment of the set can be represented by the next expres-
sion.

crisp

nA : X "{0,1}

fuzzy

nA : X "[0,1]  

Eqn 2.15

In a crisp set the membership values are 0 or 1 while 
for a fuzzy set the membership function value ranges 
over the interval 0 to 1.  The membership function used 
in this application is based on a Gaussian distribution as 
is defined in equation 2.16.

nk = e- x-ck] g
2 /2v27 A

 Eqn 2.16

Identifying and isolating a real variable is the first 
step of the process.   The range of that variable is deter-
mined and “padding” of 10% is added to the maximum 
and minimum values to ensure a degree of robustness to 
the context classification, enabling a small degree of 
projection.  

Figure 3.  Fuzzification of a real variable over a 
range of -10 to 10.

Figure 3 above shows a real value fuzzification using 
5 fuzzy levels.  The membership functions are assumed 
to use the Gaussian membership function with sigmoid 
functions on either end of the range of values.

A variable value within the range covered by the 
fuzzy sets permits us to estimate the likelihood that the 
attribute belongs to each of the fuzzy intervals.  In the 
implementation of the process we use an over lapping 
structure which permits a greater combinatory represen-
tation of a variable.  For example a variable value of 
‘5’, has non-zero membership in 3 quantiles of the fuz-
zified variable.  Effectively we have a 3-bit code repre-
senting the real attribute in some information domain.   

A second feature of our implementation permits a 
user to define a threshold for membership.  In this case 
the likelihood values must exceed the threshold in order 
for that quantile to be considered an attribute of an ob-
ject.  By defining the level of fuzzy set overlap and the 
threshold value we can change the degree of representa-
tion of real values in a particular context(information 
domain) .  This gives us the ability to find a balance 
between uniqueness and computational effort.  It also 
provides an analyst with a great deal of flexibility to 
discriminate information for use in a reasoning system.

3. Peircean Foundations

Charles Sanders Peirce was born on September 10, 
1839 in Cambridge, Massachusetts, and he died on 
April 19, 1914 in Milford, Pennsylvania. His writings 
cover the period of about 1857 to 1914. His published 
works are in the neighborhood of 12,000 printed pages 
and his unpublished manuscripts number nearly 80,000 
handwritten pages.  

3.1. Definitions

The next few paragraphs are an attempt to identify 
elements that need to be better understood to assess 
wether we have achieved the objective of developing a 
truly Peircean decision aid.  The definitions are from a 
number of sources (Ref. 14, 15, 16, 17, 18)
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Category

The first dimension concerns the concept of category, 
of which Peirce identified three types/levels.  This rep-
resents his effort to define a structure into which all 
phenomena can be grouped.   These three categories or 
modes are  ‘Firstness’, ‘Secondness’, and ‘Thirdness’ 
which give meaning to all phenomena and to all objects 
of thought.   Basically, all phenomena may be regarded 
as manifestations of either ‘Firstness’ or quality,  ‘Sec-
ondness’ or fact, and ‘Thirdness’ or laws that govern 
facts in the future.  Peirce felt that these categories are 
evident/obvious to anyone who pays attention to what 
happens in the mind and that observation would pro-
duce these categories of knowledge.

To amplify slightly, firstness is a quality, such as the 
taste of banana, redness, or anxiety.  Firstness is being 
“as is without regard for any other”.

Secondness is the effect that firstness might have on 
us.  One example cited involved pushing on a closed 
door, the resistance is an example of secondness, or the 
heat felt from a hot iron on our hand would be a form of 
secondness to the firstness of hot associated with the 
iron.

Thirdness begins to be more complicated, it mediates 
between secondness, fact, and firstness, possibility.  
Thirdness begins to address issues associated with rules 
or conditionals, enabling a predictive capability of in-
formation.

Peirce also talks about the degeneracy of secondness 
and thirdness but the most telling point is that all phe-
nomena exhibit varying degrees of all categories.  
Which category is to be associated with a phenomena is 
the category that has the greatest extent or is most rep-
resentative of that phenomena. 

Sign

The second topic of importance to the total under-
standing involves the concept of ‘sign’.  In The Essen-
tial Peirce,  (Ref. 15) he defines “a sign as a thing which 
serves to convey knowledge of some other thing, which 
it is said to stand for or represent.”  This thing is called 
the object of the sign; the idea in the mind that the sign 
excites, is called the interpretant of the sign.  "A sign 
stands for something to the idea which it produces or 
modifies... That for which it stands is called its object; 
that which it conveys, its meaning (the sign itself); and 
the idea to which it gives rise, its interpretant.".  Sign 
has a hypothetical ‘if...then’  status associated with it; 

firstness the potential (can be), secondness the factual 
(is), and thirdness the conditional (would be).  

Peirce goes on to identify 3 forms of sign, an icon, an 
index, and a symbol.  An icon is a sign that excites an 
idea naturally, they are a likeness of the object, for ex-
ample the common symbol for man and women on a 
restroom door.  “An index stands for its object by vir-
ture of a real connection with it,  or because it forces the 
mind to attend to that object.”  Peirce uses the example 
of a weather vane as an indication/index of the direction 
of the wind.  The symbol sign is the most complex of 
the signs.  A symbol might be a word a phrase or even a 
treatise that references some phenomena, quantum me-
chanics could be viewed as a symbol.  An icon can be 
linked to the category of firstness, an index to the cate-
gory of secondness, and a symbol to the category of 
thirdness.

Logic

Logic generically is the theory and/or study of truth 
and the discovery of truth in signs (Ref. 9).  Since all 
thought is conducted by the means of signs, Peirce de-
scribes logic as the science of the laws of signs, and 
divides logic into three areas of study: 1) Critic, which 
studies the relations of signs to their objects, by classi-
fying arguments and assessing their validity.   Critic is 
the logic that is normally  understood by today’s scien-
tists, mathematicians,  logicians, and engineers.   From 
the Peircean perspective, critic also includes the logic 
of relations  and the science of discovery or inquiry.  2) 
Speculative grammar, is the theory of the meaning of 
signs in all their forms. Speculative grammar, in simple 
terms, addresses  the means by which logical thoughts 
may be represented.  Peirce’s triadic sign represents one 
approach.  3) Speculative rhetoric (methodeutic), stud-
ies the methods that ought to be pursued in the investi-
gation and search for truth.  It addresses methods of 
how signs maybe used to communicate from source to 
interpreter in an effort to maximize understanding.   
Peirce’s  speculative rhetoric provides a framework for 
a theory of communications that includes the utterer, 
the interpreter, and the sign 

3.2. Reasoning

Reasoning is the process we as humans use to solve 
problems or make decisions.   We all use reasoning, 
some use sophisticated philosophies, others use ad hoc 
reasoning, however,we all seem to be imbued with a 
basic inductive reasoning capability.  The form taken is 
a function of our training and experience.  Modal logic 
enters the equation in attempts to describe the flavors or 
nuances of the reasoning we employ.  The ultimate 

 SAND2007-8130C

7



form of reasoning is  the method of scientific inquiry 
which was defined by C.S. Peirce (Re,f 15).

The reasoning engine implemented in this effort is 
based on C.S. Peirce’s model of scientific inquiry.  This 
philosophical construct provides the foundation for how 
we as humans reason about situations new to us.  It 
consists of the three fundamental forms of reasoning 
;deduction, induction and abduction.  The logic associ-
ated with the abductive, deductive, and inductive forms 
of reasoning are captured in Figure 4 (Ref. 17) .

Figure 4.  Formal representation of Peircean rea-
soning.

Peircean reasoning is a hybrid form that integrates 
these three foundational forms of reasoning into his 
method of scientific inquiry.   Abduction is the more 
complex form of reasoning, it provides plausible hy-
potheses to explain an observation.  Deduction provides 
a basis for selecting from that set of hypotheses.  De-
ductive reasoning is based on a structure that concludes 
if the premise of an argument is true the resultant must 
be true, and provides the foundation for identifying 
what to expect with the selection of one of the abduc-
tively generated hypotheses.

Induction is the mechanism for validating the hy-
pothesis selected.  Induction can be viewed as a statisti-
cal collection of data used to confirm or support a hy-
pothesis.  Induction is used to support a reasoning proc-
ess called inductive reasoning.  Inductive reasoning 
operates on a principle that if ‘... I have thrown a ball in 
the air,  and it fell to the ground every time...’  I believe 

that the next time I throw the ball in the air it will fall to 
the ground. 

 The statistical validation must be tempered by max-
ims such as “severe” testing as defined by Mayo ( Ref. 
11).  A second nuance of this problem is the frequentist 
perspective.   Peirce and Mayo are frequentists and have 
developed theories from this perspective.   The problem 
domain of decision support in command is really a 
Bayesian problem and these decision makers do not 
have the luxury of being frequentists,  so the application 
must be tempered by Bayesian statistics.

Not addressed in this effort is analogical reasoning 
which is a form of abductive reasoning.  The classic 
example of analogical reasoning is the Bohr atom ex-
ample.  Electron’s were believed to revolve around the 
nucleus like planets revolve around the sun.  Therefore, 
the forces in an atom should be able to be modeled us-
ing an inverse-square law.  This form of hypothesis 
generation examines the detail of phenomena and looks 
for similarities at these levels of abstraction to draw 
higher level hypotheses.

3.3. Induction

A summery paper by Evan Heit (Ref. 7) provides a 
nice analysis of induction from a psychological per-
spective.  The work focused on the evaluation of induc-
tive arguments of a form given in equation 3.1.

The conclusion must follow
Given a premise

 
Eqn 3.1

In deductive logic, if the premise is true the conclu-
sion must be true, the inductive logic introduces an un-
certainty.  If the premise is true the conclusion is ex-
pected to be true.  The psychological studies discussed 
in the review paper explored a number of factors asso-
ciated with the argument and assessed the strength sub-
jects placed on the conclusions.

The article describes conditions associated with good 
cases, sets of cases and properties for inductive reason-
ing.  The examples they use, are presumed to be single 
premise cases.  As an example they discuss examples 
such as:

My house will be burgled
Nearby houses were burgled

vs.

My house will be burgled
Houses 50miles awaywere burgled

 

Eqn 3.2
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The first case leads to a stronger induction than the 
later in the study.  They provide similar cases for prob-
lems involving animals described to exist on an isolated 
island in order to attempt some form of knowledge con-
straint.  It seems that,  what has been missed is an im-
plicit multi-premise induction being performed.  this 
‘implicit’ set of premises was not captured.  Subjects 
bring prior knowledge into the problem and evaluate 
the strength of the inductive arguments based on this 
knowledge.  Effectively things such as; “  ...50 miles 
from here is a large city with a high level of crime, my 
neighborhood lies in a very safe area so the likelihood 
of my house being burgled is low”.  

Similarly the animal examples fail to take into ac-
count the fact that we possess varying levels of biologi-
cal knowledge and recognize that premise and conclu-
sion involving species from a similar order may possess 
common anatomical characteristics or susceptibilities.  
Their discussion of ‘property’, reflects a similar issue.  
Certain classes of predicate carry varying levels of prior 
knowledge or meaning and impart varying levels of 
strength to the inductive arguments.  One example uses 
the predicates ‘thrives’ versus ‘secretes’, the first is 
qualitative in nature while the second has a foundation 
in biology.  The bottom line for me is, the experiments 
discussed could not be considered single premise ex-
periments and results based on that supposition have to 
be flawed.

The discussion of sets of cases was of more interest 
in that it focused on the numbers and the diversity of 
the premises category.  The greater the number of ex-
amples supporting a conclusion, adds strength as does a 
greater diversity of the examples (premises) in the in-
ductive argument.  It would seem that this is getting 
closer to the nature of induction and the inherent statis-
tical character of the problem.  Within the area of case 
sets no results dealing with counter examples was ex-
plored,   This is likely due to the single premise con-
straint imposed on the experiments.  In this situation, 
the set of attributes and corresponding set of objects can 
represent instances that would result in both true and 
false conclusions.

Induction Definitions

Within the domain of philosophy a significant body 
of research exists that addresses induction.  The work 
used as the foundations for the Sandia decision aid is 
based on Peirce’s modal of reasoning coupled to the 
work of V. Finn (Ref.  1, 4).  Peirce defined induction 
‘...as a form of reasoning from a sample to the whole 
sampled.’  ‘Induction is the mode of reasoning which 
adopts a conclusion as approximate.’   Peirce indicated 

that there exists three kinds of induction all based on 
random samples.  He seems to have used different 
terms for these types of induction but in general they 
consisted of a weak form, a strong form, and the ‘grad-
ual’ form. 

The strong form of induction consists of a sample or 
collection from a population in which it is possible to 
assess the proportion of the members of that population.  
The weak form deals with statements that could be dis-
proved if a single counter example existed; e.g. ‘liberals 
are intellectually bankrupt’.  The third form of induc-
tion,  gradual, is similar to the first form due to its quan-
titative nature.  In this case an estimate of the popula-
tion proportionality is made but each new sample ac-
quired goes toward updating the proportions in the 
population.

Inductive Reasoning

Reasoning research in Russia has produced some 
very interesting results in which FCA is used as a 
knowledge representation technology and theories of 
abduction and induction have been developed.  The 
work of V. Finn and V. Blinova(Ref. 1, 4) have used 
J.S. Mills (Ref. 12) canons as the guiding principles in 
developing a theoretical modal of inductive reasoning.  
Mills canons have been described by various research-
ers, as a set of inductive principles, a set of abductive 
principles and defined as principles describing causal 
reasoning.  It seems that, in part due to ambiguities in 
definitions, that Mills canons have elements of each 
category.

Finn’s (Ref. 1, 4, 10) work focused on the first of 
Mills five canons.  His effort focused on an inductive 
‘learning’ algorithm which may more accurately be 
characterized as an inductive reasoning algorithm.

Mill’s (Ref. 12) canons consist of :  the ‘Method of 
agreement’, ‘Method of differences’, ‘Indirect method’, 
‘Method of concomitant variation’,  and the ‘Method of 
residues’.  The descriptions of the canons that follow 
come directly from Mill’s System of Logic.

The first canon:   If two or more instances of the phe-
nomenon under investigation have only one circum-
stance in common, the circumstance in which alone all 
the instances agree, is the cause (or effect) of the given 
phenomenon.

Finn’s implementation of the first canon involves 
considering positive and negative examples of an objec-
tive that draw from a single set of attributes, and one or 
more unknown examples.  The objective is to classify 
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the unknowns according to the reference sets.  The 
model develops a Begriff for the positive and negative 
example sets, then uses the concepts in each Begriff to 
classify the unknown examples as either a positive, 
negative or as an indeterminate. 

The example in Blinova’s paper consists of the posi-
tive and negative sets in equation 3.3.

g1+ = a,b,c" ,

g2+ = a,b,d" ,

g3+ = a,b,e" ,

g4+ = a,c,e" ,        

g5- = a,c,d" ,

g6- = b,c,d" ,

g7- = a,d,e" ,  

Eqn 3.3

The extra intent sets of the positive lattice consisted 
of {a,b}, {a,e}, {a,c}, and {a}.  The extra intent sets of 
the negative lattice consisted of, {c,d}, {a,d}, and {d}. 

The set of unknowns is defined in equation 3.4.

g8x = a,b,c,e" ,

g9x = c,d,e" ,

g10x = a,b,c,d" ,  

Eqn 3.4

Finn’s method classified the first case as a positive 
example, the second as a negative example and the third 
as indeterminate due to both positive and negative in-
tents being subsets of the example intent.

The one aspect of Finn’s method that needs modifica-
tion is the heuristic imposed on the positive and nega-
tive lattices.  Finn requires that there be ‘2’  or more 
examples in a concept before it can be classified as a 
positive or negative concept in the respective lattices.  
From a theoretical perspective, imposing a heuristic 
goes against the grain.  This constraint is better suited 
for implementation in the engineered solutions where 
we might wish to establish a bias toward false positive 
or false negative classifications.

Inductive Learning

An excellent foundation for inductive reasoning has 
been established by Finn’s work with Mill’s first canon.  
In our implementation we have opted for an inductive 
learning system as opposed to the reasoning implemen-
tation.  The algorithm builds on Finn’s work with minor 
modifications and extensions.  In Finn’s work he de-
fines a positive and negative lattice to use in the classi-
fication process.  We needed to learn in situations in 
which the context possessed an arbitrary number of 
goals.  E.g., the terrorist incident database used con-
tained over 30 groups which represented the goal at-

tribute. The algorithm developed is provided in the next 
paragraphs.

The algorithm begins by accepting the entire training 
set.  In the example to follow a subset of the State Dept. 
terror incident database was used.  The incidents cov-
ered a period from 1992 to 1998.  The attributes de-
scribing the incident include; {date, location, target, 
tactic, result, organization}.  Organization is the goal 
attribute.  A Begriff is defined for each goal attribute in 
the training set.  These Begriffs constitute the positive 
lattices defined in Blinova’s paper.

Bk / (Ak,Bk)| Ak 3 A; Bk = (Ak) '

with

k = goal attribute  
Eqn 3.5

The first adjustment occurs in the construction of the 
goal oriented Begriffs.  Engineering factors are intro-
duced to bias the ultimate algorithms toward false posi-
tives or false negatives.  This is done by setting likeli-
hood thresholds to some fraction of ‘1.0’.  This trans-
lates into the number of examples associated with a 
concept in the lattice.  We can require that for a positive 
example we require two or more examples or in the 
case of counter examples two or more examples to re-
flect a counter instance.  The next step of the algorithm 
is to define the resultant classification Begriff after any 
counter examples are removed from the goal Begriff.

Bk* / Bk+- Bm+
m! k

/
 Eqn 3.6

In expression 3.6, B* represents the positive classifi-
cation Begriff for a goal attribute, in our test problem 
this might be the group HAMAS.  The Begriff class B~, 
represents the post processed Begriff, with the engi-
neering biases included.  This product becomes the ba-
sis for the new classification context that will be con-
structed by the next steps.

Each remaining concept of the classification Begriff 
represent positive examples for identifying a specific 
goal.  A concept, C = (A,B), represents a set of exam-
ples and the associated set of identifying attributes.  
Classification of ‘k’ begins by finding:

({ } k) ' = {ak}  Eqn 3.7

This is the set of all attributes associated with a goal.  
The next step is to define a likelihood for each attribute 
in the classification.

lhk,m = (Ak,j) '
j! k

/ /SizeOf (Bk*)
 Eqn 3.8
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In expression 3.8, m is an attribute index in the clas-
sification Begriff k.  j is an index for the concepts in the 
classification Begriff.  SizeOf(.) is a function which 
determines the size of the Begriff or counts the remain-
ing concepts in the classification Begriff.  This process 
is repeated for each goal identified in the training set.  
The final classification context captures the essence of 
the training set in which each gaol attribute is an object 
in the constructed classification context, with each at-
tribute assessed for likelihood as a discriminator for 
each object in the newly constructed context. 

3.4. Abduction.

The basis for the abduction concept in this effort is 
again based on some of C.S. Peirce’s (Ref. 15, 17) 
work.   Trying to put this into some context has proven 
to be somewhat difficult and will have to evolve on a 
continuing basis as this author continues to learn more 
of Peirce’s body of knowledge.  This being no small 
undertaking and is unlikely to be accomplished by a 
single person.   

Peircean abduction involves a broader understanding 
of Peirces ideas concerning categories, sign, and logic.  
After 4-5 years of building a system that attempts to 
follow his principles we have only scratched the surface 
and have not been able to put everything into a concise 
block of information that can be efficiently passed on to 
another engineer.  

Abductive Reasoning

Peirce gives credit for the concept of abduction to 
Aristotle, however the literature seems to agree that 
Peircean abduction is unique to his body of work and 
should be credited to him.  Peirce believes that abduc-
tive reasoning is the means for creating new knowl-
edge.  Abduction involves studying facts and informa-
tion  in order to devise some theory to explain these 
observations.   Peircean abduction begins with the ob-
servation of some ‘surprising’ fact.  A hypothesis or set 
of hypotheses are generated to explain that surprising 
fact.  The hypothesis is of a form ‘..if theory A were 
correct  then observation C would follow’.  Therefore 
you are lead to suspect A to be the reason for the sur-
prising observation.  Surprise,  in this context implies 
your belief state is now in doubt.  Being a rational being 
we want to eliminate doubt and thus initiate the abduc-
tive process to resolve the surprising or disruptive fact.  

An interesting paradox in this description is the point 
that should the law or theory A be known, C should not 
have been a surprising fact (Ref. 9).   It is resolved by 
recognizing that A is a novel, creative solution to the 

doubt created by the surprising fact C.  This creativity 
is the domain of research in trying to engineer an ab-
ductive engine.  Peirce does provide a set of criteria for 
the degree of originality or quality of this creativity 
which could be used in the development process.  The 
two relevant criteria involve a ‘rearrangement’  of old 
ideas to produce new insights while ‘concept creation’ 
which produces ideas new to the reasoner.   This crea-
tive process is likely to produce multiple hypotheses 
which requires a selection process for identifying the 
best solution.

In order to identify the optimal hypothesis Peirce 
identified three criteria the most important being one of 
economy of effort.   The criteria include explanation, 
verifiability,  and economy.  His economy of research 
involves assessing the cost to verify a hypothesis, the 
intrinsic value of the proposed hypothesis, and the ef-
fect of the hypothesis on future research.  In terms of 
intrinsic value Peirce was attempting to find the sim-
plest hypothesis that explains the facts.

These concepts form a foundation upon which abduc-
tion is based.  In our limited effort we are attempting to 
adhere to these principles while still achieving an engi-
neered solution to the problem of decision aids.  It is for 
this reason and the criteria alluded to, that the process is  
an ongoing effort.

Mathematical Model of Abduction

The initial implementation of an abduction engine 
builds on the mathematical framework of formal con-
cept analysis.  The set structure of this knowledge rep-
resentation technology permits us to use set operators to 
begin a process of defining hypotheses for observed 
data/information.  In this first order system we are re-
stricted to a very flat knowledge structure.   Under these 
conditions blocks of knowledge within the knowledge 
base exhibit a degree of independence.  When the 
knowledge base exhibits a hierarchical structure the 
hypotheses generated become more complex exhibiting 
an emergent characteristic that might be termed creativ-
ity.  With the flat structure and knowledge independ-
ence some of Peirce’s ideas concerned with surprise and 
the creativity of solutions is mitigated.

The process of abduction is initiated with the intro-
duction of new externally derived information.  this 
information is convolved with the resident knowledge 
incorporated in the knowledge base.  The result is a set 
of potential hypotheses to the observed information.  
The operation is accomplished by performing  a set 
intersection operation on the blocks of knowledge 
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within the knowledge base and the observed informa-
tion.

{H} / I+Kj
j

/
 

Eqn 3.9

H represents the set of possible hypotheses, I, the set 
of unknown information and Kj a knowledge block.  
The summation is over the collected knowledge blocks 
in the knowledge base.  The algorithms have been engi-
neered to permit the user to set a threshold on the num-
ber of attributes that must be in common before a non-
zero intersection is considered to produce an hypothe-
sis.   Because of the flat knowledge structure there is no 
automated integration of these hypotheses into higher 
level hypotheses which could conceivably lead to novel 
solutions to the observed information.

From a Peircean perspective the attributes associated 
with an object/instance in the knowledge block can be 
classified as a set of signs (of iconic and index form) 
which in total represent a sign (now a symbol) that must 
be interpreted as the object in the knowledge base.  Ex-
panding the capability of the system to handle hierar-
chical knowledge structures would add symbol to the 
type of attribute list defining an object in the knowledge 
base.  This can be seen as objects at one level of knowl-
edge being considered attributes at a higher level of 
knowledge abstraction.  It might also be argued that 
even at the lowest levels, an attribute set may contain 
symbol signs as part of the argument list, which twe 
find agreement,  but it is a bit easier to start at a level of 
abstraction in which the attributes can be classed as 
either icon or index.

Within the knowledge base are two types of knowl-
edge, learned categorical knowledge and authoritative 
categorical knowledge.  The difference is only in the 
means of construction, learned knowledge is generated 
by using the inductive learning engines in the Peircean 
decision aid and the authoritative knowledge is knowl-
edge ‘loaded’ into the database from some outside 
source. The distinction comes in assessing the plausibil-
ity of an hypothesis.  With authoritative knowledge all 
attributes are assumed to posses equal likelihood of 
viability or descriptiveness for the associated object.  
For learned knowledge we have varying degrees of 
attribute likelihood as a descriptor, and this can be 
taken into consideration for assessing the plausibility of 
a hypothesis generated by the set intersections.  The 
result is a hypothesis may have greater or lessor plausi-
bility for explaining some information.  

Expanding the structure of the knowledge bases 
would modify the abductive process slightly permitting 

us to add depth and a degree of non-linearity to the 
process.  The set operations would begin as in the ear-
lier expression but a second stage would be added.  
Effectively another iterative loop would be added to the 
iterations.  After the first pass in generating a set of 
hypotheses, the results would be added to the set of 
observed information.

{ lI } / {I}, {H}  Eqn 3.10

The new information set I’  is viewed as the observed 
information and then processed via equation 3.9.  The 
result of this operation in a hierarchical knowledge base 
is to reproduce the hypotheses that resulted in the first 
expression and to add hypotheses that exist at higher 
levels of knowledge abstraction.  

{ lH } / lI +Kj
j

/
 

Eqn 3.11

Performing a disjunction operation on the two sets of 
hypotheses produces the hypotheses at the next level of 
knowledge abstraction.

{Hlev2} = H+ lH -H  Eqn 3.12

The number of iterations to develop hypothesis depth 
should/could be limited to 8.  This is the number layers 
in the neo-cortex of humans, where knowledge resides.

Construction of the Belief Cache

A belief cache is a mathematical representation of 
situational awareness.  It is the product of observation 
and the knowledge brought to bear to understand the 
observations.   The belief cache can be viewed as the 
tagged collection of validated hypotheses generated by 
the reasoning system. This cache contains the under-
standing to a point in time.  The structure of this cache 
for our flat knowledge structure is defined in the next 
equation.

Cj /
t j,Active j

h j,0, dns" ,, dmv" ,, druc" ," ,  
Eqn 3.13

These belief kernels consist of a time tag, tj an activa-
tion flag, Acitvej, a hypothesis, hj,0, data collected that 
supports the hypothesis, {dsn} and data that would vali-
date the hypothesis, {dvm}.  The last set of data consist 
of data collected that can not be resolved by selecting 
the indicated hypothesis.
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For a hierarchical knowledge base, the structure of 
the belief cache would change to include hypotheses at 
different levels of knowledge abstraction.   The form of 
this cache is represented in equation 5.6.

Cj /

t j,Active j
h j,0, dns" ,, dmv" ,, druc" ," ,

h
h j,r, h j,r-x" , dns" ,, dmv" ,, druc" ," ,

h  

Eqn 3.14

What we have to do is add levels to the hypotheses 
that reflect the levels of knowledge abstraction.  The 
second aspect of the change is hypotheses produced at 
lower levels of abstraction contribute to the hypotheses 
at a particular level.  This construct for the belief cache, 
is needed to trace the impact of changes or updates to 
information at lower levels of abstraction.

3.5. Knowledge Operators

The operators being defined or designed for this rea-
soning construct are based on the five canons of John 
Stuart Mill (Ref. 12).  Initial work by Burch and Finn 
(Ref. 2) have focused on the first canon and involved 
significant effort at validating these canons in a much 
larger philosophical and logic context.  In this effort we 
are taking a more Peircean, pragmatic approach to se-
lecting and implementing the operators.  The five can-
ons consist of those identified in the next list. 

J.S. Mills (JSM) Canons

• Method of Agreement
• Method of Differences
• Indirect Method
• Method of Residues
• Method of Concomitant Variables

The first canon:   If two or more instances of the phe-
nomenon under investigation have only one circum-
stance in common, the circumstance in which alone all 
the instances agree, is the cause (or effect) of the given 
phenomenon.

The second canon: If an instance in which the phe-
nomenon under investigation occurs, and an instance in 
which it does not occur, have every circumstance save 
one in common, that one occurring only in the former; 
the circumstance in which alone the two instances dif-
fer, is the effect, or cause, or a necessary part of the 
cause, of the phenomenon. 

The third canon: If two or more instances in which 
the phenomenon occurs have only one circumstance in 
common, while two or more instances in which it does 
not occur have nothing in common save the absence of 
the circumstance; the circumstance in which alone the 
two sets of instances differ, is the effect, or cause, or a 
necessary part of the cause, of the phenomenon.

The fourth canon:  Subduct from any phenomenon 
such part as is known by previous inductions to be the 
effect of certain antecedents, and the residue of the 
phenomenon is the effect of the remaining antecedents.” 

The fifth canon: Whatever phenomenon varies in any 
manner whenever another phenomenon varies in some 
particular manner, is either a cause or an effect of that 
phenomenon, or is connected with it through some fact 
of causation.

The descriptions of the canons come directly from 
Mill’s System of Logic, (Ref. 12, pp224-233) and will 
form the basis for the knowledge operators in the sys-
tem.  Only the first 2 canons have been implemented in 
the coded algorithms.

Implementation of JSM-1. 

 The first canon, the method of agreement, addresses 
issues of learning.  The implementation of the first op-
erator, which is based on Finn’s method, recognizes two 
types of attribute; a goal attribute and a structural at-
tribute.  Structural attributes are those describing an 
instance.  The goal attribute is an attribute which de-
scribes a common characteristic, e.g., a terrorist group, 
or a specific nuclear reactor.  Two types of context are 
produced in the algorithm, the positive context captures 
examples which are representations of a goal attribute, 
the negative context provides counter examples.  

Our implementation is different from Finn’s method 
for a number of reasons, first, to eliminate a heuristic 
and second, to formulate a learning algorithm for creat-
ing knowledge as opposed to a reasoning algorithm.  
The knowledge base contains classification contexts 
and knowledge derived from learning contexts.  The 
modification uses the first canon to construct a context 
in which conditions (attributes) are identified that are 
characteristic of the goal condition.    

C
lc
&B+,B-

L
goal

=B+
-B+

+B-

 
Eqn 3.15  

A learning context is converted to a positive and 
negative Begriff which is subtracted from the positive 
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Begriff producing an incomplete goal lattice.  The set 
nature of the Begriff requires that the subtraction opera-
tion be defined as in the expression above. 

The engineering aspects come into play through a 
threshold based on a likelihood estimate the associates 
the likelihood of an attribute being a descriptor for an 
object (goal).  Imposing a likelihood of greater than 0.2 
on concepts in the positive Begriff means that a single 
example may not be sufficient to constitute a positive 
example.  This process reduces the probability of pre-
dicting unknown instances but reduces false positives.  
Similarly, by imposing a threshold on the negative Be-
griff results in reducing false negatives in a prediction 
problem.

Implementation of JSM-2.  

The second canon, the method of differences, can be 
characterized as a causal reasoning operator.  In this 
case we again split evidential context into positive and 
negative Begriff’s.   The first step is to identify common 
attributes for the positive evidence.  Once we have cre-
ated that positive common lattice we subtract concepts 
of the negative Begriff from this common lattice.  
mathematically the operations are described in the next 
equation.

C
ev
&B+,B-

L+^ hcommon = B
1

+
+B

k

+

` j
k

/a k

L
cause

= L+^ hcommon- L+^ hcommon+B-

 

Eqn 3.16  

Implementation of JSM-3.  

Interestingly, the third cannon is a very simple varia-
tion of the second.  The difference is the intersection 
term in the 3rd expression of equation 3.16 is ‘zero’ 
based on the description above.  The result is that the 
algorithm for JSM-2 will also support JSM-3.

4. Application

The focus of this application is to provide decision 
support capabilities and / or augment the efforts of an 
intelligence analyst.  The architecture to support these 
functions is defined in Figure 5. 

The focus is the construction or assembly of knowl-
edge which provides the basis for evaluation informa-
tion collected through sensor and intelligence sources.  
The system enables the inclusion of modal logics in 
support of the various functions of the system.  Many of 
these linkages are ‘zero order’ at this point and can be 

tailored to support the application domain.  For exam-
ple, the requirements on the disjunctive logic required 
in an automated system are going to be more stringent 
than for an application supporting an intel analyst.  
Similar arguments apply to the modal logics associated 
with knowledge construction  and revision.
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Working 

Context
Knowledge     

Base

Knowledge 
"ether"

Intel / Data

Peircean 

Reasoning 

System

Problem 

Domain

Belief 

State

HypothesesKnowledge Update

Disjunctive 
Logic

OR

Modal 
Logic
'Belief'

Constrain 
Knowledge
to "problem

domain"

Modal 
Logic

'Knowledge'

Knowledge 
Operators (JSM)

Augmented JSM 
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Figure 5.  Decision support architecture.

4.1. Intel Analysis

One application domain we have been working sup-
ports an intel analyst.  The rough scenario is an analyst 
is tasked with monitoring events for a possible terrorist 
attack in North America.  Given this kind of problem 
there are many resources that may be utilized as pre-
existing knowledge bases, such as a terrorist incident 
database.  In this case a database from state department 
reports from 1992-1998 was used in an effort to under-
stand possible patterns of behavior and tactical prefer-
ences by various groups.  The incidents were character-
ized by date, target, location, result, and the group re-
sponsible for the incident.  The data was processed by 
the inductive learning engine in the Peicean Decision 
Aid (PDA) to construct the desired knowledge.  The 
resultant knowledge base, in a lattice display, is de-
picted in Figure 6. 

The highlighted section in the figure shows the result 
of a query concerning the area of operations.  The 
knowledge base shows that ‘HAMAS’ and ‘Islamic_Ji-
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had’ are the only groups operating in North America up 
to 1998.  Similar queries show that HAMAS uses 
bombing as a tactic, impelling the analyst to key on 
information concerning the loss or theft of explosive 
material, as an example.

Figure 6.  Terror incident database sample.

The raw data often conveys very little information to 
the analyst but in many cases it is possible to process 
the information, to convert it to knowledge and find 
interesting and useful knowledge in the transformed 
data.  As in the case of the terror incident database, it is 
possible to process phone calls, bank transactions and 
other information bases to convert the information into 
knowledge permitting us to interpret data being col-
lected by the analyst.  Instead of seeing a series of 
transactions, we see linkages between banks known to 
launder money, the bank of a suspect, Confederate 
Bank, and a link to a new account / suspect at a Mary-
land bank, see Figure 7.  

The zero order temporal logic in PDA, for example,  
provides a means to look for tactical trends by a group 
over time.  This becomes critical, as behaviors can 
change over time and knowledge must be revised to 
reflect these shifting trends to ensure the hypothesis 
generation mechanism reflects current understanding.  

Figure 7.  Knowledge associated with bank trans-
actions.

Using the theories and technologies of Peircean rea-
soning provides the analyst with knowledge that can 
assist their daily activities as opposed to adding to their 
cognitive load.   What we have is a capability that can 
process massive amounts of information that is likely to 
over whelm a decision maker faced with classical deci-
sion support technologies such as an air traffic control 
system.  In these types of system raw data is presented 
to the decision maker who must reason or internally 
fuse the information provided.

4.2. Forensics Analysis

A second decision support area explored involved a 
problem of nuclear forensics.  In this problem we have 
databases of assayed nuclear material as reference sam-
ples.  Can we identify the source of black market inter-
dicted material from these sample databases.  The com-
plexity of the problem can be rather daunting.  The ma-
terial carries its entire history in its chemical composi-
tion.   The mining, enrichment, fabrication, operational 
history, and its reprocessing affects sample composi-
tions.  On top of this most materials are blended, i.e., 
new material is mixed with old material that may have 
gone through one or more life cycles.  

This problem was appealing because it had the poten-
tial of breaking the algorithms as implemented within 
the PDA system.  The sample data consisted of over 
100 real valued attributes which were fuzzified into 
over 500 qualitative attributes for describing the mate-
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rials in the database.  What was discovered, we were 
able to break MS Excel but the PDA algorithms func-
tioned without incident on the problem.  In figure 8 is 
an example of a forensics lattice containing samples 
from various locations in eleven power reactors. 

Figure 8 captures some of the complexity of the in-
formation contained in this knowledge base.  The lattice 
does show that we can uniquely define the source of 
interdicted material.  The bottom row of the lattice has 
separate instances for each reactor which  is why we 
can make that assertion.  This leads to a question,  could 
we go so far as identify where in a reactor the material 
was taken.  PDA has a number of thresholds that can be 
utilized in the inductive learning engine, these were 

used to begin a study of refining the source of the mate-
rial.  At this point of the analysis it appears that with a 
normalized axial and radial position descriptor this ad-
ditional capability may be possible.

The system can be modified to permit an analyst to 
propose hypotheses and then have the system define 
which attributes to measure in an effort to validate any 
of the pre-determined hypotheses.  This could aid in a 
rapid identification of source as well as reducing the 
potential cost of assaying a material sample.  This last 
possibility goes directly to Peirce’s, economy of re-
search idea (Ref. 14).
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5. Reasoning Extensions

The system has been developed with future exten-
sions and enhancements in mind.  The current version 
demonstrates the baseline potential and offers a 70-80% 
solution to a robust decision support capability.   As with 
all development efforts there is never enough time or 
money to produce a complete solution.  The following 
topics address approaches moving the capability to-
wards the 90-95% solution.

5.1. Hierarchical Knowledge and Reasoning.

There are two approaches for extending the capabili-
ties to include hierarchical reasoning.  The first is a 
brute force approach which simply allows for objects to 
be used as attributes in higher level characterizations.  
This is a default structure and exists within the current 
system.  If you use an ART neural net transformation of 
the FCA knowledge base, the knowledge structure 
could resemble the organizational structure  seen in the 
Figure 9.

Unstructured Knowledge Base

Figure 9. Unstructured knowledge base.

In this case you may find occurrences in which an 
object of one context is an attribute of another context 
as seen in the overlapping neural nets in Figure 10.

Structured Knowledge Base

Figure 10.  Structured knowledge base.

A better solution is to overlay the contexts within the 
knowledge base with a domain map, in which a single 
arrow indicates knowledge abstraction and double ar-

rows signify a connection involving a similarity of the 
attributes within two contexts.  ‘Domain map’  is used 
instead of ‘concept map’ because in formal concept 
analysis, concept has a specific mathematical meaning 
and over loading the term concept would lead to confu-
sion.

The most important aspect of a structured knowledge 
base is the potential for defining an abductive reasoning 
engine that has the capability of employing analogical 
reasoning.  It is this capability that would permit an 
automated decision aid to find truly novel solutions to 
new observations.

5.2. Temporal Logic and Reasoning 

Andre' Trudel (Ref. 20) discusses a concept of tempo-
ral logic in which information collected or belief can 
affect not only future understanding but also past expe-
rience.  Effectively we may re-interpret a past event 
based on new information.  This perspective of time ties 
into our understanding of belief states and should be 
considered as belief is generated, or updated during the 
course of analysis.

Temporal perspective (x)

T
im

e
 (

y
)

y = x

perceived

past

projected

future

Temporal Basis

(p,p)

Figure 11.  Model for temporal reasoning. 

The premise is that ‘the here & now’ lies on the 45 
deg. line defined by the x-y axis in Figure 11.  This 
point is indicated by the point (p,p), the ‘here and now’.  
The perceived past lies on a horizontal line emanating 
from (p,p) but for x < p.  similarly the expected future 
lies on the line but for x > p.  What the structure, or the 
paradigm brings to the table is a way to think about 
how new information can impact past belief which in 
turn can impact projections or predictions.

Temporal concept analysis is an extension of FCA in 
which the evolutions of the system or object are consid-
ered in conjunction with the conceptual aspects of the 
object.  The principle researchers in the area, Wolff 
(Ref. 22, 23, 24) and Neouchi (Ref. 13), approach the 
problem by adding directed edges to the lattice to cap-
ture the evolutionary behaviors of the attributes.  

 SAND2007-8130C

17



Wolff’s efforts have resulted in a very formal represen-
tation of the temporal extensions of FCA while Neouchi 
has focused on the development / definition of sets of 
operators that focus on issues associated with temporal 
concepts. 

Wolff has approached temporal concept analysis by 
scaling the time and event space and adding directed 
edges to the concept lattice of the context.   The poten-
tial difficulty of this approach can be seen in the simple 
example in Figure 12.

The blue vectors on the lattice in Figure 12 indicate 
the temporal evolution of the objects in the formal con-
text.  The red vectors show persistent states of objects 
in that context.   What becomes clear, is the complexity 
of the display for even so simple an example.  Complex 
information bases will rapidly overwhelm any advan-
tages lattice representation brings to formal concept 
analyses.

Figure 12.  Example of lattice with directed edge 
overlay.

A way around this complexity issue is to redefine 
how we think about systems / objects and the states of 
those systems.   Traditionally,  we view a system in a 
specific state as a unique object, so we are forced in a 
FCA paradigm to replicate an object as many times as 
we have states for it.   If we instead view the system as 
being unique with sets of constant or time dependent 
attributes we can reduce the complexity of the lattice.  

Figure 13.  Temporal traces of four attributes and 
two objects with a mix of attributes.

We might be able to see these possibilities in more 
detail by considering the information in Figure 13.   The 
notional example considers different temporal traces for 
the 4 attributes and a different set of attributes for two 
objects.  We can see that taking a snapshot of these sys-
tems or objects at different points in time produces dif-
ferent collections of attributes describing the objects.  
This can also change with different threshold levels.   At 
point ‘a’,  object 1 is characterized by attributes A while 
object 2 by attributes A and D.  If  D was not in the data 
set the correct hypothesis could not be identified.  Us-
ing a process of temporal matching could refine the 
hypothesis since A is present in object 1 at all three 
states while it is only present at state ‘a’ in object 2.  

What we propose is to introduce a new attribute 
based on a Markovean type transition matrix.  In this 
situation the Markovian attribute can define the state of 
the system which can be a simple temporal trace or a 
more complex material state that is the result of a com-
plex life cycle process.  For example, in the forensic 
problem discussed earlier,  the material assay reflects 
the mining, enrichment, fabrication and operational 
history of a nuclear material.  This information can be 
captured in the Markovian attribute.  

5.3. Deductive-Inductive: Severe Testing

The final extension to be mentioned at this time is an 
automation of the hypothesis selection process.  At pre-
sent there is an assumption of an analysts intervention 
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and interaction with the decision aid.   In this case the 
analyst will exercise judgement in the selection and 
testing process for the validation and belief state gen-
eration process.  

Mayo (Ref.  11) in conjunction with Peircean ideas 
provides a compelling theory for developing a 
deductive-inductive engine for evaluating hypotheses 
generated by our decision aid.  She defines a framework 
in which to define the steps in a hypothesis testing func-
tion.   Identified are three components consisting of a 
primary model, an experimental model and a data 
model.

The primary model involves assessing a hypothesis 
and identifying or hypothesizing signatures associated 
with the components of the model.  The experimental 
model provides the linkage between the primary model 
and the data.  The data model deals with what can be 
measured and how it relates to the hypothesis.   The 
second major consideration talked about by Mayo is the 
idea of severe testing.  In this case, the experiment that 
must be the result of the experimental design process is 
one that tests the validity of one hypothesis, with un-
ambiguous results.  A confirmation result can validate 
one and only one hypothesis.

While this appears easy enough we need to consider 
the economy of research idea that Peirce talks about.  In 
some sense this may be considered an Ockham’s razor 
type of consideration, the simplest answer is the best 
one.  Any engine we design must adhere to these crite-
ria.   The mathematical structure of information and 
knowledge provides us with a foundation to build crite-
ria meeting the requirements of Mayo and Peirce.  The 
issue of Peircean cost may require the economic cost to 
be augmented with utility cost represented by some 
form of utility function.  In this way a total cost may be 
assigned to a hypothesis.  It is believed that a zero or 
first order solution should be very attainable. 

6. Observations and Conclusions

What has been produced in this effort is a robust 
flexible decision support functionality that has its roots 
in reasoning, knowledge representation and logic the-
ory.  The system is a hybrid solution using these tech-
nologies in a manner in which the best technology is 
matched to function.   We have applied the integrated 
solution to a couple problems utilizing differing process 
methodologies and have attempted to break the system 
by going beyond toy problems.  

The development areas that could add benefit to the 
decision aid and strengthen solutions in weak areas 
have been identified.  The architecture design is such 
that integrating more sophisticated solutions such as 
multiple modal logics will be readily implementable.  
We are also exploring a possibility of integrating the 
basic PDA library into a visual programming environ-
ment, such as Vipr, to enable a user to custom imple-
ment an analysis process that reflects the analyst’s 
process used in performing their duties, as opposed to 
forcing them to adapt to a externally defined process 
paradigm.  

The degree of hypothesis generation and selection 
can be automated to the degree of comfort desired by an 
analyst.  The other aspect of the mathematical founda-
tions being employed, gives us the ability to provide a 
justification or review capability of hypotheses gener-
ated by the system.  There are no black boxes that ob-
scure the logics of the underlying functionality.

Considering the linkage of the decision aid to the 
decision makers belief state and recognizing that the 
combined algorithms provide a reasoning based fusion 
capability, we have a solution that can have significant 
impact on the design of information systems.   From 
figure 1 we see that integrating the Peircean algorithms 
into the information architecture close to the sensors 
permits us to minimize the flow of data to a central con-
trol facility.  Instead of sending acoustic signatures to 
the decision maker, the system might simply send a 
message indicating a T-72 tank has been detected, sig-
nificantly reducing bandwidth requirements.

6.1. Scalability

The knowledge representation methodology provides 
a mathematical basis permitting transformations to 
other representation technologies that support different 
technologies.   One interesting application of this trans-
formation capability is to structure the decision support 
algorithm into a real time and offline capability.  The 
offline capability can work problems in back ground 
until unique knowledge bases are generated and trans-
formed into  neural net representations.  Since neural 
nets are very fast running algorithms, and depending on 
the problem domain, very compact, we envision light-
weight solutions that could in theory be implemented 
on small computational platforms, PDAs for example.  
Keeping in mind the decision support paradigm, in 
which we interface with the decision makers belief 
state, we could provide very compact,  dynamic aids for 
use in dynamic environments such as the force protec-
tion environment. 
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