
 1

A Robotic Middleware
Defence Science & Technology Organisation

Jerzy Jagiello, Nicholas Tay, and Marko Eronen

jerzy.jagiello@dsto.defence.gov.au, nicholas.tay@dsto.defence.gov.au, marko.eronen@dsto.defence.gov.au

Abstract— A software middleware concept has been applied to

the robotic software development process in order to overcome
problems with interoperability and portability of software
components between different vendor robotic platforms. An
architecture has been proposed and a prototype was built. The
architecture is designed to allow control of motion and
perception, and provide a common interface for communication.
Additionally the architecture provides the ability to use agents
for specialized and complex tasks. Experimentation with the
prototype demonstrated the applicability and value of the
middleware approach in the robotic domain. In providing a high
level interface to hide the particular details of specific platforms
the middleware allows development of re-usable software
components which can be used across different platforms. The
middleware also enhances the interoperability between robotic
platforms.

Index Terms— architecture, middleware, robotic, software

I. INTRODUCTION
The successful use of unmanned vehicles in military

operations has resulted in a growing interest in the
development and research of new robotic applications [1].
However, many of the existing applications are proprietary,
vendor specific and generally not interoperable [2,3]. In order
to increase interoperability our proposal is to apply the idea of
middleware, developed by the IT industry, to the robotic
arena. Middleware, in software terms, is the glue that binds
two separate and often not interoperable platforms, and allows
for exchange of software components and data. Our
architecture is a proposal towards a future robotic middleware
standard that the robotics industry will have to develop in
order to guarantee software portability and interoperability
between different vendor platforms [4]. The standard should
define the layers of abstraction, the components within each
layer and the interfaces for component acces and
manipulation.

II. ROBOTIC MIDDLEWARE
The design and development of software for real-time

systems requires specialised programming and engineering
skills. It takes years to develop a fully functional system, and
usually due to economic and technical pressures systems are
built for a specific purpose and lack an overall architectural
design. Our experience in developing mobile agents that can
be rapidly assembled from components has led us to an
architectural approach for the design and development of

robotic software [5].
Robotic middleware is a software architecture, represented

by an application programming interface (API) according to
which developers code their applications in order to guarantee
software portability and interoperability between different
vendor platforms. Our robotic middleware targets the basic
control interfaces of robotic platforms and is a foundational
architecture upon which more sophisticated architectures such
as reasoning and learning can be standardised.

The architecture was developed to abstract physical and
architectural vendor specific designs by providing a high level
conceptual model. The conceptual model simplifies the
programming paradigm and minimises the need for
specialised platform knowledge. The robotic middleware acts
as an intelligent broker between an application
(reasoner/agent) and the physical/simulated platform. It
transforms high level concepts into low level micro
commands that specific platforms can understand. The robotic
middleware also provides a common interface for
communication and information sharing. This enables
information to be exchanged between platforms and allows for
group control of heterogenous robotic platforms.

III. ARCHITECTURE
Our robotic middleware was designed as a three-tiered

architecture, with each tier playing a special role in abstracting
design complexity from the developer. The requirement to
translate from high level API to a specific platform API
naturally divides the architecture into 3 layers. The top layer is
to deliver a simple transparent API for application developers.
The bottom layer must fulfill the physical and data protocol
needs of the specific platform. And a layer in between is
required to describe the physical configuration of the platform
to allow for easily configurable translation.

mailto:jerzy.jagiello@dsto.defence.gov.au
mailto:nicholas.tay@dsto.defence.gov.au
mailto:marko.eronen@dsto.defence.gov.au

 2

Fig. 1. Architecture for the Robotic Middleware

A. Instruction Layer
The Instruction Layer (IL) serves as the high-level interface

of the robotic middleware that an application can use to
execute commands. It abstracts the programming specifics for
any robot, and advertises generic methods that are easy to use.
The IL doesn’t differentiate between the environments the
robot may be operating in. This means that a movement
command could be used for an air, land or sea environment,
depending on the physical capabilities of the unit (ie. whether
it can fly), and obstacles in the environment.

The IL implementation contains all the basic movements
that could be performed by any robot. If a developer requests
an action that the underlying robot cannot perform, the robotic
middleware returns an appropriate error message. The IL
purpose is to allow the developer to create generic
applications that can be used on similarly configured robots.
The developer can still produce specific code that takes
advantage of the functionality of a particular platform, but
they also have the option of producing platform-independent
code.

There are four main components within the IL. They are
motion, perception, communication and agency. Each
component handles a specific area of control, but they are all
linked to form the IL.

Fig. 2. Components within the Instruction Layer

1) Motion Control
The motion component deals with all the physical

interactions of the robot with its environment, such as, moving
the robot along a path, or picking up and manipulating
objects. Within the motion component, there is a special sub-
component that deals with the actual movement of the robot,
and a generic sub-component that encompasses all the other
action commands that a robot can perform. The motion
component handles all of the robot’s outputs to the
environment and allows the robot to affect the environment.
Some examples from the Instruction Layer Motion API, are as
follows.

To move the robot in a straight line for a particular
distance, at a given speed

move(distance, speed)

To make the robot rotate on the spot a certain amount of

radians, at a certain speed

turn(radians, speed)

The motion component in the Instruction Layer acts as a

wrapper for the motion commands within the Configuration
Layer. The configuration layer contains information about the
physical specification of the robot, and uses this information
to determine the distance or speed of the robot, and its
orientation.

2) Perception Control

The perception component deals with all inputs from the
environment into the robot. These include all types of sensor
information (visual, sonar, magnetic, infra-red, light,
temperature, etc). The perception component allows the robot
to perceive the environment, and it provides feedback to the
robot about the success of its actions. Perception can also be
used to inform the robot on what actions it ought to perform.
An example of how to access a sensor using the Perception
API is shown below:

To read the sensor value, for a type of sensor located in a

certain position

getValue(position, type, returnType)

The perception component in the Instruction Layer acts as a

wrapper for instructions in the Configuration Layer (CL).

3) Messaging and Communication
The messaging component allows for messages to be sent

and received by robots. All robots that use the robotic
middleware have access to this communication functionality.
This reduces interoperability issues and allows for group
robotics experimentation. The messaging component allows
the robot to access remote sensors and control remote
actuators. Currently, communication has been implemented
for the TCP/IP sockets, unicast, multicast and RMI protocols.
More protocols can be added in the future as the messaging
component is modular and easily extensible. The
communication component contains several security measures
like the registration of the message listener and message
content. An example of some of the communication methods
provided are shown below.

To send a message to a particular host, the topic and

function should be specified. The message can also include an
object.

 sendMessage(name, host, pass, topic, object, function)

To receive a message from a particular host relevant to a

certain topic

 3

 waitForReply(topic, host)

Similarly this can be done through a publish and subscribe

mechanism
 publishMessage(topic, object, function, password)
 subscribeMessage(topic, password)

The communication component transmits messages to other

communication components on other ILs. To receive a
message, a user must implement a MessageListener that
understands what to do with the message. Alternatively, users
can call the waitForReply() method to block the execution of
code until a suitable message arrives.

4) Agent Control
The agency component allows for an application existing

on a particular robot to migrate to another host and be
executed there. Agents provide a useful tool in the
development of group robotics [6]. Agents can be designed to
carry an itinerary for visiting robots and executing commands
on various robots. As the agent travels amongst robots, the
itinerary may itself be changed, allowing for a very dynamic
way of experimenting with group control. Alternatively, the
developer can create an Agent, and use the agent methods
available in the Instruction Layer. The advantage of an agent
is that it is mobile, and can be transferred to other locations
and other hosts.

To send an agent to a remote host

 sendAgent(host, agent)

The Agents have similar functionality to IBM Aglets [7].

The agents use the underlying communication component to
transport themselves to new destinations. Specialised agents
can be sent to any robotic platform supported by the IL.

One of the benefits of agents can be seen in the domain of
robot control. Rather than sending a message to tell another
agent to perform a task, an agent can be created that arrives at
the target robot, performs its complex code, and then returns
back to the controller with its results. The Agent component
allows code that is written and compiled on one host, to be
sent dynamically to another host for execution.

B. Configuration Layer
The Configuration Layer (CL) was designed to abstract the

physical representation of the robot from the rest of the
design. As a result, the CL’s role is to store and manipulate
the physical configuration information of the robot, such as
the number and type of sensors, and the arrangement of the
actuators (motors). Many robots and unmanned systems are
flexible in terms of their configuration, so it is beneficial to
have a layer that can be easily modified to reflect a physical
change in the robot. In our CL most of the changes in the
robot configuration can be stored in a file, allowing updated

changes to be performed at run-time by the middleware.

Fig. 3. Components within the Configuration Layer

The CL lists the inputs (sensors) and outputs (actuators)

that are currently available to the robot. When robotic
instructions arrive from the IL, the CL translates the
instructions into a form that the Platform Layer can
understand. Any physical configuration information about the
robot that is necessary will be added to the robotic instruction
before being sent to the Platform Layer. As an illustration, for
an actuator command, relevant information such as the size of
the wheels is used to convert a distance travel command into
the number of revolutions the actuator must complete.
Similarly, for sensor commands, the data received from the
Platform Layer is translated by the CL before being sent back
to the IL.

The CL implementation was designed to separate the
physical representation of a robot from its software
requirements. The CL is comprised mainly of a list that
defines the actual position of sensors and motors, and their
links to the corresponding ports on a robot. For example, the
CL may indicate that the actuator on port 3 will be linked to
the left wheel and the actuator on port 4 will be linked to the
right wheel.

Two implementations are currently available for the CL.
The first is a generic two-wheeled implementation that defines
movement of small robots using two wheels in a differential
drive configuration. By utilising this configuration for both
the Mindstorm and Fishertechnik systems, the two-wheeled
configuration was used to demonstrate that the physical
representation could be independent from the software
particulars of a robot. In this configuration, the CL calculates
the distances and speeds each wheel must rotate and passes
this information to the PL to execute. A snippet of
configuration for a two-wheeled vehicle is presented below:

 4

Fig. 4. Example of the description for a robot

The second implementation was created to drive the Sony
Aibo robot. The Aibo configuration is a proprietary
implementation that takes advantage of many of the
commands and inbuilt functionality of the Aibo platform. In
this instance, rather than calculating distances for the legs to
move, the CL accesses the high level Aibo commands to move
the robot through the Platform Layer.

C. Platform Layer
The Platform Layer (PL) converts robotic instructions into

low-level commands that the underlying robotic system
understands. The PL is made up of four major components;
the execution action thread, the motor platform, the sensor
platform, and the communicator.

Execution Action Thread. The Execution Action Thread is

an internal thread that evaluates expressions to determine if
certain conditions are true. The Sensor Platform and Motor
Platform place components into the Execution Action thread
for execution.

Motor Platform. The motor platform deals with the

movement aspects of the robot. It controls all the physical
interactions between a robot and the environment. The
component takes instructions from the CL and converts them
into a language specific command for the robotic system. Due
to the design of the middleware, this component does not need
to understand how the robot is actually configured (physically
assembled), as this information has already been included
from the Configuration Layer.

Sensor Platform. The sensor platform component handles

the perception of the robot. It takes instructions from the CL
and converts them into sensor requests for the robot. After
receiving a reply, it forwards the data back to the CL. The
information that is returned is usually raw data, which this
component does not need to understand, as it is the role of the
Configuration Layer to convert the data into a format that the
user will understand.

Communicator. The Communicator component connects

the robotic middleware to the underlying robotic system. It
uses communication technology such as RS232, sockets and
802.11 (wireless LAN) to transmit commands from the sensor
and motor platform components to the robot.

Fig. 5. Components within the Platform Layer (PL)

The PL was designed to translate generic information into a

command language that is recognisable by a particular robotic
system. The PL is supplied with the location of input and
output ports, the amount of force required and the duration of
force, and must use all this information to create a command
that the underlying robotic system understands.

1) Execution Action Thread

The execution action thread is a real-time repository of the
current executed set of commands, and maintains a memory of
which actuators (motors) are currently in motion, and when
they should be stopped. The repository holds current
command sets in containers. The execution action thread
continually cycles through the containers and calls the execute
method on every container object. In the event of a clash for
actuator resources, the most recent commands will take
precedence over commands in progress. The prioritisation of
commands and optimisation of resources has been considered,
however it has not yet been implemented into the execution
action thread.

2) Motor Platform
The Generic Motor Platform class is a component that

contains fundamental Motor Platform functionality without
the specifics of its implementation. It forms the framework for
creation, management and supervision of commands that are
represented by the container components. The Generic Motor
Platform creates a container that is responsible for controlling
the motion of the robot. The container is populated with logic
and action objects which match the platform actuator
requirements for actions with the appropriate set of available
sensory devices.

In order to write a specific implementation for a particular
platform some Generic Motor Platform methods must to be
overwritten. The key method that must be implemented is the
run motors implementation.

 runImpl(motors)

 5

3) Sensor platform
The sensor platform class is a repository of sensor objects

with information about their physical characteristics. Every
physical sensor attached to the robotic platform has a software
equivalent in the robotic middleware. To assemble a container
and supervise the execution of commands the appropriate
sensors should be matched with the appropriate platform
actuators. This class creates instances of sensor objects and
allows for grouping of sensors according to the control
requirements of the platform actuators.

To create a software sensor equivalent according to a

sensorObject definition
 createSensor(sensorObject)

To get a certain type of software sensor that is linked to a

motorPort
 selectMotorSensor(motorPort, type, returnType)

Another aspect of the sensor platform component is the

communication medium by which the data has to be acquired
from the physical/simulated sensors.

4) Communicator
The communicator links the Platform Layer with the actual

robotic platform the user intends to control. In most cases, this
requires a physical connection such as RS232 or WLAN, and
is dependent on the interfaces available on the platform. The
communicator should only handle the transfer of data, as the
implementation of the communication protocol that the
platform understands is handled by other components within
the Platform Layer.

The generic communicator component consists of a
Communicator wrapper, and an underlying communication
interface. Current communication interfaces supported by the
communicator wrapper are RS232 client channels, or TCP/IP
sockets in client or server mode.

The Communicator wrapper class provides control of input
and output, and logging to file. The essential communication
methods are send and receive, which call their counterparts on
the underlying communication interface.

To send data
 send(data)

To receive data, waiting for a specified timeout period
 receive(timeout)

IV. MIDDLEWARE VALIDATION AND VERIFICATION
The development, validation and verification of robotic

software is a long and laborious process. Developed
components have to be loaded over and over again into the
robotic platforms and tested there. In order to improve
productivity, developers use simulators to test the progress of

the development by running components in a PC environment.
Then after initial testing in simulation these components are
loaded onto real platforms for verification. In cases where
many robotic platforms have to be tested and it is practically
impossible to gather so many robots together then simulation
is the only viable option. To simplify experimentation with a
variety of scenarios and configurations of platforms, a
simulation framework has proven to be an effective tool in the
software development and validation process [8,9].

The figure below shows the testing of robotic middleware
using a simulation framework. The MindStorm robot is
represented as a rigid body model [10].

Fig. 6. Simulation Environment

Here is an example of a test of our robotic middleware on

real robotic platforms. A mobile agent is cloned and sent to
two different robots (MindStorm, FisherTechnik)

Fig. 7. Testing Scenario
(1) a copy of the same mobile agent is sent to both platforms
(2) in parallel both platforms execute the middleware script
carried by the clone agents

A snap shot from a video recording of the test with real

robotic platforms is shown below.

 6

Fig. 8. Testing Middleware on Robotic Platforms

V. FUTURE WORK
The current implementation of the robotic middleware is

more a proof of concept than a complete implementation.
There are some limitations to the implementation which
should be addressed in the future. The implementation
currently focuses on ground-based robots, namely a two-
wheeled and four-legged (Sony Aibo) implementation. There
has been little consideration of the requirements for control of
Air and Maritime entities which are also an important part of
the unmanned vehicle space. If the robotic middleware is to
cater for entities operating in these environments then the high
level interface definitely needs to be extended. This would
provide the additonal benefit of enhanced coordination
between entities operating in different environments.

An appealing proposition which the robotic middleware
allows for is the testing of robotic software applications
independently from the hardware design. By integrating the
middleware with a simulation framework it becomes possible
to test high level robotic software applications on a whole
variety of simulated robots. This allows for group
experimentation on a much larger scale than would be
practically possible in reality.

VI. CONCLUSION
The fundamental argument for the value of robotic

middleware is to overcome incompatibility of APIs and to
increase the portability of software between platforms. By
designing a high level interface which encapsulates the
benefits of simplicity and modularity, the software
development process for robotic applications is improved,
resulting in re-usable, more robust code. A key benefit of
using a common high level API is the inherent
interoperability.

The high level API presented here abstracts away the
technical details of controlling specific platforms into well
known object oriented software development concepts. This is
achieved by a layered architecture which separates the

software application developer from platform specific details.
The layers of the architecture (Instruction, Configuration, and
Platform) are designed to allow for easy reconfiguration and
extension as necessary. The Instruction Layer is the high level
API presented to application developers. The Configuration
Layer provides a means of easily coping with the
reconfiguration of the physical attributes of a robot. The
Platform Layer handles the platform specific drivers which
need to be developed if a new platform is to become
compliant with the middleware.

REFERENCES
[1] D. Carroll, H.R Everett, G. Gilbreath, and K. Mullens, "Extending

Mobile Security Robots to Force Protection Missions," AUVSI
Unmanned Systems 2002, Lake Buena Vista, FL, July 9-11, 2002.
[Online]. Available
http://www.nosc.mil/robots/pubs/auvsi02_mdars.pdf

[2] Sandra Erwin (2003), “UAV Programs Need Common Standards, Says
Industry Study”, [Online]. Available
http://www.nationaldefensemagazine.org/issues/2003/Oct/UAV_Progra
ms.htm

[3] (2005), Defense Update, “GAO Report Criticizes Joint Services
Interoperability of Unmanned Systems”, Washington DC, Issue 3,
2003, [Online]. Available http://www.defense-update.com/features/du-
3-05/gao-uav-05.htm

[4] Middleware Technology for Open Robot Architecture Conference, July
2003, Intelligent Systems Institute, AIST, Japan

[5] J. Jagiello, A. Devereux, M. Walker “Component-Based Networking
and the MQSeries Java Bean” ASG’99 Conference July 1999, Sydney

[6] "Swarming: Network Enabled C4ISR," presented at Swarming:
Network Enabled C4ISR, McLean VA, 2003. [Online]. Available
http://www.iwar.org.uk/rma/resources/swarming/swarming-c4isr.pdf

[7] D. B. Lange, M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets, Addison Wesley, 1998.

[8] Obst O., Rollmann M., “Spark - a generic simulator for physical multi-
agent simulations”, Computer Systems Science & Engineering, vol.20,
no.5, Sept. 2005, pp.347-56, CRL Publishing, UK.

[9] Gottlieb, E. Harrigan, R. McDonald, M. Oppel, F. Xavier, P. “The
Umbra Simulation Framework” Sandia Report (2001) Sandia National
Laboratories

[10] D. Baraff, “Analytical methods for dynamic simulation of non-
penetrating rigid bodies” Computer Graphics (Proc. SIGGRAPH),
volume 23, pages 223–232. ACM, July 1989.

Jerzy Jagiello has a degree in Electrical Engineering from the Marine
Academy in Gdynia, a degree in Automatics from the Technical University in
Gdansk, and a degree in Mathematics from Warsaw University. He received a
PhD in Mathematical Modelling and Simulation from the Technical
University in Gdansk in 1981.

Dr Jerzy Jagiello has over 20 years of experience in mathematical
modelling, simulation and real time programming.

Nicholas Tay graduated from the University of Western Australia in 1998
with a double degree in Engineering (Electrical and Electronic) and Science
(Computer Science).
 Mr Tay joined DSTO in 1999 as a Profesional Officer in software
development and robotics.

Marko Eronen graduated from University of Canberra in 1998 with a
Bachelor of Engineering (Hons) in Electronics and Communications
Engineering.

In January 1999, Mr Eronen commenced work as a graduate Systems
Officer with DSTO and has been mainly involved with robotics and
simulation development.

http://www.nosc.mil/robots/pubs/auvsi02_mdars.pdf
http://www.defense-update.com/features/du-3-05/gao-uav-05.htm
http://www.defense-update.com/features/du-3-05/gao-uav-05.htm

	I. INTRODUCTION
	II. Robotic Middleware
	III. Architecture
	A. Instruction Layer
	1) Motion Control
	2) Perception Control
	3) Messaging and Communication
	4) Agent Control

	B. Configuration Layer
	C. Platform Layer
	1) Execution Action Thread
	2) Motor Platform
	3) Sensor platform
	4) Communicator

	IV. Middleware Validation and Verification
	V. Future work
	VI. Conclusion

