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Abstract— A software middleware concept has been applied to 

the robotic software development process in order to overcome 
problems with interoperability and portability of software 
components between different vendor robotic platforms. An 
architecture has been proposed and a prototype was built. The 
architecture is designed to allow control of motion and 
perception, and provide a common interface for communication. 
Additionally the architecture provides the ability to use agents 
for specialized and complex tasks. Experimentation with the 
prototype demonstrated the applicability and value of the 
middleware approach in the robotic domain. In providing a high 
level interface to hide the particular details of specific platforms 
the middleware allows development of re-usable software 
components which can be used across different platforms. The 
middleware also enhances the interoperability between robotic 
platforms. 
 

Index Terms— architecture, middleware, robotic, software 
 

I. INTRODUCTION 
The successful use of unmanned vehicles in military 

operations has resulted in a growing interest in the 
development and research of new robotic applications [1]. 
However, many of the existing applications are proprietary, 
vendor specific and generally not interoperable [2,3]. In order 
to increase interoperability our proposal is to apply the idea of 
middleware, developed by the IT industry, to the robotic 
arena.  Middleware, in software terms, is the glue that binds 
two separate and often not interoperable platforms, and allows 
for exchange of software components and data. Our 
architecture is a proposal towards a future robotic middleware 
standard that the robotics industry will have to develop in 
order to guarantee software portability and interoperability 
between different vendor platforms [4]. The standard should 
define the layers of abstraction, the components within each 
layer and the interfaces for component acces and 
manipulation. 

II. ROBOTIC MIDDLEWARE 
The design and development of software for real-time 

systems requires specialised programming and engineering 
skills. It takes years to develop a fully functional system, and 
usually due to economic and technical pressures systems are 
built for a specific purpose and lack an overall architectural 
design. Our experience in developing mobile agents that can 
be rapidly assembled from components has led us to an 
architectural approach for the design and development of 

robotic software [5].  
Robotic middleware is a software architecture, represented 

by an application programming interface (API)  according to 
which developers code their applications in order to guarantee 
software portability and interoperability between different 
vendor platforms. Our robotic middleware targets the basic 
control interfaces of robotic platforms and is a foundational 
architecture upon which more sophisticated architectures such 
as reasoning and learning can be standardised. 

The architecture was developed to abstract physical and 
architectural vendor specific designs by providing a high level 
conceptual model. The conceptual model simplifies the 
programming paradigm and minimises the need for 
specialised platform knowledge. The robotic middleware acts 
as an intelligent broker between an application 
(reasoner/agent) and the physical/simulated platform. It 
transforms high level concepts into low level micro 
commands that specific platforms can understand. The robotic 
middleware also provides a common interface for 
communication and information sharing. This enables 
information to be exchanged between platforms and allows for 
group control of heterogenous robotic platforms. 

 

III. ARCHITECTURE 
Our robotic middleware was designed as a three-tiered 

architecture, with each tier playing a special role in abstracting 
design complexity from the developer. The requirement to 
translate from high level API to a specific platform API 
naturally divides the architecture into 3 layers. The top layer is 
to deliver a simple transparent API for application developers. 
The bottom layer must fulfill the physical and data protocol 
needs of the specific platform. And a layer in between is 
required to describe the physical configuration of the platform 
to allow for easily configurable translation. 
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Fig. 1. Architecture for the Robotic Middleware 
 

A. Instruction Layer 
The Instruction Layer (IL) serves as the high-level interface 

of the robotic middleware that an application can use to 
execute commands. It abstracts the programming specifics for 
any robot, and advertises generic methods that are easy to use. 
The IL doesn’t differentiate between the environments the 
robot may be operating in. This means that a movement 
command could be used for an air, land or sea environment, 
depending on the physical capabilities of the unit (ie. whether 
it can fly), and obstacles in the environment. 

The IL implementation contains all the basic movements 
that could be performed by any robot. If a developer requests 
an action that the underlying robot cannot perform, the robotic 
middleware returns an appropriate error message. The IL 
purpose is to allow the developer to create generic 
applications that can be used on similarly configured robots. 
The developer can still produce specific code that takes 
advantage of the functionality of a particular platform, but 
they also have the option of producing platform-independent 
code. 

There are four main components within the IL. They are 
motion, perception, communication and agency. Each 
component handles a specific area of control, but they are all 
linked to form the IL. 

 
 
Fig. 2. Components within the Instruction Layer 
 

1) Motion Control 
The motion component deals with all the physical 

interactions of the robot with its environment, such as, moving 
the robot along a path, or picking up and manipulating 
objects. Within the motion component, there is a special sub-
component that deals with the actual movement of the robot, 
and a generic sub-component that encompasses all the other 
action commands that a robot can perform. The motion 
component handles all of the robot’s outputs to the 
environment and allows the robot to affect the environment. 
Some examples from the Instruction Layer Motion API, are as 
follows. 

To move the robot in a straight line for a particular 
distance, at a given speed 

 

move( distance, speed ) 
 
To make the robot rotate on the spot a certain amount of 

radians, at a certain speed 
 
turn( radians, speed ) 
 
The motion component in the Instruction Layer acts as a 

wrapper for the motion commands within the Configuration 
Layer. The configuration layer contains information about the 
physical specification of the robot, and uses this information 
to determine the distance or speed of the robot, and its 
orientation. 

 
2) Perception Control 

The perception component deals with all inputs from the 
environment into the robot. These include all types of sensor 
information (visual, sonar, magnetic, infra-red, light, 
temperature, etc). The perception component allows the robot 
to perceive the environment, and it provides feedback to the 
robot about the success of its actions. Perception can also be 
used to inform the robot on what actions it ought to perform. 
An example of how to access a sensor using the Perception 
API is shown below: 

 
To read the sensor value, for a type of sensor located in a 

certain position  
 
getValue( position, type, returnType ) 
 
The perception component in the Instruction Layer acts as a 

wrapper for instructions in the Configuration Layer (CL).  
 

3) Messaging and Communication 
The messaging component allows for messages to be sent 

and received by robots. All robots that use the robotic 
middleware have access to this communication functionality. 
This reduces interoperability issues and allows for group 
robotics experimentation. The messaging component allows 
the robot to access remote sensors and control remote 
actuators. Currently, communication has been implemented 
for the TCP/IP sockets, unicast, multicast and RMI protocols. 
More protocols can be added in the future as the messaging 
component is modular and easily extensible. The 
communication component contains several security measures 
like the registration of the message listener and message 
content. An example of some of the communication methods 
provided are shown below. 

 
To send a message to a particular host, the topic and 

function should be specified. The message can also include an 
object. 

 sendMessage( name, host, pass, topic, object, function ) 
 
To receive a message from a particular host relevant to a 

certain topic  
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 waitForReply( topic, host ) 
 
Similarly this can be done through a publish and subscribe 

mechanism 
 publishMessage( topic, object, function, password ) 
 subscribeMessage( topic, password ) 
 
The communication component transmits messages to other 

communication components on other ILs. To receive a 
message, a user must implement a MessageListener that 
understands what to do with the message. Alternatively, users 
can call the waitForReply() method to block the execution of 
code until a suitable message arrives. 
 

4) Agent Control 
The agency component allows for an application existing 

on a particular robot to migrate to another host and be 
executed there. Agents provide a useful tool in the 
development of group robotics [6]. Agents can be designed to 
carry an itinerary for visiting robots and executing commands 
on various robots. As the agent travels amongst robots, the 
itinerary may itself be changed, allowing for a very dynamic 
way of experimenting with group control. Alternatively, the 
developer can create an Agent, and use the agent methods 
available in the Instruction Layer. The advantage of an agent 
is that it is mobile, and can be transferred to other locations 
and other hosts.  
 

To send an agent to a remote host 
 
 sendAgent( host, agent ) 

 
The Agents have similar functionality to IBM Aglets [7]. 

The agents use the underlying communication component to 
transport themselves to new destinations. Specialised agents 
can be sent to any robotic platform supported by the IL. 

One of the benefits of agents can be seen in the domain of 
robot control. Rather than sending a message to tell another 
agent to perform a task, an agent can be created that arrives at 
the target robot, performs its complex code, and then returns 
back to the controller with its results. The Agent component 
allows code that is written and compiled on one host, to be 
sent dynamically to another host for execution. 
 

B. Configuration Layer 
The Configuration Layer (CL) was designed to abstract the 

physical representation of the robot from the rest of the 
design. As a result, the CL’s role is to store and manipulate 
the physical configuration information of the robot, such as 
the number and type of sensors, and the arrangement of the 
actuators (motors). Many robots and unmanned systems are 
flexible in terms of their configuration, so it is beneficial to 
have a layer that can be easily modified to reflect a physical 
change in the robot. In our CL most of the changes in the 
robot configuration can be stored in a file, allowing updated 

changes to be performed at run-time by the middleware. 

 
 
Fig. 3. Components within the Configuration Layer 
 
The CL lists the inputs (sensors) and outputs (actuators) 

that are currently available to the robot. When robotic 
instructions arrive from the IL, the CL translates the 
instructions into a form that the Platform Layer can 
understand. Any physical configuration information about the 
robot that is necessary will be added to the robotic instruction 
before being sent to the Platform Layer. As an illustration, for 
an actuator command, relevant information such as the size of 
the wheels is used to convert a distance travel command into 
the number of revolutions the actuator must complete. 
Similarly, for sensor commands, the data received from the 
Platform Layer is translated by the CL before being sent back 
to the IL. 

The CL implementation was designed to separate the 
physical representation of a robot from its software 
requirements. The CL is comprised mainly of a list that 
defines the actual position of sensors and motors, and their 
links to the corresponding ports on a robot. For example, the 
CL may indicate that the actuator on port 3 will be linked to 
the left wheel and the actuator on port 4 will be linked to the 
right wheel. 

Two implementations are currently available for the CL. 
The first is a generic two-wheeled implementation that defines 
movement of small robots using two wheels in a differential 
drive configuration. By utilising this configuration for both 
the Mindstorm and Fishertechnik systems, the two-wheeled 
configuration was used to demonstrate that the physical 
representation could be independent from the software 
particulars of a robot. In this configuration, the CL calculates 
the distances and speeds each wheel must rotate and passes 
this information to the PL to execute. A snippet of 
configuration for a two-wheeled vehicle is presented below: 
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Fig. 4. Example of the description for a robot 
 

The second implementation was created to drive the Sony 
Aibo robot. The Aibo configuration is a proprietary 
implementation that takes advantage of many of the 
commands and inbuilt functionality of the Aibo platform. In 
this instance, rather than calculating distances for the legs to 
move, the CL accesses the high level Aibo commands to move 
the robot through the Platform Layer. 
 

C. Platform Layer 
The Platform Layer (PL) converts robotic instructions into 

low-level commands that the underlying robotic system 
understands. The PL is made up of four major components; 
the execution action thread, the motor platform, the sensor 
platform, and the communicator. 

 
Execution Action Thread. The Execution Action Thread is 

an internal thread that evaluates expressions to determine if 
certain conditions are true. The Sensor Platform and Motor 
Platform place components into the Execution Action thread 
for execution. 

 
Motor Platform. The motor platform deals with the 

movement aspects of the robot. It controls all the physical 
interactions between a robot and the environment. The 
component takes instructions from the CL and converts them 
into a language specific command for the robotic system. Due 
to the design of the middleware, this component does not need 
to understand how the robot is actually configured (physically 
assembled), as this information has already been included 
from the Configuration Layer. 

 
Sensor Platform. The sensor platform component handles 

the perception of the robot. It takes instructions from the CL 
and converts them into sensor requests for the robot. After 
receiving a reply, it forwards the data back to the CL. The 
information that is returned is usually raw data, which this 
component does not need to understand, as it is the role of the 
Configuration Layer to convert the data into a format that the 
user will understand. 

 
Communicator. The Communicator component connects 

the robotic middleware to the underlying robotic system. It 
uses communication technology such as RS232, sockets and 
802.11 (wireless LAN) to transmit commands from the sensor 
and motor platform components to the robot. 

 
Fig. 5. Components within the Platform Layer (PL) 

 
The PL was designed to translate generic information into a 

command language that is recognisable by a particular robotic 
system. The PL is supplied with the location of input and 
output ports, the amount of force required and the duration of 
force, and must use all this information to create a command 
that the underlying robotic system understands.  

 
1) Execution Action Thread 

The execution action thread is a real-time repository of the 
current executed set of commands, and maintains a memory of 
which actuators (motors) are currently in motion, and when 
they should be stopped. The repository holds current 
command sets in containers. The execution action thread 
continually cycles through the containers and calls the execute 
method on every container object. In the event of a clash for 
actuator resources, the most recent commands will take 
precedence over commands in progress. The prioritisation of 
commands and optimisation of resources has been considered, 
however it has not yet been implemented into the execution 
action thread. 
 

2) Motor Platform 
The Generic Motor Platform class is a component that 

contains fundamental Motor Platform functionality without 
the specifics of its implementation. It forms the framework for 
creation, management and supervision of commands that are 
represented by the container components. The Generic Motor 
Platform creates a container that is responsible for controlling 
the motion of the robot. The container is populated with logic 
and action objects which match the platform actuator 
requirements for actions with the appropriate set of available 
sensory devices.  

In order to write a specific implementation for a particular 
platform some Generic Motor Platform methods must to be 
overwritten. The key method that must be implemented is the 
run motors implementation. 

 
 runImpl( motors ) 
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3) Sensor platform 
The sensor platform class is a repository of sensor objects 

with information about their physical characteristics. Every 
physical sensor attached to the robotic platform has a software 
equivalent in the robotic middleware. To assemble a container 
and supervise the execution of commands the appropriate 
sensors should be matched with the appropriate platform 
actuators. This class creates instances of sensor objects and 
allows for grouping of sensors according to the control 
requirements of the platform actuators. 

 
To create a software sensor equivalent according to a 

sensorObject definition 
 createSensor( sensorObject ) 
 
To get a certain type of software sensor that is linked to a 

motorPort  
 selectMotorSensor( motorPort, type, returnType ) 
 
Another aspect of the sensor platform component is the 

communication medium by which the data has to be acquired 
from the physical/simulated sensors. 
 

4) Communicator 
The communicator links the Platform Layer with the actual 

robotic platform the user intends to control. In most cases, this 
requires a physical connection such as RS232 or WLAN, and 
is dependent on the interfaces available on the platform. The 
communicator should only handle the transfer of data, as the 
implementation of the communication protocol that the 
platform understands is handled by other components within 
the Platform Layer. 

The generic communicator component consists of a 
Communicator wrapper, and an underlying communication 
interface. Current communication interfaces supported by the 
communicator wrapper are RS232 client channels, or TCP/IP 
sockets in client or server mode.  

The Communicator wrapper class provides control of input 
and output, and logging to file. The essential communication 
methods are send and receive, which call their counterparts on 
the underlying communication interface. 

 
To send data 
 send( data ) 
 
To receive data, waiting for a specified timeout period 
 receive( timeout ) 

 

IV. MIDDLEWARE VALIDATION AND VERIFICATION 
The development, validation and verification of robotic 

software is a long and laborious process. Developed 
components have to be loaded over and over again into the 
robotic platforms and tested there. In order to improve 
productivity, developers use simulators to test the progress of 

the development by running components in a PC environment. 
Then after initial testing in simulation these components are 
loaded onto real platforms for verification. In cases where 
many robotic platforms have to be tested and it is practically 
impossible to gather so many robots together then simulation 
is the only viable option. To simplify experimentation with a 
variety of scenarios and configurations of platforms, a 
simulation framework has proven to be an effective tool in the 
software development and validation process [8,9]. 

The figure below shows the testing of robotic middleware 
using a simulation framework. The MindStorm robot is 
represented as a rigid body model [10].  

 
Fig. 6. Simulation Environment 

 
Here is an example of a test of our robotic middleware on 

real robotic platforms. A mobile agent is cloned and sent to 
two different robots (MindStorm, FisherTechnik) 

 
Fig. 7. Testing Scenario 
(1) a copy of the same mobile agent is sent to both platforms 
(2)   in parallel both platforms execute the middleware script 
carried by the clone agents 

 
A snap shot from a video recording of the test with real 

robotic platforms is shown below. 
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Fig. 8. Testing Middleware on Robotic Platforms 

V. FUTURE WORK 
The current implementation of the robotic middleware is 

more a proof of concept than a complete implementation. 
There are some limitations to the implementation which 
should be addressed in the future. The implementation 
currently focuses on ground-based robots, namely a two-
wheeled and four-legged (Sony Aibo) implementation. There 
has been little consideration of the requirements for control of 
Air and Maritime entities which are also an important part of 
the unmanned vehicle space. If the robotic middleware is to 
cater for entities operating in these environments then the high 
level interface definitely needs to be extended. This would 
provide the additonal benefit of enhanced coordination 
between entities operating in different environments. 

An appealing proposition which the robotic middleware 
allows for is the testing of robotic software applications 
independently from the hardware design. By integrating the 
middleware with a simulation framework it becomes possible 
to test high level robotic software applications on a whole 
variety of simulated robots. This allows for group 
experimentation on a much larger scale than would be 
practically possible in reality. 

 

VI. CONCLUSION 
The fundamental argument for the value of robotic 

middleware is to overcome incompatibility of APIs and to 
increase the portability of software between platforms. By 
designing a high level interface which encapsulates the 
benefits of simplicity and modularity, the software 
development process for robotic applications is improved, 
resulting in re-usable, more robust code. A key benefit of 
using a common high level API is the inherent 
interoperability. 

The high level API presented here abstracts away the 
technical details of controlling specific platforms into well 
known object oriented software development concepts. This is 
achieved by a layered architecture which separates the 

software application developer from platform specific details. 
The layers of the architecture (Instruction, Configuration, and 
Platform) are designed to allow for easy reconfiguration and 
extension as necessary. The Instruction Layer is the high level 
API presented to application developers. The Configuration 
Layer provides a means of easily coping with the 
reconfiguration of the physical attributes of a robot. The 
Platform Layer handles the platform specific drivers which 
need to be developed if a new platform is to become 
compliant with the middleware.  
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