

DRAFT

Dynamic Conceptual Mapping Applied to Military Planning

19-21 June 2007

Paper ID number: I-127

Eric G. Heilman heilman@arl.army.mil (410) 278-4198 Richard C. Kaste rck@arl.army.mil (410) 278-7781

Computational & Information Sciences Directorate
Army Research Laboratory
The U.S. Army's Corporate Laboratory

Provide a method to decompose military operations and intelligence objectives into an easily understood format using Concept Mapping techniques that additionally incorporate a level of effort weighting system.

Reduce misunderstanding of Military operation task size and complexity

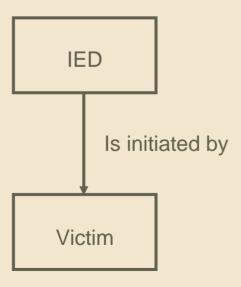
- Apply a flexible visualization technique
 - render mission task dependency
 - enable mission expression without restriction
 - incorporate commander's intent with increased understanding
- Affix level of effort weights
 - convey quantified understanding of resource requirements
 - optimize deployment of assets within mission parameters
 - provide estimate of worth

Concept of Development

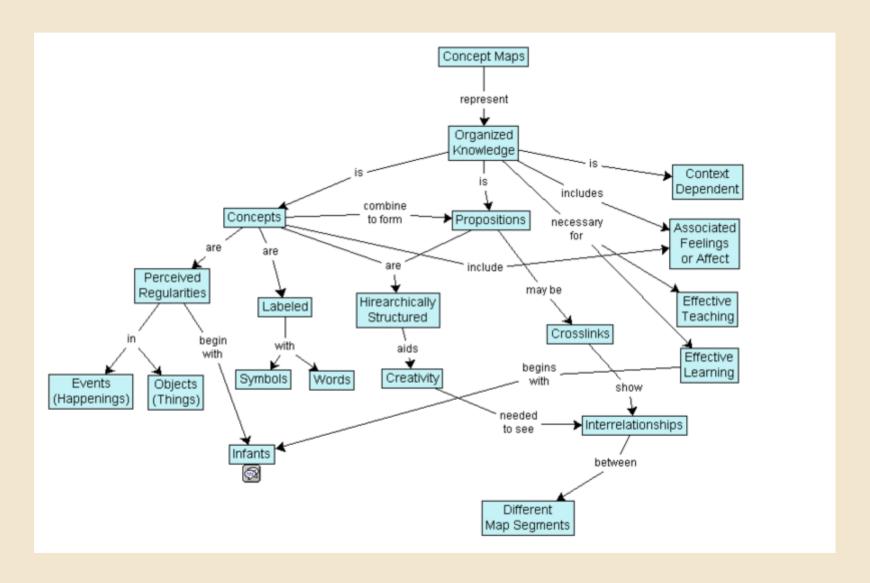
Concept Maps applied to military mission framework

- afford operators freedom of expression BUT
- is hampered by an unrestrictive nature
- is not a repeatable process
- increases resource expenditure to develop information within CMAP

Research applied to Concept Maps for military planning

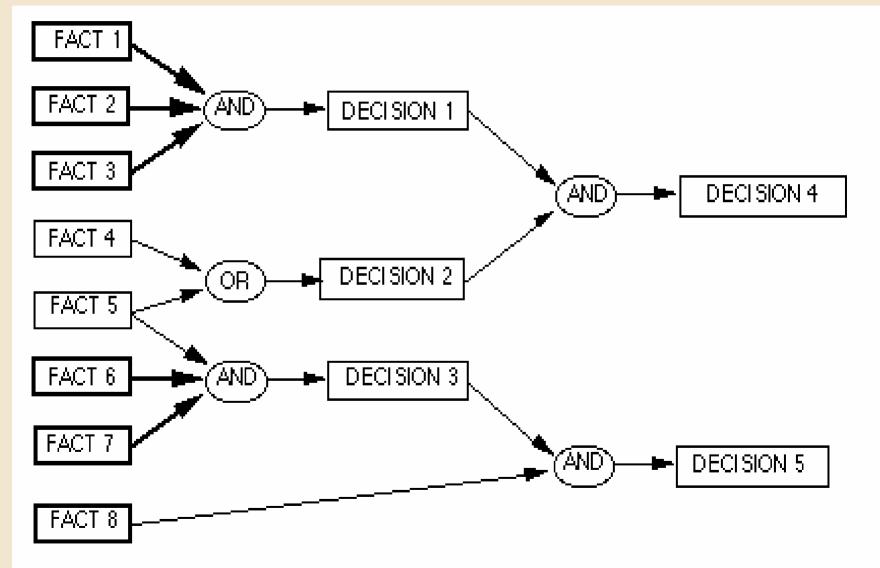

- Utilize Concept Map flexibility to capture military operations
- Convert Concept Maps into inference networks
- Apply mathematical theory of influence to develop merit-driven navigation algorithms
- Use the resulting diagrams as a planning aid for mission execution

Concept Maps Explained


Meaningful diagrams with concept Triads <A, R, B>

- A and B are two concepts (or nodes)
 - Expressed as a few words within a rectangle
- R is a relation (or link) between two nodes
 - •Expressed as a few words on a directional connector

Concept Map Example


Inference Networks Explained

Weighted networks made of nodes and links

- nodes represent facts or propositions of germane parameters
 - facts are related in an order
 - fact value, which may change, is developed by applying the link function to the values of direct antecedent nodes
- links represent a mathematical function or rule
 - produce consequent proposition from antecedents
 - consequent value is inferred from values of antecedents
 - define Implications that enable information propagation
 - the probability of proposition authenticity

Inference Network Example

Creating Inference Networks from Cmaps

Concept Maps differ from Inference Networks

- Cmaps feature cross-links that complicate information propagation
 - Cmap nodes are not functionally derived
 - Cmap nodes are concepts not propositions

Avenues of investigation

- transform "germane" Cmap node triads into inference "propositions"
- consider Cmap structure as an inference net

Inference Net creation from Cmaps

- concentrate effort to implement second investigation avenue
- suspect a hybrid approach will include real-world tactical intelligence

Concept Maps and Inference Networks future research

- Aggregate Nodes: creation of multi-node encapsulation within a single Concept Map node
- Connected Nodes and Links: inclusion of computerized linkage, such as hyper-link connections, within nodes to enable a richer concept set

The application of Concept Mapping techniques incorporating Inference Network merit value calculations to military planning has the potential of creating a greater understanding of expected returns from asset allocation and assisting commanders in making intelligence priority requests.

Eric G. Heilman

Computer Scientist

Tactical Collaboration & Data Fusion Branch

U.S. Army Research Laboratory ATTN: AMSRD-ARL-CI-CT Building 321, Office 11 Aberdeen Proving Ground, MD 21005-5067

Phone: 410.278. 4198

DSN: 298.4198 FAX 410.278.4988

heilman@arl.army.mil

Richard C. Kaste

Operations Research Analyst

Tactical Collaboration & Data Fusion Branch

U.S. Army Research Laboratory ATTN: AMSRD-ARL-CI-CT Building 321, Office 5A Aberdeen Proving Ground, MD 21005-5067

Phone: 410.278.7781

DSN: 298.7781 FAX 410.278.4988

rck@arl.army.mil