

www.mak.com info@mak.com 617-876-8085

ICCRTS JUNE 2007

Tools for the Creation of Semantic Information for Modeling and Simulation

Tom Stanzione & Kevin Johnson tstanzione@mak.com, kevinj@mak.com

Project Overview

- Augment M&S terrain databases with semantic information for automated reasoning
 - Beyond physical characteristics, includes:
 - Relationships between terrain features
 - Non-geometric information

TECHNOLOGIES

- How features can be used in combat missions
- Focusing on small unit operations
 - Infantry Warrior Simulation (IWARS)
 - MÄK VR-Forces Computer Generated Forces system
- Work being done for the US Army Natick
 Soldier System Center

CGF Terrain Databases

- D Visualization
 - Abstract representation (maps)
 - Realistic representation (imagery)
- Reasoning
 - Geometry and attribution of elevation and features
 - Data structures in memory
 - Uses:

TECHNOLOGIES

- Vehicle placement
- Movement algorithms
 - Path planning
 - Obstacle avoidance
 - Vehicle dynamics
- Line of sight
 - Targeting
 - Communications

CGF Terrain Databases

- Terrain Skin
 - Grid or TIN of elevation values
 - May or may not be stored as polygons
 - Attributes
 - "Soil Type"
 - Water
 - Mobility Characteristics
- **Features**
 - Point, Lines, Areas
 - Attributes
 - Width, height, type, …
 - 3D Models
 - Typically associated with point features
 - Building models
 - Varied fidelity
 - Overturned shoe boxes to complex structures with interior details
- Spatial organization
 - Find all terrain information around a location quickly
 - Grid-based
 - Hierarchical
 - Quad trees

Terrain Database Representations in M&S

- Mostly physical descriptions
- Little semantic information needed for higher level reasoning
 - Person looking at the actual terrain or map could deduce
 - How roads could be used to cross rivers at a bridge
 - Areas of mobility restriction for different vehicle types
 - How depressions or elevations can be used for cover and concealment
 - How small units can navigate within urban features
 - Prediction of enemy positions and movement

Semantic Information for Cross Country Mobility

- Military Crest
 - Shoulder of ridge or hill
 - Highest elevation from which contour base can be seen
- Valleys
- Danger Areas
 - Large open areas w/o cover or concealment
 - Vegetation area that does not provide cover
 - Village or urban areas

Linear Danger Areas

- Roads and trails
- Rivers and streams

Cover and Concealment

- Forested areas
- Depressions
- Raised earthwork
- Rocks or boulders

Obstacles

- Lakes, rivers
- Cliffs or steep terrain
- Ravines, gulleys, ditches
- Swamps, marches

• Key Terrain

- High ground
- Open areas

Generate Slope Polygons

- Slope tool in Spatial Analyst extension used to create slope raster Reclassify tool in Spatial Analyst
 - Reclassified the calculated slopes to match the slope categories in the Army Terrain Analysis FM5-33.
 - ▶ 0-3%, 3-10%, 10-20%, 20-30%, 30-45%, 45-100%
- Converted raster to polygon features in a geodatabase
 - Added Area and Shape Length (perimeter) attributes, and calculated the values for these fields
 - Generalization
 - Reclassified to GO (0-10%), SLOW_GO (20-30%), and NO GO (>30%)
 - Moved very small polygons to new layers by filtering on the Area attribute
 - Simplify Polygons Tool
 - Bend Simplify & Point Removal
 - Aggregate Polygons
- Merge tool was used to combine features into a single Geodatabase
- Union tool to merge SLOW GO and Tree Areas
- Clip and Buffer tools to cut roads into SLOW GO and NO GO areas
- Converted to a Shape file and moved to the VR-Forces terrain database directory for importation into VR-Forces

VR-Forces Path Planner Modification

- Path planner in VR-Forces uses an A* search algorithm for finding paths across terrain in 2-D
 - Grid of evenly spaced nodes is created
 - Grid paths are considered both orthogonally and diagonally from each node
 - Features are also used in the generation of grid nodes
- New path metric written
 - Checks to see if the start or end point of the grid segment is inside a mobility area
 - If one of them is inside a NO_GO area, the cost for that segment is set to -1 (infinite), so that segment is never used
 - If one of them is inside a SLOW_GO area, the distance is doubled for that segment, allowing them to be used but at a higher cost than segments that do not cross mobility areas

TECHNOLOGIES

Ridges and Valley Edges

- Developed a series of models in ArcInfo to generate ridge and valley edge area features and associated centerlines
 - Models linked embedded geoprocessing tools with parameters and default attributes
- Using ArcInfo with 3D Analyst, Spatial Analyst, and ArcScan extensions
- Start with a Digital Elevation Model (DEM)
- Create shapefiles that contain the geometry and attributes

 Document that walks user through the process

TECHNOLOGIES

Ridge Feature Generation

- Use hydrology tools to find areas of zero flow accumulation in DEM
 - Flow Direction tool
 - Creates a raster of flow direction from each cell to its steepest downslope neighbor
 - Calculates percent drop in elevation in the flow direction as a separate raster
 - Flow Accumulation tool
 - Uses the flow direction and percent drop rasters
 - Creates a raster of accumulated flow to each cell.
 - Majority filter
 - Expands the zero accumulation raster areas
- Select only those cells that correspond to high slopes
- Convert raster areas to polygonal areas
- Clean up and generalization
- Convert polygonal areas back to rasters and use ArcScan vectorization functions to find centerlines
- Associate centerlines with corresponding area feature
 - Export shapefiles of ridge area polygons and centerlines

Valley Edge Feature Generation

- Use DEM to generate toe-in-slope areas
 - Separate the slope raster into a raster of high slopes (greater than 6%) and a raster of low slopes (less than or equal to 6%).
 - Use these rasters to select the original elevation data from the DEM for each of these slope categories
 - Run a 3x3 Mean filter over each of these elevation rasters to expand them slightly
 - A Map Algebra expression finds the areas where they overlap
 - Resulting raster has data only where high slope areas meet low slope areas, corresponding to valley edges
- Convert raster areas to polygonal areas
- Clean up and generalization
- Convert polygonal areas back to rasters and use ArcScan vectorization functions to find centerlines
- Associate centerlines with corresponding area feature
- Export shapefiles of valley area polygons and centerlines

Ridge and Valley Features

Cover and Concealment

- Linear features that provide covered and concealed routes
- Based on aspect, tree areas, and built up areas in 8 cardinal directions
- Converted area polygons to binary rasters
 - First cut roads, railroads, and trails into tree and built up areas
- Used a Focal Statistics tool with Wedge neighborhood and MAXIMUM statistics type to shift pixels
- Used Subtraction tool to eliminate original pixels, leaving only shifted pixels
- Converted pixels to linear features, with attribution for direction concealment is from
 - Clip with lake areas to remove segments in water

TECHNOLOGIES

Focal Statistics Values

Direction	Start Angle	End Angle	Radius
North	255	285	1
NorthEast	210	240	2
East	165	195	1
SouthEast	120	150	2
South	75	105	1
SouthWest	30	60	2
West	345	15	1
NorthWest	300	330	2

[©]MÄK Technologies, Inc.

Building Interiors

- IWARS uses enclosures, apertures, climbing devices and topology
- Generating scripts in 3ds Max and TerraTools to generate interior semantic information
- Find each floor and ceiling, and stairs that connect them
- For each floor, scripts locate walls, doors, and windows, and then break up the rooms into enclosures and apertures.
- Data exported as XML for IWARS

Building Interior Scripts

Create Floor Schematic Shape

Create Ceiling Schematic Shape

TECHNOLOGIES

Conclusion

- ArcGIS and 3ds Max provide powerful set of features for generating semantic information for M&S
- New feature types enabling higher level behaviors models to be developed
- Expect to use even more ArcGIS tools and capabilities in the future for M&S terrain database representations

