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We present the characteristics of sensemaking as an information fusion model based on 
Pierceean abduction logic. We use Bayesian network to model abduction logic primitives 
from a kernel of disparate information sources. We propose information fusion models 
for prospective and retrospective sensemaking conditions to simulate the ways 
commanders and the battle staffs process information. By using a constructive 
information network from Iraq conflict, we demonstrate our models in terms of 
robustness when compared to the traditional Bayesian model alone.  
Specifically, the challenge for sensemaking is: what happens when new information 
unexpectedly arrives to the intelligent analyst? For instance: (1) the adversaries change 
their attack methods; (2) new targets are exploited by the adversaries; (3) new adversary 
sponsors emerge (e.g., Iran, Syria, etc.); and (4) a coalition partner decides to withdraw 
from protecting a city. The existing courses of action planning rarely survive the kinds of 
information described above. By combining the abduction process and Bayesian 
probability network formalisms, we propose a Bayesian Abduction Models (BAM) to 
support in the performance analysis of the sensemaking process such as illustrated in the 
sample case above.  
 

Introduction 
 

Consider the current military conflicts  in Iraq and Afghanistan.The adversary 
environment is known to be complex,” wicked” and completely asymmetric-the 
adversaries are barely known ,and their tactics keep changing against the coalition forces. 
The deliberate military decision making processes(MDMP) with all their linearity 
assumptions collapse immediately in contact  with asymmetric information environments. 
Generating courses of action must be progressive and opportunistic-the usual analytical 
models of judgment and choice that fit force-on-force tactics must be recalibrated to fight 
against unknown enemies. Sensemaking, the process of connecting dots to disparate 
information and seeking explanation to potentially unexpected evolving situations,has 
been suggested as an embellishment or precursor to existing MDMP. Unfortunately, 
these nascent decision system lacks analytical models that can capture the evolving states 
of battle dynamics and its information equivocality.This proposal seeks to minimize this 
problem by developing a probabilistic abduction model for the sensemaking process.  
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To help elucidate our point of discourse, consider a fictitious case in the current conflict 
in Iraq. We can use a hypothetical network depicted below to illustrate an example of 
analyzing the Iraq insurgency. The top most variable Ho will represent an end state which 
is a composite hypothesis, for example, we can hypothesize that the Iran is responsible 
for the sectarian violence. The variables hi  form a subset of Ho  and will represent the 
operational focus (Funneling money and weapons to insurgents, Covert operations in Iraq 
etcetera).The Variables Xi  may represent a perceived motive for the operational focus 
while Si may represent the influence path(example: using the Al-Sadr militia, using Al-
Qaeda).From a sensemaking perspective we are interested in knowing what happens 
when new information unexpectedly arrives to the intelligent analyst? For instance:1) 
The adversaries change their attack methods; 2)new targets are  exploited by the 
adversaries. From the list of possible hypotheses and variables, the analyst is interested in 
determining the most probable explanation or making the best inference from the given 
evidence. 

The existing courses of action planning rarely survive the kinds of information 
described above. Sensemaking is suggested as a model for situations with ambiguities 
such as the one in the above case; more so abductive reasoning is suggested as its 
supporting tool. Abduction is a reasoning process that tries to form plausible explanations 
for abnormal observations. A typical abduction task is classification of a given data set 
into potentially relevant elementary explanatory hypotheses. By combining the abduction 
task  and Bayesian  probability formalisms; we have developed a  Bayesian Abduction 
Model (BAM) to support in the performance analysis of the sensemaking process such as 
illustrated in the sample case above 
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Fig 1:Example network  where {hi ,xi,Si ,mi } represent the
Endstate,Operational Focus,Influence pathand the Target variables

respectively.  
 
 
 
 



Theoretical Foundation 
 

Developing an abduction driven Bayesian model of sensemaking begs for an 
important question:” Can sensemaking with all its tacit dimensions of knowledge be 
represented mathematically(and computationally)? Our answer is definitely yes, but with 
a caution of over generalization. Let us review some of the existing models developed to 
either target sensemaking or its pseudo-variances. Computationally, Schmidt(1994) view 
sensemaking as a symbolic system of human communication when he notes that “in 
systems that hold and manipulate information, it is possible for a system to hold and 
manipulate information that represents the system itself, in such a way that there is a 
causal link in both directions between the system and the information; if the system  
changes the information, the system itself changes accordingly. These (conditions) are 
self reference that make goal directed (sensemaking) systems symbolic and 
computational reflective systems.” Schank (1982) observes  that sensemaking is a system 
of actions,symbols and processes that enables an organization to transform information 
into valued knowledge which in turn increases its long run adaptive 
capacity(1982;pp.8).Weick (1995) notes that sensemaking is a theory and a process of 
how people reduce uncertainty or ambiguity…during decision making. In DARPA’s 
Information Awareness Project initiatives, sensemaking is considered an important tool 
for the Future Combat Force because, with fragmentary battle space information, 
“meaning has to be derived from these fragmentary cues”. 

Peircean philosophy provides a foundation for understanding human reasoning 
and capturing behavioral characteristics of decision makers due to cultural, physiological, 
and psychological effects. Peirce’s theory focuses on a system of logic that can achieve 
the best possible conclusions based on the available information. Pierce (1877)  first 
described abductive inference by  providing  two intuitive characterizations: given an 
observation d  and the knowledge that h causes d ,it is an abduction to hypothesize that h 
occurred; and given a proposition q and the knowledge that p→q, it is an abduction to 
conclude p. In either case, an abduction is uncertain because something else might be the 
actual cause of d ,or because the reasoning pattern is the classical fallacy of “affirming 
the consequent” and is formally invalid. Additional difficulties can exist because h might 
not always cause d, or because p might imply q only by default .Generally, we can say  
that h explains d and p explains q and we shall refer to h and p as hypotheses and d and q 
as data . Peirce(1877)  further  defined the process of inquiry or discovery as including 
three fundamental inferencing processes: 

a)Abduction generation of hypotheses to explain new anomalous data. 
b)Deduction performs the function of making a prediction as to what would occur 
if the hypotheses were to turn out to be the case. 
c)Induction finds the ratio of the frequency by which the necessary results of 
deduction does in fact occur. 

Abduction is a reasoning process that tries to form plausible explanations for abnormal 
observations. It is distinct from deduction and induction in that it is inherently uncertain. 
 

Bayes Theory 
We  have alluded to the use of Bayesian theory in our proposed work. Without 

oversimplification,lets debrief our readers on the foundation of the Bayesian 



approach(Pearl,1990).In any situation in which we have to make decisions we are often 
interested  in determining the best hypothesis from some space H, given observed data D. 
So far, there has been no substantive study on the application of Bayesian networks in 
sensemaking. There are several reasons why applications of the Bayesian models to 
sensemaking are often not of interest. First, equation (i)  above cannot  handle well 
hypotheses of multiple disorders-since Bayesian models are well grounded in diagnostics 
decision making process (pearl,1988).For example, given two independent hypotheses,h1 
and h2  and a common data set D1,D2,…,Dm, the computation P(Dj|h1^h2) presents a 
serious logical analysis challenge. Secondly, it is difficult to handle causal chaining 
where there is no direct influence; note that the success of Bayesian Belief networks 
(BBN),  e.g. Pearl (2000),is based on the availability of direct conditional influences. 
 

Abduction and Bayesian Model 
The existing models of abduction are purely from the logical approach (Konolige, 

1992).Our model is not for logical reasoning. We are interested in the probabilistic 
models of uncertainties that allow some explanation to take place in a sensemaking 
information network. The relationship between Bayesian reasoning and abduction is 
governed by the assertion that issues affecting reasoning, e.g., semantics is abductive in 
nature, thereby, a set of plausible explanations of a proposition characterizing the context 
of interest can be derived (Prakken, 2004).Simply 
 

Let P(w) = ∑ P(E) 
                    E is an explanation of world w 
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The abduction problem in sensemaking is: given E, explain E, then try to explain w from 
these explanations. 
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Mathematical   illustration. 

We briefly demonstrate the Bayesian abductive inference using a mathematical 
illustration. For simplicity,inference is performed only for a part of the network as shown 
in figure 2 below. 
 

We can compute the prior probabilities of all variables as follows 
 
P(h1)= P(h1|Ho)P(Ho) +P(h1|Ha)P(Ha)= (0.9)(0.4)+(0.8)(0.6)=0.84 
P(x1)= P(x1|h1)P(h1) + P(x1|h2)P(h2)=(0.7)(0.84)+(0.4)(0.16) =0.652 
P(S1)=P(S1|x1)P(x1) +P(S1|x2)P(x2)=(0.5)(0.652) +(0.6)(0.348) =0.5348 
 Now Suppose the variable X is instantiated for x1. 
Since the Markov condition entails that each variable is conditionally independent of the 
next variable given its parents, we can compute 
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Fig 2 :Example network  where {hi ,xi,Si , } represent the
Endstate,Operational Focus and Motivation and the Influence Path

variables respectively

P(Ho)=0.4

P(h1|Ho)=0.9, P(h1)=0.84

P(Ha)=0.6

P(h1|Ha)=0.8

P(x1|h1)=0.7,P(x1)=0.652

P(X1|h2)=0.4

P(S1|X1)=0.5,P(S1)=0.53

P(S1|X2)=0.6

 
P(h1|Ho)=0.9 
P(x1|Ho)= P(x1|h1,Ho)P(h1|Ho) + (P(x1|h2,Ho)P(h2|Ho) 
             = P(x1|h1)P(h1|ho)+P(x1|h2)P(h2|Ho) 
             = (0.7)(0.9) + (0.4)(0.1) =0.67 
P(x2|Ho)= P(x2|h2,Ho)P(h2|Ho) +P(x2|h1,Ho)P(h1|Ho) 
             =P(x2|h2)P(h2|Ho) + P(x2|h1)P(h1|Ho) 
             =(0.6)(0.1) +(0.4)(0.9) 
             = 0.42 
P(S1|Ho) = P(S1|x1,h1)P(x1|Ho)+P(S1|x2,h2)P(x2|Ho) 
               = P(S1|x1)P(x1|Ho)+P(S1|x2)P(x2|Ho) 
              =  (0.8)(0.67) + (0.6)(0.42)= 0.734 
 
 
Applying abductive inference, we can compute  

P(x1|S1)= 60.0
5348.0
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To compute P(h1|S1), we again apply Bayes  theorem 
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But we need to first compute the P(S1|h1). That is  
P(S1|h1) = P(S1|x1)P(x1|h1)P(S1|x2) + P(S1|x2)P(x2|h1)P(x2|h2) 
               =(0.5)(0.7)(0.6) +(0.6)(0.3)(0.6) 
               =0.318 



P(h1|S1) = 0.504 
 
We then compute the probability P (S1|Ho) and P(Ho|S1) in a sequence as follows 
P(S1|Ho) = P( S1|h1)P(h1|Ho)+P(S1|h2)P(h2|Ho) 
                =   (0.53)(0.9)+(0.47)(0.1) 
               =0.524 
Which gives us a probable  explanation for prospective sensemaking. 
 
Again, by using Bayes theorem 
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Similarly, this gives us a probable explanation for retrospective sensemaking. 
Considering the network shown in figure (1) above  
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Because of the independence of {S1,S2, S3..Sr},we can write 
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Clearly, the complexity of the computation, even for a relatively simple network 

can be seen. When new evidence is obtained by the analyst, the analyst is interested in 
determining the possible effect on his most probable hypothesis, Ho. Suppose the new 
evidence points to a new target to be exploited by the insurgents. The new target may be 
a coalition Command and Control post in a previously secure part of the country. This 
would definitely require a level of sophistication, challenging the analysts previous 
hypothesis about the end state of the insurgency. Using Bayesian abduction inference, we 
can compute the state of the network with variable Xi instantiated as follows: 
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Once the state (solution) of the network is determined, it is straightforward to 

perform forward or backward inference. It is easy to see also that the more complex the 
network, the more difficult the computation. Unfortunately abductive inference in belief 
networks belongs to the class of NP-hard problems (Cooper, 1990). Complexity increases 
drastically as a function of the number of undirected cycles, discrete states per variable. 



and variables in the network. Approximate solution techniques which reduce calculation 
time and generate rankings of possible hypotheses have been introduced as an alternative.  

In order to overcome the problem of computational complexity, the BAM uses a 
genetic algorithm (GA) to perform the search and computation for the most probable 
hypothesis. GA’s can handle very complex network problems and perform efficient and 
fast computation over large search spaces. By posing inference as search in a large 
discrete multi-dimensional space where the metric (phenotype) is the probability of each 
c hypothesis, GA can be conditioned to serve as an inferencing engine. More over GA’s 
adaptive searching characteristic facilitates the search for high probability instantiations. 
One major advantage of GA is that we can represent multiple states for each variable 
depending on the cardinality that we choose for the genetic coding. GA’s use 
probabilistic transition rules, not deterministic ones and are amenable to probabilistic 
reasoning methods such Bayesian methods. The first step in applying GA to our BAM 
model is to code all the variables in our hypothetical network as a finite length string. The 
simplest scheme is to use cardinality two for the variables so that the set  {0,1} is 
sufficient to represent all the states of the variables. In this case,{0 } represents a variable 
(or node) in the network that is not instantiated while {1} represents an instantiated node. 
The initial population is generated by coding each of the variables with a {0,1} 
depending on the state of the instantiation. The initial population is then subjected to 
genetic operators{ mutation, crossover, reproduction}. The fitness function to determine 
reproduction is calculated based on straight Bayesian operators. Figure 3 below 
represents the network with the instantiated variables (nodes) coded by {1}. The 
generated string for all the parameters to be manipulated  is represented as: 
 

Ho Ha h1 h2 h3 hn X1 X2 X3 Xk S1 S2 S3 Sr m1 m2 mj
1   0  1   1  0  0   0    1   0   1   1   0  1   0  1   0   1 

mj:1m2:0m1:1

Sr:0S3:1S2:0S1:1

xk:1x3:0x2:1x1:0

hn:0h3:0h2 :1h1: 1

Ho: 1

Fig 3:The network with all the instantiated variables coded {1}.the
nodes are given position coordinates for the search process
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2,1 2,2 2,3 2,n

3,1 3,2 3,3 3,k

4,1 4,2 4,3 4,r

5,1 5,2 5,j

 



In a previous work, Gelsema (1995) applied a GA to abductive reasoning in 
Bayesian belief networks. Gelsema used a two level network depicting a classical 
diagnostic problem. Our approach differs significantly from Gelsema’s approach in two 
ways. Foremost, Gelsema’s goal was to find the states of the network (solutions) with the 
highest overall posteriori probability. To do this, the fitness function was 
straightforwardly calculated as a product of n multipliers, one for each of the n nodes in 
the network. This could be seen as more of a search for an optimal solution. The BAM 
model does not search for the optimal solution; rather it searches for the most probable 
outcome (hypothesis) given the evidence in the prospective sensemaking phase using 
abductive inference. In retrospective sensemaking, the BAM model searches for the 
evidence, given a probable outcome (hypothesis). 

 
Sample Results: 

 
To clarify the approach, we use a hypothetical network, an array of conditional 

probability tables was generated using Bayesian abduction inference. 
 
 Array 1: P(hi|Ho) 

9.0
3.0
5.0
8.0

1|

44

33

22

11

hH
hH
hH
hH

HHh ooi

=
=
=
=

=

 

Exhibit 1: Sample 
calculations using 
MathLab software 

 
 Array 2: P(Xi|hi) 

5.07.09.01.0
1.06.03.09.0
8.05.04.03.0
1.06.02.07.0

|

44

33

22

11

44332211

xX
xX
xX
xX

hHhHhHhHhx ii

=
=
=
=

====

              

 
Array 3: P(Si|Xi) 

4.07.06.05.0
5.03.01.09.0
4.05.00.01.0
3.09.06.05.0

|

44

33

22

11

44332211

sS
sS
sS
sS

xXxXxXxXxS ii

=
=
=
=

====

   

 
Array 4: P(mi|Si) 
 



  
6.02.09.01.0
9.04.05.03.0
1.08.03.06.0

|

33

22

11

44332211

mM
mM
mM

sSsSsSsSSm ii

=
=
=

====

 

 
The variable names in the arrays are replaced with the position coordinates 

representing the variables. When some new information arrives to the analyst, a variable 
is instantiated and coded by a {1} in the string. The GA model then performs the 
abductive inference by performing the computation for all possible states of the 
instantiated network variables and giving the approximate inference. The result is then 
output as the most problem outcome (Most probable explanation).As mentioned before, 
this can be prospective or retrospective. Figure 4 illustrates the sample results using 1000 
generations. The red line shows the most probable explanation and blue showing the least 
probable. The converging of the two lines occurs at 3000 generations. Note the 
probability (Y) scale is multiplied by 10. For this example, given the information, with 
probability of 0.4, the two hypotheses are equally likely to be accepted—this result is still 
being verified; may be happenstance or chance variability may be responsible for this 
convergence—something we are suspicious!! 
 

 
 
Figure  4: A graph showing a sample GA run (the red line shows the most probable 
explanation and blue showing the least probable). 



Conclusion: 
In this paper we present a computational model of adductive inference using 

Bayesian techniques. Sample simulation runs with networks of medium complexities 
have been undertaken and the model has been shown to provide approximate abductive 
inference for different two hypotheses test scenarios. Efficient and fast computation is 
accomplished by the use GA in the model. The BAM model is still being refined and 
future task include developing a user interface for the BAM that can be used by 
intelligence analysts. 
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