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Abstract 

…. 
This paper illustrates the benefits of “informing” the systems engineering process through 
the use of Agent-Based Modeling.  While modeling and simulation tools are often 
employed in the systems engineering process, their typical use provides additional 
information to the decision makers.  Thus, these tools are used to “inform” decision 
makers within the systems engineering process. 
 
An analysis was recently conducted in order to identify unanticipated effects on 
Composite Combat Identification (CCID) Reasoning Algorithm (CRA) within a 
distributed system-of-systems (SoS) Integrated Architecture Behavior Model (IABM) 
environment. An Agent-Based Model (ABM) simulation approach was used to evaluate 
potential emergent behavior. CRA, based on a Dempster-Shafer evidential reasoning 
algorithm, was recently introduced in the literature. Studies of its effectiveness have been 
limited to a single instance of the algorithm. 
 
In investigating distributed CRA effectiveness, we considered the behavior of sensor and 
CCID information sharing across the network. In particular, network delays deliver 
distributed sensor information to CRA nodes at different times, skewing CCID 
recommendations for a given track from individual nodes.  Discrepancies must be 
resolved by some suitable arbitration scheme. We considered four schemes in our study: 
Weighted Bayesian, Naïve Bayesian, Majority Voting, and Maximum Belief Value. 
 
Distributed SoS architectures famously exhibit “emergent” behavior that is practically 
impossible to model via fully scripted simulations. We chose to apply ABM to allow us 
to capture this behavior, to evaluate our distributed SoS architecture from “the bottom 
up”. In this environment, we were able to study the effects of variations in network delay 
and arbitration scheme on distributed CRA performance. 

…. 
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Introduction 
 
“System of Systems” 
 
 In recent years, within the systems engineering community, the terms “System of 
Systems” (SoS) and “System of Systems Engineering” (SoSE) have emerged in response 
to the growth in complexity and scope of technology solutions produced for use in many 
domains. The defense industry is a typical customer of the type of work done by systems 
engineers, and a recent shift in focus in military acquisitions from “systems” to 
“capabilities” is another factor contributing to the emergence of these terms.  The United 
States Department of Defense (DoD) and their Joint Vision 2010 (JV2010) and 2020 
(JV2020) describes the US military and its goals for the 21st century.  This vision 
assumes and articulates the necessity for multinational and US interagency cooperation 
and interdependent joint command and control (JC2) for a full range of capabilities 
operationally, organizationally, doctrinally, technically, and intellectually [1], [2].  
Information superiority (IS) is a key enabler of the Joint Vision (JV) and the evolution of 
JC2 as it integrates the core competencies of the multiservices into joint operations. Joint 
Vision is the optimal integration of all joint forces which in turn creates additional 
complexity to operations. It is this complexity and interdependent capabilities that will 
achieve full spectrum dominance through independent multinational and multiagency 
operations acting in concert. 

Acting in concert and remaining independent requires a SoS whereby the 
independent agencies and multinational systems dynamically merge to form a holistic 
system. The result is a SoS that has greater capabilities than the sum or simple 
combination of the individual multinational or agency systems. JV relies on SoS to bridge 
between existing legacy and new systems. The literature describes several SoS definitions 
and attributes.  The attributes common to SoS are generally agreed [3], [4], [5]. These 
include tendency for “emergent behavior” and composition from individual systems that 
can operate independently, the developments of which are managerially independent 
from the overall system development effort. 

Systems engineering has continuously evolved to develop ever more complex 
systems, but faces an inability to address problems of ambiguity, multiple and diverse 
contexts, and nonlinear relationships with other systems [6]. These systems are described 
as complex adaptive systems (CAS) and are composed of agents interacting with one 
another and their external environment. They interact in such a way to display stimulus-
response behavior [7]. Agents adapt by changing their rules as they learn producing 
emergent behavior. CAS holds the properties of nonlinearity, difficult or impossible long-
term prediction, seemingly spontaneous formation and dissolution of groups, complex 
communications between groups and individual entities, and the ability of individuals to 
reason about their environment. The concept of evolving agent behavior and ability is a 
key concept in CAS - the dynamics of emergence in both new species and aggregate 
behavior between individuals are well-studied areas. 

Agent Based Modeling (ABM) may be used for simulating these complex 
nonlinear systems and their interactions thus representing the real world.  The emergent 
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behavior as a result of the learning acquired by the collective action of the agents may be 
observed and assessed [8], [9], [10]. Agent-based models are characterized by systems of 
autonomous individuals (the “agents”) situated within some contextual world that 
provides the agents sensory input of interest to the modeler. An individual agent’s 
behavior is usually specified via fairly simple rules for sensing what is in the environment 
around it and reacting to stimuli. Agents tend to act in goal-directed ways. Agents may 
also be programmed for learning and memory; i.e. the rules they use can change over 
time as the agent adapts. 

The popularity of ABM has been rising in fields such as biology, finance, physics, 
and homeland security, to name a few – even springing forth newly identified fields such 
as computational sociology. Many conventional agent-based models in these applications 
are populated by tens, hundreds, thousands, or perhaps even millions of identical agents, 
though in our work at MS2, we are typically interested in smaller populations of sets of 
different types of agents composed into heterogeneous groups, such as naval fleets and 
strike groups.  

The emergence of Agent Based Modeling offers a means to create a validated 
conceptual model of a System of Systems, or architecture. Validated in the sense that the 
analysis was developed systematically, viewed from many angles and discovery 
encouraged. In order to evaluate the relative merits of alternative solutions, a dynamic 
view of a system’s architecture is needed in order to verify completeness of the system 
[11], [12], [13]. You don’t know what you don’t know until the system is perturbed over 
time [14], [15]. Identifying errors early in a system’s development is crucial for 
successful deployment [16]. For a Systems of Systems analysis the problem is 
exacerbated by the increased complexity inherent in a System of Systems. 

 
Modeling and Simulation: Conventional and Agent-Based 

 
In our modeling and simulation (M&S) work, many of our SoS studies are 

performed using conventional discrete event system simulations, which have an event-
driven execution model and involve the specification of scripted behavior of entities 
acting within the simulations, such as naval forces performing various missions. By 
“scripted”, we mean that entities follow generally planned behavior patterns, such as 
moving within designated operating areas and receiving and giving orders according to 
predetermined command structures. Simulation “hardware” assets (ships, airplanes, 
unmanned vehicles, etc.) have various sensor and weapon models at varying levels of 
fidelity attributed to them, and “software” aspects (e.g. command and control) employ 
basic sets of engagement rules for achieving situational awareness and reacting to enemy 
forces.  

Recently, we have been introducing ABM into our repertoire of M&S approaches 
for complex SoS studies. The payoff in applying ABM comes from the dynamics 
inherent in such CAS as described. From simple individual behaviors, complex 
macroscopic behaviors emerge, and higher-order behavioral structures are observed that 
would be impossible or difficult to “script” or program in a conventional simulation. 
Difficulty of implementation aside, the “surprise” factor of ABM simulations is 
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something largely unachievable via other techniques – we cannot script or program large-
scale behavior patterns that we cannot imagine, expect, or predict in the first place. The 
information content of agent models can be quite high. 

The execution model of ABM simulations is typically time-driven as opposed to 
event-driven models such as found in discrete-event simulations. Due to the resources 
required to simulate many agents’ behavior in parallel, agent sensor and effecter 
(movement, weapons) models are typically of lesser fidelity compared to conventional 
effects- or physics-based simulations. However, the emphasis is on the specification of 
the agents’ “reactive” behavior - the richness of their internal processing of sensor data 
and their adaptability can be greatly enhanced compared to conventional simulations.  

Of course, conventional simulations as discussed above involve entities acting 
within some simulated world, programmed to react in certain ways to external stimuli, 
and thus have “agent-based” aspects. However, Agent-Based Modeling and Simulation 
proper, as an established, distinct sub-field of M&S, typically employs tools and 
analytical techniques specifically tailored to working within the agent paradigm. Agent 
behavior specification is mostly rule-based and reactive, and agent interactions are 
typically “dense” in time, as opposed to scripted behaviors within conventional 
simulations in which interactions between entities may be sparse in time. 

Our interest is in the use of ABM in the evaluation of SoS architectures for 
military applications. As mentioned, one attribute of SoS upon which the systems 
engineering community seems to agree is that they exhibit “emergent behavior”; thus, 
ABM is an excellent choice for investigating the complexities inherent in transitioning 
from “just plain systems” to “systems of systems”. Furthermore, modeling and simulation 
is typically employed within systems engineering studies in order to increase the amount 
of information available to decision makers.  ABM provides a viable means of enhancing 
the amount of available information, thus “informing” the systems of systems 
engineering process. 
 
Case Study and Problem Statement 

 
Since the Architecture and algorithms being evaluated were still in development 

we decided that the only way to evaluate the System of Systems would be to take an 
exploratory modeling approach. In exploratory modeling, the results of a model run are 
viewed as the results of an experiment that tells us what the outcome would be if all the 
assumptions we had to make in setting up the model turned out to be true. The result will 
be the representation of a Probability Density Function wherein no single outcome exists.  
The models & simulation only need to be plausible and consistent with what is known. In 
effect this approach inverts the problem, like sensitivity analysis, in a vastly more 
complex problem space, where the bounds of where a model is valid is determined vice 
determining particular solutions [17].  

We applied the ABM SoS engineering analysis approach to the problem of 
distributed Composite Combat Identification (CCID). Interest in decreasing fratricide and 
other problems related to misidentification of entities and objects within a battlespace has 
led to research in automated combat identification. 
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Current Naval operations in combat identification involve platform-level activities 
to coordinate combat identifications throughout the platform – and in some cases across 
platforms – to try to form a cohesive operating picture as to the nature and disposition of 
forces. These activities are usually manual and require reconciliation of multiple forms of 
input data [18]. 

One recent result in automating this process is the Office of Naval Research’s 
Composite Combat Identification Reasoning Algorithm (CRA) effort, which employs a 
Dempster-Shafer evidential reasoning approach to automatic combat ID [19]. Given a 
multitude of sensory and other inputs, the algorithm makes a recommendation as to the 
combat ID of a track. The scope of the ONR study was limited to investigating the 
functioning of one CRA node in isolation – essentially the deployment of the CRA on 
one platform. 

In addition to plans to introduce of technologies like advanced automation for 
combat ID [21], the US Navy is also moving to deploy enhanced communications and 
networking abilities to the field. This effort is in accordance with the Joint Single 
Integrated Air Picture (SIAP) Systems Engineering Organization (JSSEO) initiative [20], 
[21]. This includes development of an Integrated Architecture Behavior Model (IABM) 
to capture the requirements for future integrated joint architectures supporting fully 
networked sensors and data available across the force. Integrated automated combat ID 
capabilities are part of the effort. 

The precursor to our study was our interest in the impact of network and other 
effects on coordinated, distributed CRA. Assuming an environment in which CRA nodes 
are deployed to various air and surface platforms across a force and within the SIAP 
environment, we are interested in: 

 
 The effects of network delays on local CRA combat ID recommendations 

taking sensor and other input data obtained from many nodes across the 
force 

 Resolution of combat ID recommendation “disagreements” between 
distributed CRA nodes processing the same logical track within the SIAP  

 
In the first case, network delays of some kind are to be expected even under the 

best bandwidth and quality-of-service (QoS) conditions. In the SIAP environment of 
networked sensors, any given CRA node would have available to it sensor data about a 
particular SIAP track culled from across the force. Due to network and processing delays, 
some data would arrive to the node later than other data. We are interested to know what 
impact this has on the resulting CCID recommendation for the track in question. 

In the second case, within the SIAP environment, naturally the results of CRA 
processing (i.e. the combat ID recommendations) would be vital information to be 
disseminated across the force according to the distribution capabilities captured in the 
IABM. When multiple conflicting recommendations are produced for a given common 
SIAP track, how are force nodes to collectively resolve the differences and come to a 
single shared conclusion as to the true identity of the track? 
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To proceed in building an agent-based model of this situation, we defined two 
concepts that capture aspects of the second area of concern: 
 

 Consensus Group: Given N CRA-enabled nodes that have processed a SIAP track, 
we will be able to divide the N nodes according to their CCID recommendations 
into a number of groups G < N, where all the nodes in a group have produced the 
same recommendation (i.e. they “agree”). Ideally, G = 1 and all nodes agree. 

 Arbitration Scheme: When G > 1, the CRA nodes require some way of resolving 
the differences and coming to agreement on a final CCID recommendation. We 
call the method by which they do this an arbitration scheme. 

 
Next, we survey some military uses of ABM in the literature, then discuss further 

details of how we conducted our case study, and end with our conclusions. 
 
Case Study 
 
Model Design 
 

We implemented our case study model in an ABM environment [22]. We 
modeled various types of air, surface, and subsurface platforms as individual agents, with 
simplified sensor models and simulated CRA processing. Agents could communicate 
“full mesh”, but with communication delays based on distance. 

Our agents had ground-truth combat ID attributes as follows:  
 

 “Allegiance”:  One of FRIEND, FOE, or NEUTRAL 
 “Nationality”:  Generic nation names; one of “FRNAT1”, “FRNAT2” 

(friendly nations), “NUNAT3”, “NUNAT4” (neutral nations) and “FONAT5”, 
“FONAT6” (foe nations) 

 “Type”:  Various known and invented-generic air, surface, and subsurface 
platforms, e.g. “SH-60B”, “DDG”, and “Red Submarine” 

 
The real CRA uses a database of various combat ID attributes and calculates 

probabilistic “belief values” for the corresponding attributes of tracks under consideration, 
then produces its recommendations based on the resultant belief values.  

Toward this end, we created eight generic organic sensor types that a platform 
(agent) could have and assigned each type a weighting value that would indicate its 
contribution to a generated belief value. Different agents were assigned mixes of these 
sensors, i.e. an agent could have from one to eight sensors onboard. This allowed us to 
model the varying effects of input from different sensors on each type of combat ID 
attribute. For example, IFF (Identify Friend or Foe) has greater impact on the Allegiance 
and Nationality attributes than on Type. For the sake of simplicity, we used one overall 
“on or off” detection radius for all of an agent’s sensors; i.e. if another agent came within 
this detection radius, our first agent would be able to detect its presence. 

We modeled a CCID recommendation report as having the following fields: 
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 Track ID 
 Allegiance recommendation 
 Allegiance belief value 
 Nationality recommendation 
 Nationality belief value 
 Type recommendation 
 Type belief value 

 
The Track ID is an integer identifying the track number to which the report 

pertains. 
Belief values in our model were values between 0 and 1, as expected, to four 

decimal places. The recommendation fields above have values from the enumerations 
described previously (e.g. “FRIEND”, “FRNAT2”, “DDG”).  

We were interested also in the effects of blue vs. red force levels on the arbitration 
process. That is – given a fixed number of ground truth red (threat) forces, what would 
the effect on arbitration be of varying the number of blue (friendly) force nodes 
producing tracks and CRA reports? Given a fixed number of blue forces, what would the 
results be of varying the number of red (hostile) and white (neutral) forces? 

We created two groups of heterogeneous sets of agents, varying the number of 
blue forces in the first group, and varying the number of red and white forces in the 
second group. These data sets formed one dimension of our experimentation plan’s run 
matrix, and are duplicated below in Table 1. 

 
 

 
Table 1. Agent Population Sets Used in Experimentation 

 
For each simulation run, we instantiated one of the agent sets and randomly 

distributed them in the agent model world. Our study did not consider effects of natural 
obstacles, weather, etc. on communications, thus, there was no land masses or other 
natural objects represented; our model world simply consisted of a large area of open 
ocean. 

Each agent was initialized with a random direction and speed. This approach 
allowed the agents to simply move through the space at random, with other agents 
approaching and receding from an agent’s detection radius. 
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The environment we used models time in “ticks”. Each tick constitutes one 
increment of processing. In modeling in this environment, one typically produces a main 
processing loop procedure (usually called “go”) that handles invocation of all of the agent 
actions for the iteration, plus any global post-action processing and metrics calculation 
and gathering that needs to be done. 

One event loop for an agent comprised the following high-level sequence of 
actions: 

 
 Detect all agents within the detection radius 
 Produce organic track reports for each detected agent 
 Publish organic tracks to the network 
 Retrieve all tracks from the network to obtain a full set of tracks 
 Fuse track reports for identical tracks to obtain a minimized set of tracks 
 Generate CRA reports for each track 
 Publish the CRA reports to the network 
 (globally) Arbitrate on the network-wide set of CRA reports 

 
We will not go into all details of the processing here. We will mention that all 

network transmission delays were modeled by assigning each agent “delay queues” for 
track and CRA reports, into which time-stamped track or CRA report receptions, 
respectively, were inserted. During iterations, agents would determine the distance to 
each other blue CRA-enabled platform and insert their organically produced track or 
CRA reports in each agent’s queue, with a timestamp indicating the future reception time 
scaled by distance. Each agent would then check its queue and retrieve all tracks or 
reports it was “allowed” to process based on the timestamp. Note that the fundamental 
“tick” unit of time must map to some atomic time value of meaning in the domain of the 
model. We wanted the time delays as a function of distance to be measured on the order 
of milliseconds. 
 A view of the agent world for our model can be seen in Figure 1. Here we have 
turned on an indicator of the agent ground truth for Allegiance, shown by the agent’s 
color. For cosmetic purposes, we assigned icons to the agents roughly indicating their 
type. We also turned on ring indicators showing the sensor range for each agent. 
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Figure 1. Agent world 

 
 We nominated four candidate arbitration schemes for trial in our experiments, 
expecting that during experimentation we might find differences in their performance at 
deriving final reports most closely matching ground truth: 
 

 Majority Voting: At the end of an iteration, the number of CRA report “votes” 
of different kinds per track is counted, and the report with the most “votes” is 
chosen as the “winner”. 

 Maximum: Per track, the belief values for each CCID attribute are compared 
across all CRA reports; the final accepted CRA report is a hybrid, consisting 
of the maximum belief values per attribute type across all reports. 

 Naïve Bayesian: The track’s final CRA report is based on the median of the 
CRA report belief values per attribute across all reports for the track. 

 Weighted Bayesian: The track’s final report is based on a weighted 
combination of CRA report belief values across the report group 

The choice of arbitration scheme is another dimension in our run matrix. 
 
Hypothesis 
 
 In our experiment runs, we expected to find that as network transmission time 
delays increased, the ability to maintain a single global, shared track picture is diminished. 
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 That by using an ABM model with assumed behaviors in a model of IABM as 
understood at the time we would be able to verify our assumptions and 
identify any unanticipated emergent System Of System complications. 

 With no time delay, all agents would receive the same track and CRA report 
information simultaneously, thus, the number of consensus groups during the 
entire simulation run would remain constant at one 

 As communication delays increase, the average number of consensus groups 
would increase, and the number of consensus groups formed at the end of 
each iteration would depend on the particular geometry at that moment. 

 
Experiment Plan 
 
 We ran two sets of simulation runs, one for each agent population mix matrix as 
described above in Table 1. The first set dealt with varying the blue forces, the other with 
varying the red and white forces. In addition to the agent population mix, the other 
dimensions in each run matrix were the maximum time delay between agents and the 
arbitration scheme used. 
 Maximum time delay was specified as 0, 1, 6, and 12 milliseconds. These values 
correspond to the maximum possible delay between two agents. The agent world in the 
modeling environment can be configured to “wrap” in both the X and Y dimensions (i.e. 
it forms a torus). We used this configuration with a 501x501 patch world, with each patch 
representing one nautical mile. In this configuration, two agents placed at opposite 
corners diagonally are the farthest from each other possible, or 501 nm * √2, 
approximately 708 nautical miles. 
 The four arbitration schemes were as before: Majority Voting, Maximum, Naïve 
Bayesian, and Weighted Bayesian.  

In summary: 
  

 Run Matrix One Run Matrix Two 
Number of Population Sets 5 6 
Number of Maximum Time Delay Settings 4 4 
Number of Arbitration Schemes 4 4 
Matrix Size (Runs) 80 96 

Table 2. Run matrices for the experiments 
 

We collected the following metrics within each run: 
 

 Average, median, and ceiling of the number of consensus groups across all 
tracks for the entire run 

 Overall correctness (percentage) compared to ground truth track data 
 Percentage of reports that had each individual attribute (Allegiance, 

Nationality and Type) correct 
 Percentage of reports that had 0, 1, 2, or 3 out of 3 attributes correct 
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 Each run consisted of 1000 iterations (“ticks”). At the end of an iteration, we 
compared each final CRA report (post-arbitration) against ground truth and scored it a 0, 
1, 2, or 3, depending on how many attributes were correct. This score was recorded in a 
global accumulator list. At the end of a run, we summed these scores and divided by the 
number of reports times 3 (as there are three attributes per report). That is, 
 

3
1

∗
=
∑
=

R

score
rectnessOverallCor

R

i
i

, 

 
 where R is the number of final CRA recommendation reports generated 
throughout the run. Per-attribute correctness was calculated similarly. 

We used a feature of the ABM modeling environment that facilitates automatic 
setup and execution of experiment run matrices. The generated metrics data can be saved 
to an Excel file for later analysis. 
 
Results 
 
 Here we present a subset of our simulation result data. 
 
 

 
Figure 2. Average Consensus Groups vs. Time Delay for one Agent Population Set 

 
 Figure 2 shows the average number of consensus groups plotted against time 
delay for one of the agent populations (the mix was 20 blue agents, 25 red and 25 white). 
As is shown in the graph, we found that the “Maximum” arbitration scheme generally 
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produced the fewest consensus groups across most runs. Note that for zero delay, the 
number of groups is always one, as expected. 
 

 
Figure 3. Maximum Consensus Groups vs. Time Delay for one Agent Population Set 

 
 Figure 3 shows the corresponding graph of maximum consensus groups 
encountered during the run across all tracks, per time delay and arbitration scheme. Again, 
the “Maximum” scheme generally produced the best results, with four, six, and seven 
maximum consensus groups encountered for one, six, and twelve millisecond maximum 
delays, respectively. 
 



© 2007 Lockheed Martin MS2 Page 14 of 17 
 

 

 
Figure 4. Correctness vs. Time Delay for one Agent Population Set 

 
 Figure 4 shows the overall correctness (calculated as described previously) plotted 
against time delay. In this case the Maximum arbitration scheme actually fared the worst, 
with a near tie between the Naïve and Weighted Bayesian schemes for the best 
correctness. The overall very low correctness performance is of course heavily influenced 
by our use of a simulated CRA function. 
 
 Figure 5 tabulates our findings for correctness, normalized over all runs. In this 
analysis, Naïve Bayesian fared best overall. 
 

 
Figure 5. Normalized Correctness Results over All Simulation Runs 

 
 In summary, we found that the Naïve Bayesian arbitration scheme provided 
perfect correlation between the determined values and ground truth. By using a uniformly 
distributed random seed, the Naïve Bayesian and Weighted Bayesian performance was 
essentially the same. 
 All in all, we feel that our experimentation confirms the applicability of the 
Agent-Based Modeling approach to evaluating C2 in System-of-Systems architectures. 
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Conclusions and Recommendations 
 
The Utility of the Approach 
 
 We feel that there is great utility to be had in using ABM for military applications 
and evaluation of systems or subsystems within SOS architectures.  By specifying agent 
behavior at the individual level, we are able to perform “bottom up” vs. “top down” 
evaluations offered by conventional simulation.  ABM lends itself to the investigation of 
distributed behavior coordination problems and for identifying inconsistencies in the 
distributed architecture. 
 SOS engineering is about identifying and understanding emergent behavior.  
ABM is an excellent way of revealing SOS emergent behavior that might be otherwise 
obscure from traditional modeling methodology.  By exploring the effects of aggregate 
behavior, the ABM model allowed us to look into unanticipated results.  Identifying 
trends and patterns that emerge can build confidence and insight in the SOS concept 
under evaluation. 
   
Areas of Further Research 
 
 We believe that ABM approach to M&S can provide insight into the hard-to-
capture qualities of SOS.  In future agent models, we expect we will incorporate agent 
learning and adaptability and variations in the fidelity of various sensor and effector 
capabilities. These are some key enhancements to realizing the full potential of the 
technique.   For example, we are looking to leveraging our new experience in ABM, and 
start to build basic building blocks.  In the DoD industry, the search-detect-track-classify-
identify-engage-kill assessment kill chain is so prevalent that we might consider building 
fundamental reusable building blocks that could be leveraged in various program.  Our 
intent is to explore ways to further and enhance the use of ABM in SOS engineering, 
including the evolution of tools especially designed for SOS engineering trade-off 
analysis. 

Conventional System of Systems (SOS)-level simulators are very complicated to 
construct, execute and maintain due to their complex nature.  This issue is further 
exacerbated in situations where one needs to conduct Concept of Operations (CONOPS) 
evaluations and trade-off studies.  Due to shear number of systems and their complex 
nature, users of SOS simulators traditionally tend to execute a large design matrix.  This 
requires significant runtime requirement. One could leverage ABM’s flexibility and ease 
of use to address this issue.  For example, we can use ABM as a “light-weight” simulator 
that quickly identifies the design options which produces “main effects” within the run 
matrix.  Along with the Taguchi Method for robust design [23], one can significantly 
reduce the simulation runtime, and still produce meaningful trend analysis results. 

Another area that warrants research is the integration of ABM within the 
traditional simulation environment.  One of our goals is to potentially provide a more 
flexible behavioral representation of command and control, planning, and tactics that can 
be used to help reduce the manning requirements for manned exercise and distributed 
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mission training (DMT) by providing better automated, computer generated forces, to 
provide the basis for M&S based decision aids that can be easily reconfigured to meet the 
needs of today, and to provide a more robust modeling of behaviors within the 
battlespace, especially for non-traditional threat behaviors, and Blue force responses.  
The main drawback, in our view, of current agent-based simulation systems is the 
requirement to embed the model of the physical world within the agent models.  This 
requirement makes the development of flexible agent-based behavioral models 
unnecessarily complicated, especially if sophisticated models are needed to address the 
physical interactions that occur in combat.  In essence, models of the physical world and 
the actors within it encapsulated in standard DoD simulations must be either extracted or 
recoded to fit within the agent modeling system.  One possible solution is to leverage a 
system framework such as System for Parallel Agent Discrete Event Simulation 
(SPADES) [24].   SPADES is a middleware system that provides the capability to link 
together traditional agent systems such as COUGAAR or EMAA or any FIPA-compliant 
agent system, or composite agent modeling systems such as SWARM or ASCAPE, with 
traditional discrete event combat simulations such as the Naval Simulation System (NSS), 
the Extended Air Defense Simulation (EADSIM), the Joint Integrated Mission Model 
(JIMM), BRAWLER, JMASS, or the Air Warfare Simulation (AWSIM).  SPADES 
provides a library and communications scheme to connect these models and simulations 
together, and to provide the modeling constructs within the framework such as thinking 
time modeling and out-of-order event processing.  This library is linked into both the 
world model and the agent models to implement the distributed simulation functionality.  
In essence, SPADES allows the modeler to concentrate on the development of the 
C2/C4ISR behavioral model within the agent modeling frameworks, and to take 
advantage of existing modeling infrastructure where appropriate 
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