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Abstract 

In order to meet the demands envisioned for the battlefield of the 21st century, the DoD is 
pressing for rapid adoption of the Global Information Grid (GIG), a centerpiece of its 
transformation towards network-centric operations. Among the enabling technologies being 
leveraged by GIG-related efforts is the widespread adoption of Service Oriented Architecture 
(SOA), a powerful approach for effectively connecting consumers and providers of 
information and data processing resources. However, implementing SOA in the GIG context 
is a major challenge that requires semantic interoperability among service descriptions. To 
achieve semantic interoperability, it is necessary to establish mappings between vocabularies 
of independently developed resources from both providers and consumers. Many research 
efforts have relied on ontologies as a possible solution to this problem, but with limited 
success to date. We argue that in such an environment, a principled means for representing 
uncertainty is needed; something not found in common ontologies. This paper proposes the 
combined use of probabilistic ontologies and SOA for a Net-Centric framework, and presents 
a conceptual scheme for battlefield information exchange systems with different levels of 
service descriptions (including legacy and probabilistic enabled descriptions). 

1. Introduction 

The DoD’s Global Information Grid (GIG) is envisioned as a globally interconnected 
set of information processing capabilities that will form the technical underpinnings for the 
doctrine of Network Centric Operations. The GIG architecture (figure 1) marks a radical 
departure from the old C4ISR model to a service oriented exchange framework in which 
interconnected units operate cohesively regardless of physical distance. A key aspect of its 
implementation is the ability to provide reliable and agile information exchange among its 
components, a huge challenge for which an enabling technology is Service Oriented 
Architecture (SOA) [1].     

 
Figure 1 – The GIG architecture1 

                                                
1 Taken from http://www.acq.osd.mil/ie/bei/gig.htm 



 

SOA has become the leading approach for accessing and using distributed resources 
developed by independent entities and working with independently developed vocabularies 
and associated semantics.  The advent of SOA marks a transformation from applications 
running in an isolated environment, with little interaction between requesters and providers 
of information, into one in which information and other resources are accessed and used in a 
much more dynamic, interactive, and unpredictable fashion. 

Numerous XML-based standards and protocols are being developed to define Web 
Services message exchanges that form the basis of much SOA activity. These standards 
include SOAP, a message envelope structure used for exchanging XML serializations of 
content and message handling instructions in a decentralized, distributed environment [2], 
and the Web Services Description Language (WSDL), which represents messages exchanged 
and the concrete bindings of these messages when invoking a Web Service [3]. However, 
these XML-based structures do not have the ability to formalize explicitly the underlying 
semantics of a given Web Service description. This renders them insufficient to ensure a 
common understanding of the described Web Service. As pointed out by Paolucci et al. [4], 
two identical XML descriptions may have different meanings depending on who uses them 
and when. Because it is unrealistic to expect that all providers and consumers will have 
equivalent perspectives and knowledge regarding a given service, a common understanding 
of a given Web Service can be reached only at the semantic level, where the different 
perspectives and knowledge can be matched. 

Not surprisingly, the need for semantic-aware resource descriptions is widely 
recognized, and is the focus of numerous efforts to enable Web Service providers to describe 
the properties and capabilities of their Web Services in unambiguous, computer-interpretable 
form (e.g., OWL-S [5], WSMO [6], SWSL [7], SAWSDL [8], and WSDL-S [9]). However, 
while these efforts provide either semantic models or a means to relate existing semantic 
models, these do not allow the description authors to specify the degree to which they 
consider such models complete or applicable. Indeed, SAWSDL “allows multiple annotations 
to be associated with a given WSDL or XML Schema ... [but] no logical relationship between 
them is defined by this specification.” 

We argue that progress on SOA is hampered by the lack of support for uncertainty in 
common ontology formalisms, and postulate that probabilistic ontologies can fill a key gap in 
semantic matching technology, thus facilitating more widespread usage of Web Services for 
efficient resource sharing in open and distributed environments such as the GIG. In the next 
section, we cover the relevant background information on the need for more powerful data 
exchange methods, where we present the concept of formal ontology, its extension to 
capture incomplete knowledge in the form of probabilistic ontology, and our framework for 
building the latter. Next, we explore the issues related to uncertain, incomplete information 
in service oriented architectures and present a simple example of how our framework could 
be applied to such a scenario. 



 

2. The Quest for Semantic Interoperability 

2.1. Why Semantics? 

Computer are seeing increasingly wide use on the battlefield for storing, exchanging, 
and working with information. As the availability of information resources increases due to 
advances in sensor and communications technologies, combatants are starting to face a 
significant bottleneck in their ability to make use of it. There is an abundance of data but data 
per se is of limited use to most of our daily tasks until we can transform it into knowledge 
about the enemy and ourselves. When decision-makers reach their cognitive limit for making 
sense of incoming data and achieving situational awareness, the result is information 
overload and suboptimal battlefield performance.  

The rapid expansion of connectivity in the field is increasing the problem of 
information overload. In the race between the availability of data and the decision-makers’ 
ability to transform it into knowledge, many methods for using our ever-growing 
computational power have been devised to make life easier for the warriors. Yet, in spite of 
those efforts, there remains a heavy reliance on human cognitive processing for breaking the 
information to knowledge barrier. This leads us to the question: What is missing for IT 
techniques to move beyond the information paradigm and begin to work under the 
knowledge paradigm? 

We argue that the answer lies in devising ways for the computers not only to “crunch 
the bytes” but also to “understand” what those bytes mean. Obviously, computers do not 
really understand the meaning conveyed by the bytes they “crunch”, but this is a widely used 
metaphor to express the idea that making semantic information explicit and computationally 
accessible (i.e. better organizing the structure of data) is a powerful, more elegant way of 
utilizing that data. In other words, if we want to extract knowledge from data, we must 
develop technologies that allow computers to make use of semantic, contextual information 
attached to the data being processed. The descriptive information is commonly collected as 
metadata, and may comprise explicit descriptive elements or links to externally defined 
information or models. 

However, simply adding metadata arbitrarily to military C2 systems would only bring 
the “Babel Tower” problem to our IT resources. Indeed, when heterogeneous systems need to 
interoperate in an open world2, vocabularies that are adequate for a single stand-alone 
application will break down. This happens because systems developed in isolation from each 
other will employ different vocabularies originally tailored to different tasks.  Inevitably, there 
is incomplete and partial overlap of terminology and concepts. Even when concepts are 
clearly defined, inputs available in an open-world system may be insufficient to determine 
which meaning is most appropriate. Ontologies to describe the individual domains are seen 
as a means for tackling the problem of semantic inconsistencies among distinct systems. 

                                                
2 Due to its sheer size, the GIG can be considered as an open world environment. 



 

2.2. Ontologies to the Rescue 

The term Ontology was borrowed from philosophy. Its roots can be traced back to 
Aristotle’s metaphysical studies of the nature of being and knowing3. Nonetheless, use of the 
term ontology in the information systems domain is relatively new, with the first appearance 
occurring in 1967 ([10], page 22). 

One can find many definitions for the concept of ontology applied to information 
systems, each emphasizing a specific aspect its author judged as most important. With so 
many possibilities for defining an ontology, one way of avoiding ambiguity is to focus on the 
objectives underlying its use. For the purposes of this paper, the most important aspect of 
ontologies is their role as a structured form of knowledge representation. Thus, we use a 
pragmatic definition of ontologies that emphasizes typical purposes for building and using 
ontologies. 

Definition 1 (from [11]): An  ontology is an explicit, formal knowledge representation about a 
domain of application. This includes: 

• Types of entities that exist in the domain;  
• Properties of those entities;  
• Relationships among entities;  
• Processes and events that happen with those entities;  

where the term entity refers to any concept (real or fictitious, concrete or abstract) that can be 
described and reasoned about within the domain of application.  

Ontologies contain a common set of terms for describing and representing a domain 
in a way that allows automated tools to use the stored data in a more context-aware fashion, 
intelligent software agents to perform better knowledge management, and many other 
benefits achieved by a standardized, intensive use of metadata. 

Given the need for interoperability among systems based on different schemas and/or 
ontologies, the ability to exchange data as seamlessly as possible is one of the most desired 
features of a knowledge representation. Integrating systems created and managed by separate 
organizations, evolving in different scenarios, and geared to different needs and perspectives 
is a task that poses many challenges, even when dealing with apparently very similar 
structures. 

Unfortunately, even in tightly controlled settings (e.g. small, closed environments with 
controlled vocabularies), semantic inconsistencies (such as different concepts with the same 
name, or different names for the same concept) occur frequently. Current approaches to 
solve this semantic mapping problem, such as enforcing compliance with standards defined 
by regulatory authorities (e.g. DOD directives such as 8320.14) or employing generic 
matching schemes, have consistently fallen short of what is needed to achieve semantic 
interoperability among systems. 

Even though some ontology languages do offer constructs that help to merge 
ontologies, they lack a principled means for grading the similarity between concepts or to 
                                                
3 The term metaphysics means beyond the study of physics 
4 Available at http://www.defenselink.mil/nii/bpr/bprcd/0039.htm, as of July 6, 2005. 



 

make plausible inferences about the mapping between them. Providing such a means is an 
important step towards making the semantic mapping problem a less expensive, tedious, 
error-prone process. In short, the lack of a principled representation for uncertainty in the 
field of ontological engineering is a major weakness hindering the efforts towards better 
solutions for the semantic mapping problem. More generally, lack of support for uncertainty 
management is a serious impediment for more efficient data exchange and, therefore, to 
make truly interoperable systems within the GIG framework. Clearly, achieving this goal will 
require more precise semantics and flexible ways to convey information. 

Regrettably, for historical reasons and due to the lack of expressivity of probabilistic 
representations in the past, current ontology languages have no built-in support for 
representing or reasoning with uncertain, incomplete information. In the uncertainty-laden 
environment faced by GIG C2 systems, this is a major shortcoming preventing realization of 
a truly interoperable environment. 

Formal ontology provides a useful means of communicating domain knowledge in a 
precise and interoperable manner, and of extending and revising our descriptions as human 
knowledge accrues. To do this in a sound and principled manner requires a sound and 
principled way to represent, communicate, and reason with uncertainty. Probabilistic 
ontologies provide a means of doing so. 

2.3. Probabilistic Ontologies 

Since the adoption of ontologies in the field of Information Systems, a common 
underlying assumption is that classical logic would provide the formal foundation for 
knowledge representation and reasoning. Until recently, theory and methods for representing 
and reasoning with uncertain and incomplete knowledge have been neglected almost 
entirely. However, as research on knowledge engineering and applications of ontologies 
matures, the ubiquity and importance of uncertainty across a wide array of application areas 
has generated consumer demand for ontology formalisms that can capture uncertainty. 

Although interest in probabilistic ontologies has been growing, there is as yet no commonly 
accepted formal definition of the term. When faced with the complex challenge of 
representing uncertainty in an ontology, it is a natural tendency to write probabilities as 
annotations (e.g. marked-up text describing some details related to a specific object or 
property). This is a palliative solution that addresses only part of the information that needs to 
be represented. To understand why this is the case, consider the example of aggregating 
geospatial information from several databases. Suppose we consult three different databases, 
all three of which label a particular area as forested. Each of these databases is subject to 
errors of various kinds. There have been proposals to annotate ontologies with credibility 
attributes to represent information about uncertainty in different sources of information. If the 
three reports are independent, annotating each report with a credibility would suffice to 
aggregate them into a single assessment of the region type. If in our example the three reports 
agree, standard statistical aggregation technologies would label the region as forested and 
assign a higher credibility than the three individual credibilities. However, suppose that all 



 

three databases obtained their raw data for this area from the same satellite image, and all 
three applied similar algorithms for assigning a ground cover type label. In this situation, the 
credibility of the aggregate report is no greater than any of the individual input credibility 
values. In this case, we need to represent not just a single credibility number, but 
dependency information about how the credibility depends on the sensor and the data 
processing algorithm. The approach of attaching a single credibility attribute to each result is 
insufficient, as too much information is lost to the lack of a good representational scheme 
that captures structural constraints and dependencies among probabilities. To handle this 
kind of problem, we need a more expressive formalism for probabilistic ontologies, that is 
capable of representing subtleties such as correlations due to common sources of error. 

Over the past several decades, semantically rich and computationally efficient formalisms 
have emerged for representing and reasoning with probabilistic knowledge (e.g., [12, 13]). A 
true probabilistic ontology must be capable of properly representing the nuances these more 
expressive languages were designed to handle.  More formally: 

Definition 2 (from [11]): A probabilistic ontology is an explicit, formal knowledge representation 
that expresses knowledge about a domain of application. This includes: 

• Types of entities that exist in the domain;  
• Properties of those entities;  
• Relationships among entities;  
• Processes and events that happen with those entities;  
• Statistical regularities that characterize the domain;  
• Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge related to 

entities of the domain; and 
• Uncertainty about all the above forms of knowledge;  

where the term entity refers to any concept (real or fictitious, concrete or abstract) that can be 
described and reasoned about within the domain of application.  

Probabilistic Ontologies are used for the purpose of comprehensively describing 
knowledge about a domain and the uncertainty associated with that knowledge in a 
principled, structured and sharable way, ideally in a format that can be read and processed 
by a computer. They also expand the possibilities of standard ontologies by providing a 
coherent representation of statistical regularities and uncertain evidence about entities in a 
domain of application.  

It is important to emphasize that a probabilistic ontology is not a probabilistic model 
(e.g. a model built using applications such as Netica, Hugin, or Quiddity*Suite), in the same 
way that an ontology is not a database application. The difference between an ontology and 
a database schema resides not in the representation language or software application in 
which they are encoded, but in their intended purposes. Ontologies represent domains in a 
way intended to facilitate interoperability with other representations of that domain (i.e. other 
ontologies built by different people with different views and interests) or of domains that are 
not directly related but share some concepts. Conversely, when a database schema for a 
given domain is constructed, its primary focus is not in representing all concepts of a domain 
in a way that makes it interoperable with current or future views of that domain, but in 



 

defining the concepts of that domain in a manner that facilitates storage and retrieval of the 
information needed by the database stakeholders (and their customers), in a way that best fits 
their requirements. 

In a similar vein, when a probabilistic model is built to solve (say) a radar data fusion 
problem, the main interest driving its creators is not in making sure that their definitions 
about radar domain concepts are interoperable with other definitions that might exist for 
those same concepts. In contrast, interoperability would be a primary focus when building a 
probabilistic ontology for the domain of radar data fusion. Ontology engineers would attempt 
to express their view of that domain in a way that others (with possibly different views) may 
use/understand and thus build applications (databases, decision systems, etc) that are 
compatible with anything built under that view. 

Furthermore, it is not necessary for an ontology to be a running database, yet a 
database application can be built on top of an ontology. Likewise, a probabilistic ontology 
does not necessarily need to be a running probabilistic model, yet a running probabilistic 
model (i.e. an executable application built using a probabilistic package) can be built on top 
of a probabilistic ontology if that fits the objectives of the application at hand. A subtle 
difference here is that anything built on top of a traditional ontology can be built on top of a 
probabilistic ontology, but the converse is not always true, since the latter is an extension of 
the former that adds the above mentioned features of a probabilistic framework. 

2.4. MEBN and PR-OWL 

To comply with interoperability requirements and at the same time to enable 
probabilistic model to be built on top of its definitions, a probabilistic ontology has to be 
based on a very flexible logical foundation. When searching for that framework, we realized 
that there is always a trade-off between flexibility and expressiveness among the candidate 
probabilistic logics. After some careful research (see [11] and [14] for details) we opted for 
extending the Web Ontology Language OWL to convey probabilistic ontologies, and found 
that MEBN logic [12] provides a particularly attractive trade-off that made our work easier. 
This effort resulted in the development of PR-OWL [15].  

PR-OWL, shown in figure 2 at its current stage of development, is an upper ontology 
for probabilistic systems that can be used as a framework for developing probabilistic 
ontologies. PR-OWL is expressive enough to represent even the most complex probabilistic 
models and flexible enough to be used by diverse Bayesian probabilistic tools (e.g. Netica, 
Hugin, Quiddity*Suite, JavaBayes, etc.) based on different probabilistic technologies (e.g. 
probabilistic relational models, Bayesian networks, etc.). 



 

 
Figure 2 – The PR-OWL Ontology 

This level of flexibility can only be achieved using the underlying semantics of first-
order Bayesian logic provided by MEBN, a first-order Bayesian logic that integrates classical 
first-order logic with probability theory. Classical first-order logic (FOL) is by far the most 
commonly used, studied and implemented logical system, serving as the logical basis for 
most current-generation AI systems and ontology languages. MEBN logic provides the basis 
for extending the capability of these systems by introducing a logically coherent 
representation for uncertainty. Because a MEBN theory represents a coherent probability 
distribution, Bayes Theorem provides a mathematical foundation for learning and inference, 
and reduces to classical logic in the case of certain knowledge (i.e., all probabilities are zero 
or one). 

MEBN represents the world as comprised of entities that have attributes and are 
related to other entities. Knowledge about the attributes of entities and their relationships to 
each other is represented as a collection of MEBN fragments (MFrags) organized into MEBN 
Theories (MTheories) An MFrag represents a conditional probability distribution for instances 
of its resident random variables given their parents in the fragment graph and the context 
nodes. An MTheory is a set of MFrags that collectively satisfies consistency constraints 
ensuring the existence of a unique joint probability distribution over instances of the random 
variables represented in each of the MFrags within the set.  MEBN semantics integrates the 
standard model-theoretic semantics of classical first-order logic with random variables as 
formalized in mathematical statistics. 

As a full integration of first-order logic and probability, MEBN provides: (1) a means of 
expressing a globally consistent joint distribution over models of any consistent, finitely 
axiomatizable FOL theory; (2) a proof theory capable of identifying inconsistent theories in 
finitely many steps and converging to correct responses to probabilistic queries; and (3) a 



 

built in mechanism for adding sequences of new axioms and refining theories in the light of 
observations. Thus, even the most specific situations can be represented in MEBN, provided 
they can represented in FOL. Furthermore, because MEBN is a first order Bayesian logic, 
using it as the underlying semantics of PR-OWL not only guarantees a formal mathematical 
foundation for a probabilistic extension to the OWL language, but also ensures that the 
advantages of Bayesian Inference (e.g. natural “Occam’s Razor”, support for learning from 
data, etc.) will accrue to PR-OWL probabilistic ontologies. A comprehensive explanation of 
MEBN logic is not on the scope of this work, but the interested reader is directed to [12] 
and[16]. 

3. Applying Probabilistic Ontologies to a SOA-based Application 

3.1. The Impact of Uncertainty 

In order to envision the applicability of probabilistic ontologies (POs) in SOAs, it is 
necessary to first understand what kind of uncertainties might be present in a service-oriented 
environment. SOA, as defined in the reference model [17], is a paradigm for bringing 
together needs and capabilities to address those needs. It requires establishing an execution 
context (EC), which is an alignment of all technical and policy-related aspects, including 
vocabularies, protocols, licensing, quality of service (QoS), etc. Much of this specific 
information is contained in or linked to the service description and/or the description of 
underlying capabilities. Considering the complexity involved, many forms of uncertainty can 
be present within a given execution context. For example, uncertainty may arise in:  

• the description content (e.g. information annotated with its source but there is no way to 
verify whether the identity of the source is correct), 

• the way information is captured as part of a description (e.g. information annotated with 
its respective source but with no indication of whether it is raw or processed data), or  

• the applicability of information to current need (e.g., information on recording equipment 
that does not indicate whether the recorded data fall within a reasonable range for the 
recording conditions).  

An ontology that represents statistical information can enable a reasoner to draw inferences 
about the missing information. For example, consider a report that a device has recorded an 
ambient temperature of 5 degrees Celsius at Rio de Janeiro's Tom Jobin International Airport 
(GIG) on 23 January. This is a highly unlikely, but not impossible, temperature reading for 
January near Rio. Statistical information about climate, sensor reliability, and data recording 
error rates, if represented in the relevant domain ontologies, could be used to draw 
inferences about the likely temperature at GIG on 23 January that appropriately account for 
the possibility of various kinds of error. This example illustrates the need for a principled 
representation of uncertainty for SOA services that combine to enable access to such 
information. 



 

A typical Web Services scenario can be described in terms of a publish-find-bind 
triangle. A service provider publishes a service description. A consumer searches a service 
registry to find a service satisfying his criteria, and analyzes the included information (or link 
to information) describing the message structure for interacting with the service. Finally, the 
consumer binds to the service using a data exchange protocol and realizes the real world 
effects of the service. In this triangle, there are implicit, unspoken challenges for which a 
principled representation of uncertainty is needed. For example: 

o The publisher has to choose a vocabulary with which to describe the service (or 
some other resource related to the service).  The vocabulary sets the properties for 
that class of item. Service ontology developers attempt to define the “right” set and 
structure of properties for the anticipated users. The consumer must know and 
understand the semantics of the chosen property vocabulary because these are the 
properties used to describe the class and its instances, and the consumer must 
understand and use the same vocabulary or there must be a known and accessible 
mapping between the properties used for description and those used as search 
criteria. There are many opportunities for uncertainty about intended meanings. 

o The publisher uses the chosen property vocabulary as the basis to describe and 
register instances of that class. This means that the publisher associates values with 
the properties and registers the instance.  But what is the vocabulary for the 
values?  All parties may agree that something has the property color and on the 
meaning of that property, but if the publisher uses only primary colors and the 
subscriber’s search criterion asks for the color pink, the latter will never find a 
match for items the first had catalogued.  How does a client’s requested value 
relate to a provider’s published values?  Do they agree on the vocabulary? Do they 
agree on the mechanism to mediate vocabulary mismatches? 

o The publisher chooses a property vocabulary and creates instance descriptions by 
associating values.  One can infer what properties the publisher considers 
important by which properties s/he chooses to populate, assuming values are not 
necessarily assigned for all possible properties.  But what of the consumer’s 
priorities when assigning search criteria?  If the consumer assigns relative 
importance, how does the search engine trade off among different combinations of 
matches across the consumer’s search criteria, and how are missing attribute 
values handled? 

Beyond publish-find-bind for a single service, the vision is to provide services at the 
appropriate granularity, combining atomic services into more complex tasks.  For example, 
suppose a supplier needs to find the dimensions and weight limits for cargo containers for 
future shipments of items it produces.  In today’s integration paradigm, the supplier would 
need to query specific shipping agents directly, and might need to develop special-purpose 
software interfaces to support interactions with individual shipping agents.  In the envisioned 
architecture, the supplier would invoke a service that (i) searches a service registry for 



 

shipping agents; (ii) queries each for its respective restrictions; (iii) compares with the 
supplier’s requirements; and (iv) selects a shipper that meets the requirements. 

This simple scenario does not include other actions that must be included in such a 
transaction.  For example, security will be needed to authenticate the supplier to the shipping 
agent and the shipping agent to the supplier. Other actions may be required to establish that 
each party is authorized to engage in business with the other.  The interaction itself may 
require a guaranteed level of service for the interchange of messages that culminates in the 
business service of cargo delivery; this may fall into the realm of reliable messaging.  
Additionally, the response from the shipping agent could optionally include video showing 
details of container packing and handling, and these would not be appropriate to send if the 
supplier is using a low bandwidth communications link. 

Security, reliable messaging, and results dissemination are examples of general-
purpose services that could be combined with services for specific business functions, thus 
alleviating the business service from the need to create and maintain all supporting services.  
All of these services will have associated service descriptions so that someone composing a 
robust service combination can identify the appropriate services and the process by which 
these will work together to provide the higher-level functionality. That said, what are the 
uncertainties in identifying the correct services and combining these to form a consistent 
package?  Is uncertainty even a relevant concept, or is it a black-and-white issue of whether 
the pieces fit or not? When trying to decide among several services that appear to satisfy 
aspects of the same needed function, does the ability to reason under uncertainty come into 
play in identifying the component services to use and how to combine these? 

The above questions do not have simple, universally valid answers.  Although we 
expect that there will be problems for which deterministic implementations of SOA elements 
will suffice to build viable solutions, it is clear that there are issues that cannot be 
satisfactorily solved without a principled representation of uncertainty. Probabilistic ontology 
languages such as PR-OWL can fulfill this requirement. 

Providing a detailed account of how to use PO languages to build standards for SOA 
elements, or even examples of (say) service descriptions with probabilistic elements would 
require detailed explanation that goes beyond the limits of this paper. Thus, as a means to 
explore the use of POs in a SOA environment, we now present a possible framework using a 
federation of ontologies (common and probabilistic) for tackling the problem of semantic 
mapping among concepts used in Web Services (WS) descriptions within a WS registry. 

3.2. An Operational Use Case 

This section presents a use case to illustrate the benefits of applying probabilistic 
ontology technology in a military operational scenario.  The use case is based on the 
provision of geospatial data (maps and digital environmental data) and services that include 
predictions of environmental effects important to military operations.  The environmental 



 

effects predictions are an important early step in Intelligence Preparation of the Battlefield 
(IPB) that influences all military planning and operations. 

Providing geospatial data and services to warfighters is a complex challenge.  The 
National Geospatial – Intelligence Agency (NGA), Combatant Commands, and the Services, 
all cooperate to provide data production, data management, data distribution, and geospatial 
services to support warfighters at every level of command.  Dedicated units equipped with 
state-of-the-art equipment provide support down to the Brigade level.  Geospatial services 
are available in Command and Control software at every level.  In addition, the availability of 
GPS receivers, small format computers and digital cameras, make every soldier – in addition 
to the specialized units, a potential source for new and updated environmental data. 

Managing the data has become a significant challenge in providing geospatial data 
support.  Initial environmental datasets may be of low resolution, old, and incomplete.  Once 
a crisis occurs, NGA and other national assets, civilian organizations, commands and units at 
every level, and even individual soldiers will all be generating data – for different purposes, 
using different techniques, in different formats.  And since they are all connected, this data is 
passed around and made available to everyone.  Note that the connectivity makes sharing 
data easier, but makes managing it much harder. 

Overcoming the data management challenge requires solving issues with data formats 
(physical and logical), data representation (raster vs. vector, objects or features vs themes, 
etc.) and coordinate systems (geodetic datums and map projections).  Each of these present 
potentially complex issues, but are not addressed here.  The issue we address has to do with 
the different vocabularies – or semantics, used by the different data producers.  The issue is 
illustrated with a military use case. 

An important environmental effect used to support analysis of enemy and friendly 
courses of action, is the Cross Country Mobility (CCM) Tactical Decision Aid (TDA).  The 
CCM product predicts the speed that a specific military vehicle or unit can move across 
country (off roads) based on the terrain. The terrain factors that influence CCM speed are 
slope, soil type, soil wetness, vegetation and vegetation attributes, ground or surface 
roughness, and presence of obstacles.  For this example, we focus on just soil type.  Military 
CCM algorithms typically use the Unified Soil Classification System (USCS) which defines 16 
soils types, based on engineering characteristics that are applicable anywhere in the world 
[18].  Unfortunately detailed soils maps are not available world wide.  In a potential 
operational area, military spatial data analysts may need to use available data which may 
come from any number of civilian or government sources (many governments have 
developed their own unique soil classification systems, tailored to the conditions in their 
country).  Even in a simple case, available soils data may have soil types in the US 
Department of Agriculture Soil Textual Classification, which has 12 soils classes based on 
agricultural factors.  The challenge then is to translate the vocabularies – or map the 
ontologies between these two systems. 



 

Within the GIS community, the 
Open GIS Consortium (OGC) has 
identified the issue of semantic 
mapping as a major obstacle to 
interoperability of GIS data [19].  
Commercial software packages have 
been developed that can be used to 
perform semantic translation [20].  The 
military, led by the Modeling and 
Simulation community, has developed 
an Environmental Data Coding 
Specification (EDCS) to be a common 
environmental ontology to describe 
environmental “things” important to 
military operations [21].   Soil types 
(using the USCS) are part of EDCS as 
possible values of the soil type attribute 
for a polygon.  

Figure 3, shows the concept of how EDCS 
is used to perform semantic mapping in spatial 
data.  The idea is that for each source of data,  
mapping rules are developed to perform the 
translation of concepts from the source data model 
(ontology) into the EDCS data model.  If the 
application requires data in a different destination 
ontology, another set of mapping rules must be 
developed for that transformation. In our CCM 
application, the process proceeds as follows.  If 
soils data for part of the area is available in USCS 
classes, then no semantic mapping is required to get to EDCS. For the other area, if soil data 
is available in the USDA system, a set of mapping rules must be developed and applied to 
yield data in the EDCS system.  Because the CCM algorithm uses the EDCS (USCS) soil types, 
no further semantic mapping is necessary.  
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Figure 4 - Traditional CCM analysis, with no 

accounting for uncertainty. 
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Figure 3 - Process flow for using EDCS to support 
semantic mapping between multiple source data models 

and a third destination model. 



 

The resulting soils data could be used to generate a CCM TDA product, to support 
analysis of avenues of approach (AA), as shown in Figure 4.  All else being equal (ignoring 
other tactical considerations), since AA Alpha is faster, it is likely to be chosen.  So far this 
looks like an interoperability success story.  However if we examine the references to 
develop mapping rules for translating USDA soil types to USCS soil types there is a problem.  
As just one example, USDA soil type “Clay” (C), may be classified into USCS as “Inorganic 
Clays” (CH), “Inorganic silts” (MH), or “Organic Clays” (OH) [18].  These USCS soil classes 
have very different trafficability characteristics when the soils get wet. Because existing 

systems provide no way to handle this 
ambiguity, any mapping rule will be 
arbitrary and sometimes wrong. 

Figure 5 shows the same analysis 
using a hypothetical capability that exploits 
probabilistic ontologies and supports uncer-
tainty.  In this example, the uncertainty is 
explicitly represented in a probabilistic 
semantic mapping from USDA soil classes 
to the USCS classes (see [22] for details).  
As a result, the visualization can provide a 
warning that the data in that area is less 
accurate, and if the user “drills down” to 
query the underlying probabilistic 
calculations, the system can show that even 
though AA Alpha is probably faster than AA 
Beta, there is a significant risk that AA 
Alpha will actually be much slower.  Based 
on this awareness, the commander may 
select the other AA, or may wish to gather 
more information – by tasking sensors or 

conducting a recon, to verify the trafficability conditions along AA Alpha.  By explicitly 
representing uncertainty, the commander can understand the risks, and make better 
battlefield decisions. 

The limitation of existing facilities (commercial and military) for performing semantic 
mappings is that they do not account for uncertainty in the mappings.  Use of probabilistic 
ontologies would overcome this limitation.  Probabilistic ontologies offer an additional 
opportunity. If the probabilistic ontology for soil types is extended to include (probabilistic) 
relationships between geographic themes that are related to soil type (e.g., vegetation, slope, 
aspect), then use of this additional information can improve the accuracy of the mapping 
from USDA soil types to USCS soil types. 
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Figure 5 - Understanding the uncertainty and the 
risks empowers the commander to make better 

decisions. 
 



 

3.3. Representing Uncertainty in Services 

Implementing this example requires more than just probabilistic ontologies.  Also 
needed are facilities to track the quality of the source data, and to perform automated 
operations (data integration, and propagation of uncertainty) on a computer representation of 
the data quality. As we implied above, those are all features that can and should be 
conveyed via a service registry capable of handling both the semantics of data and its 
embedded uncertainty. 

Figure 6 shows a simplified scheme for SOA using probabilistic semantic mapping in 
which a commander needs to choose between avenue of approach Alpha and its alternative 
Beta from figures 4 and 5,. The commander makes the choice with the aid of a computer-
based support system, S1, which evaluates the available terrain data and makes 
recommendations of the best avenues of approach.  

 
 

Figure 6 – Semantic Mapping in Web Services 

To perform its calculations, S1 needs the best data available at the time. Thus, S1 sends a 
request with embedded data about the ontology it references and other semantic information 
regarding its data needs (e.g. coordinate system used, expected QoS, etc.). The WS 
repository, which itself uses an ontology, finds S4, a network peer that uses the same 
ontology as S1. This ontology is the PR-OWL ontology “OntB”, which represents a 
probabilistic model of the geospatial domain and has the ability to perform a probabilistic 
assessment of the requested information. In this case, the request was probabilistic, but the 
uncertainty involved was related to the service itself (a probabilistic query on a uncertainty-
laden domain), and not to the service exchanging process. In other words, the exchange was 
completed using the logical reasoner alone, since there was a perfect matching in terms of 
ontologies (both S1 and S4 abide to the same PR-OWL ontology) and the parameters of the 



 

requested service, and thus no probabilistic mapping was necessary. (Yet, note that S1’s 
query made use of OntB’s ability to represent uncertainty about the geospatial domain.)  

In a variation of the previous case, let’s suppose that no perfect match between the request 
and the available providers is found. In this case, the probabilistic reasoner accesses the WS 
repository to search for the most suitable service given the parameters of S1’s request. During 
that process, it analyses the mapping ontologies related to “OntB” (the ontology referenced 
by S1) and the domain ontologies related to the services it deemed promising to fit S1’s 
request. In the end, an ordered list of possible providers is built, and the best possible 
answers will be returned to S1.  

Clearly, reasoning with uncertainty introduces additional processing burden, which may 
affect response times.  In any given application, the gain in accuracy or risk reduction must 
be traded off against the processing burden. It is not always the case that response speed 
overrides all accuracy concerns. Even when response speed is critical, it may be possible to 
develop an anytime system that makes use of a rapid initial response, and makes appropriate 
adjustments when a more complete response becomes available. 

This simple example shows that there might be many combinations of the use of logical and 
probabilistic reasoners and ontologies to match the needs of a specific request. For a more 
detailed account, the interest reader should refer to [23]  

4. Discussion 

Our main objective was to discuss the validity of probabilistic ontologies as a 
principled representation of uncertainty in a given domain, and its uses in extending the 
reach of Service Oriented Architecture. Although the concept of a semantic-enabled SOA is 
in its infancy, we believe much can be achieved by employing both complete and 
incomplete knowledge to optimize the way resources are exchanged. 
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