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Abstract

An estimate of the opponent’s forces is both a useful object for the
commander and an input required by other tools being developed as
computational aids for C 2 in urban combat. The standard approach
would be to maintain probability distributions over the set of potential
opponent force distributions. However, that approach is not compu-
tationally feasible. In this paper, we discuss an alternative estimator
which requires only a small fraction of the computational power of a
laptop computer when operating on realistically-sized problems. The
algorithm is developed, error bounds are obtained, and an example
of the estimator operating in conjunction with an urban combat C 2

simulator is presented.

1 Introduction

We consider the problem of constructing automated Command and Control
(C 2 ) tools which may be employed as aids in urban combat. In particular,
we will focus here on the estimation/reconnaissance component of such tools.

Such a tool could provide the local commander with proposed courses of
action, likely potential maneuvers of the opposing forces, as well as estimated
enemy positions and strength at those positions (which we refer to as an
opponent laydown). The latter item is not only an output object, but is also
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an intermediate object needed for computation of the first two items. The
proposed tools also need to produce this information in a timely manner with
at most the computing resources of a typical modern laptop computer. In
particular, the computation of the estimated enemy positions and strength,
must be done in real-time with computational resources which are only a
rather small fraction of those of a hypothetical laptop.

In the algorithm development below, we consider a problem where the
opposing forces consist of indistinguishable fire-teams. The additional com-
plexity of a heterogeneous mixture of opposing forces introduces complexity
into the computations and algorithm presentation, but does not change the
fundamental techniques developed here. Consequently, we limit the dis-
cussion to the case where the opponent forces consist of indistinguishable
fire-teams.

In order to help the reader visualize the problem and tool prior to the
extensive mathematical development in Sections 2 to 6, one can refer to
Figure 3 in Section 7. That figure depicts three snapshots from a tool using
this estimator in an urban combat C 2 simulation. (The tool has been in
development under the DARPA RAID Program.) The red and blue ∗’s
indicate the opposing (Red) forces and our (Blue) forces, respectively. The
magenta objects denote buildings, the cyan areas are water, and the black
dots indicate graph nodes (to be discussed below). The red and green circles
are indicative of the estimated Red strength. A fuller discussion of the
application appears in Section 7.

The case where there is ongoing attrition also adds complexity, as one
needs to keep track of a set of strength distributions (to be defined below)
indexed by total opponent strength over the relevant battlespace. Again,
noting that the algorithm discussion below is already quite extensive, we
ignore the attrition aspect in order to reduce complexity. The fundamental
components of the algorithm will be evident regardless. Alternatively, one
can pose the following development as a pure reconnaissance problem.

We may suppose that observations of the opponent are coming in from
our ground-forces in the field, as well as from aerial assets. We do not ad-
dress the issue of heterogeneous observation quality in the discussion below.
However, if one is interested in such, it will be clear to such a reader that
this issue is handled by adjustment of a certain parameter in the observation
update.

This class of problems (urban combat) is well-modeled in the form of a
stochastic game under imperfect information. The computational require-
ments for full solution of such problems far exceed what are now, or in
the foreseeable future, available. One reasonable approximation is to apply
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methods such as those discussed in [7], [8], [9], [10], [11]. The estimation
component of such a system still requires the computation of information
states in the form of observation-conditioned probabilities or sets of such.
As indicated just above, deployable systems would need to require less than
the computational capability of a single laptop. Even with that class of
methods, information state computations are far beyond the computational
limits imposed for such systems. For example, typical problem sizes have
on the order of N = 30 opponent units (to be described below) distributed
among on the order of L = 500 locations. (These locations are typically
building corners, intersections, rooms, etc. . . ) Suppose the opponent units
(say, fire-teams) are indistinguishable, and that more than one unit may
occupy any location. Then the number of laydowns (i.e., the number of
distributions of the opposing-force units among the locations) is

(
L + N − 1

N

)
≃ 1049.

Thus, one would be working with probability distributions over a set of size
roughly 1049. Even with some filtering of the set of good locations based
on some initial intelligence and line-of-sight information, one can possibly
reduce the location set to a smaller one but even then, these are not objects
that one can work with within the computational limits of a fraction of a
laptop computer (or any current-generation computer for that matter).

Consequently, we look for objects which approximate the information
state, and which have greatly reduced complexity. The strength distribution,
which we present here, will act as a robust estmator for the system. That
is, the following algorithm can be used to process the observational data to
produce an estimate of opponent positions and strength at those positions.

The main object in this algorithm will be the strength distribution. One
can think of this as being analogous to the mean and covariance in a Kalman
filter (although the reader should keep in mind that the strength distribution
is a suboptimal estimation object being used due to the need to have a
computationally feasible algorithm, and so this is not quite analogous to
the Kalman filter situation). As with the Kalman filter, there will be both
observation updates and dynamics updates within each time-step of the
algorithm (where of course, the observations in any given time-step may
be the empty set). As we are not including attrition in this document, the
dynamics update corresponds purely to potential movement of the opponent
forces.

In the following sections, we present the algorithm. We also indicate the
results which guarantee that the algorithm does indeed behave well as an
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estimator. In this regard, we prove certain input-output noise bounds, i.e.,
robustness statements. In particular, we do not presume that the opponent
forces movements are a purely stochastic process around some nominal. In-
stead, we assume that there are unknown opposing commander inputs deter-
mining force movement. Similarly, the observational noise in such problems
should not be presumed to be purely stochastic, as an intelligent opponent
may apply deception where it is fruitful to do so. In such a situation, the
robust/input-output approach is more reasonable than a purely probabilistic
approach (although we do allow for stochastic inputs as well).

In Sections 2–4, we present the algorithm, i.e., the propagation of the
strength distribution. In Section 5, we outline the proven performance
bounds. Section 6 contains a discussion of an additional approximation
technique which further greatly reduces the computational load. Lastly, in
Section 7, we present an example of the algorithm operating in conjunction
with an urban combat C 2 simulator.

Throughout the remainder, we refer to the opposing forces are Red, and
ours as Blue.

2 Strength Distribution

The system state in urban combat C 2 may be taken to be the locations of
the forces and their nature. We simplify the problem, by having the basic
objects be Blue and Red units where the Red units are indistinguishable,
i.e., all have the same type. A unit might correspond roughly to a fire team.
(This estimator can be applied at multiple levels in a command hierarchy. At
higher levels in a command hierarchy, the object designated as a unit in the
system abstraction might correspond to some larger group of forces.) Each
unit will have some associated strength. The strength of a unit will be an
abstraction of the health and current effectiveness of the unit, and this will
be described by a scalar. The units will move on a graph where the nodes
on the graph correspond to positions in the conflict arena. There will be
edges between the nodes, and a unit at one node can move only to the nodes
which are connected to that node by an edge, i.e., to the adjacent nodes.
With this abstraction, the game state is specified by the location/node of
each unit and the associated unit’s strength. Note that this can include both
the Blue and the Red units. As we are considering only the reconnaissance
component of the urban combat problem here, we are only estimating the
strength and locations of the Red units.

We refer to the above abstract graph as the movement graph. There is
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a second graph with the same nodes, but where an edge exists between two
nodes if and only if there exists a line-of-sight (LOS) between the two nodes.
This graph is referred to as the sight graph.

We consider the reconnaissance problem from the point of view of Blue.
The true Red laydown is the actual positions and health status of all the
Red units. Blue will have some initial estimate of this ground-truth, and
will make observations. We can assume that the observations will be reports
of Red forces and their strength at nodes on the graph. These observations
will be corrupted, and may contain both false-positives and false-negatives.
The observations will be corrupted not only by random noise, but also by
adversarially induced errors. For example, one Red unit may try to conceal
its existence, while another may “demonstrate” (that is, make its presence
obvious, and even attempt to exaggerate the Red strength at that loca-
tion). Consequently, noise in the observation process is not well-modeled as
a purely stochastic process.

Blue will maintain the strength distribution as an ersatz information
state. We let L denote the nodes on the graph, and let St denote the
strength distribution (maintained by Blue) at time t, where St : L → [0, N ]
where N is the total possible Red strength in the battlespace, and we denote
the value of St at node l ∈ L as [St]l. We require that

∑
l∈L[St]l = N . In

other words, St is a non-one-sum distribution. We let SN denote the space
of strength distributions with total mass N , i.e.,

SN =

{
S : L → [0, N ]

∣∣∣∣ Sl ∈]0, N [ ∀l ∈ L,
∑

l∈L

Sl = N

}
.

We assume a discrete-time model where t ∈ {0, 1, 2, . . . }. The dynamics
of the system include movement of Red forces. Each unit can move only
to the adjacent nodes in one time-step. Further, more than one unit may
occupy a single node at any time. For the purpose of this reconnaissance
problem study, we do not include attrition in the model. Blue is observing
Red, but not engaging. The observation process is as broadly indicated
above. Thus, as with other filters, at each time step, we will have a dynamics
update of the strength and an observation update.

We employ the terms observer and estimator, rather than say filter, in
this context to emphasize that we are not propagating probabilistic objects.
We will demonstrate some properties of this observer such as convergence
to the true state. However these statements will have a natural form that
is slightly different from the standard statements regarding observers. Fur-
ther, we will obtain a bound on the estimate errors in terms of the size of
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the unknown disturbance inputs. Thus, the strength distribution acts as a
robust estimator [1], [2], [12], [13], and an observer [4], [5].

3 Observation Update

At any time t, multiple observations may occur. We index these by ρ ∈]1, no
t [

where no
t is the number of observations occurring at time t, and notation

]k, l[ denotes the set of integers {k, k + 1, . . . l}. Each observation, Yt,ρ takes
the form of an ordered pair, (l, y), where l ∈ L and y ∈ {0, 1, . . . } where this
indicates that a Red strength of y was observed at node l.

As heuristic motivation, consider Bayesian conditional probability prop-
agation. Suppose there is a single Red unit at some unknown node l ∈ L.
Suppose that prior to the observation, the probability that the unit is at
node l is denoted by Pl. Suppose one observes the unit at node y. Let
P (y |λ) denote the probability that one observes the unit at y given that
it is at node λ. Using Bayesian propagation, the a posteriori probability
distribution is

P̂l =
P (y|l)

P (y|l)Pl +
∑

λ6=l P (y|λ)Pλ
Pl,

and similarly, for λ 6= l,

P̂λ =
P (y|λ)

P (y|l)Pl +
∑

λ6=l P (y|λ)Pλ
Pλ.

Suppose one observes Yt,ρ = (y, l). The form of the above Bayesian
propagation can be seen as heuristic motivation for the form of the strength
observation update. In particular, with a priori (pre-observation) strength
St, the a posteriori (post-observation) strength, Ŝt, is given by the following,
where a specific form for δ = δ(y, [St]l) wil be given below.

[Ŝt]l =
1 + δ

1 + δ[St]l
N

[St]l (1)

[Ŝt]λ =
1

1 + δ[St]l
N

[St]λ ∀λ 6= l. (2)

Proposition 3.1 Suppose
∑

l∈L[St]l = N . Then,
∑

l∈L[Ŝt]l = N .
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Proof. Noting that
∑

λ6=l[St]λ = N − [St]l, one has

∑

k∈L

[Ŝt]k =
∑

λ∈L\{l}

[Ŝt]λ + [Ŝt]l =
N − [St]l

1 + δ[St]l
N

+
1 + δ

1 + δ[St]l
N

[St]l = N.

In other words, the observation update satisfies a conservation of strength
property. With this proposition in hand, it is trivial to prove the following.

Corollary 3.2 The observation update maps SN into SN .

One needs to choose δ so that the observer has certain desired behaviors.
In particular, one would like the consistency assumption that repeatedly
observing y at node l leads to an estimate sequence such that strength at
node l converges to y. We henceforth choose δ = δ(y, [St]l) to be

δ(y, s) = k

[
y − s

s

]
(3)

where k ∈ (0, 1), and we will see that this choice of δ implies that the
consistency assumption will be met.

With this choice of δ, the observation update takes the form

[Ŝt]l = G(y, [St]l) (4)

[Ŝt]λ = F (y, [St]l)[St]λ (5)

where

G(y, s) =
1 + k

(
y−s

s

)

1 + k
(

y−s
N

)s =
s + ky − ks

1 + ky−ks
N

(6)

F (y, s) =
1

1 + k
(

y−s
N

) . (7)

(8)

Also, we define G(y, l, S) mapping ]0, N [×L× SN into SN by [G(y, l, S)]l =
G(y, Sl) and [G(y, l, S)]λ = F (y, Sl)Sλ for λ 6= l.

We now show that the consistency assumption is satisfied with this obser-
vation update form if k ∈ (0, 1). This will follow by a variant of the Banach
Fixed-Point Theorem. In particular, we show that repeated application of
G(y, ·) to any s ∈ [0, N ] converges to fixed-point s = y.

Theorem 3.3 Let S0 ∈ SN with S0
l 6= N , and fix any y ∈]0, N [. For

i ∈ N = {1, 2, . . . ,∞}, let Si = G(y, l, Si−1). Then limi→∞[Si]l = y and
y = G(y, y).
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The proof of Theorem 3.3 appears in Appendix A.

Although, in an urban combat setting, one would not get an observation
with y < 0, one could imagine a case where y > N , that is where a UAV
or reconnaissance team reports an observation exceeding the total known
Red strength. We briefly address the behavior of the estimator under such
a condition.

Theorem 3.4 Let S0 ∈ SN with S0
l 6= N , and suppose y = N + m ∈ {N +

1, N + 2, . . . ,∞}. For i ∈ N = {1, 2, . . . ,∞}, let Si = G(y, l, Si−1). Then
limi→∞[Si]l = N (where N = G(y,N)). Further, for λ 6= l, limi→∞[Si]λ =
0.

Proof. We do not include the proof, but it follows from the observa-
tion update definition.

4 Dynamics Update: Strength Flow

We suppose that the dynamics of the system corresponds to movement of
Red units. We must assume that this movement contains unobserved inputs
due to each individual unit’s own volition and due to Red commander orders.
The modeling of such unknown inputs is a difficult task. Stochastic process
inputs alone will not typically perform well, c.f., [7], [11] and the references
therein. We consider models where the opponent may input any desired
movement controls, subject to associated costs. We also consider stochastic
motion as well, where this is well-modeled as a Markov chain.

First we consider the purely deterministic motion. In this case, we as-
sume that there is a natural deterministic flow of Red units on the movement
graph. Recall that the movement graph is specified by set of nodes, L, and
the edges connecting these nodes. The edges may be specified by an L × L
symmetric matrix, F where Fi,j is one if the nodes i and j are adjacent (i.e.,
if the two nodes are connected by an edge), and Fi,j is zero otherwise. In the
deterministic case, each row of the flow matrix, F , will have a single entry
of one with the remaining entries being zero. That is, for each l ∈ L, there
exists k ∈ L such that Fl,k = 1 and Fl,λ = 0 for all λ 6= k. This construction
defines a movement model where Red units at node l nominally move to
node k. Consequently, given strength distribution St at time t, the strength
distribution at the next time-step is given by

St+1 = FT St. (9)
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Continuing with the deterministic model, we suppose that the Red com-
mander might input a control signal changing the movement from the nom-
inal model. The Red movement control at time t will be represented by an
L×L matrix, Ut, modifying the nominal movement model given by F . The
movement from node l ∈ L at time t will be modified by the elements of the
Ut matrix in the lth row. If no movement control occurs at node l at time t,
then the lth row of Ut will consist entirely of zeros. Suppose the commander
wishes to change the movement from node l at time t. As we still require
that F + Ut be a movement matrix, we set [Ut]l,k = −1 where k is the index
such that Fl.k = 1. Letting the revised single-move destination node be κ,
we set [Ut]l,κ = 1. The remaining entries of the lth row are zeros. With the
commander control, the strength distribution dynamics are given by

St+1 = [F + Ut]
T St. (10)

Proposition 4.1 The deterministic flow propagation conserves strength,
that is, with strength update given by (10) (or (9)),

∑
l∈L[St+1]l =

∑
l∈L[St]l.

Proof. Noting that F and F + Ut are stochastic matrices, one sees
that the proof is identical to that for Markov chains. Specifically,

∑

l∈L

[St+1]l =
∑

l∈L

∑

λ∈L

[F + Ut]λ,l [St]λ =
∑

λ∈L

{∑

l∈L

[F + Ut]λ,l

}
[St]λ

=
∑

λ∈L

[St]λ.

Remark 4.2 Perhaps we should note here that there is a significant com-
putational issue as L can often be on the order of 103 to 105. However,
since we only have nontrivial (reasonably high) strength mass at a small set
of locations at time t, say Lt

1, one may split the flow propagation into sev-
eral small movement transitions using only local nodes. The computational
reduction issue will be addressed in more detail in Section 6.

We now turn to the case where we include a stochastic component in the
movement propagation model. From a given node, movement to a number
of nodes (including the current node) might be quite reasonable, and the
movement decisions made by the units among such choices may be well-
modeled as stochastic processes. This may be combined with control inputs
from the commander (where the movements generated by these controls
might also be well-modeled as stochastic processes).
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Let us motivate our strength flow model in this stochastic case. Suppose
the probability that a unit moves from node i to node j in one step is given
by Pi,j. In this case, P is the transition matrix for a Markov chain. Let
[pk

t ]i be the probability that Red unit k is at node i ∈ L at time t. Then,
one has the usual probability update given by

pk
t+1 = PT pk

t (11)

for each unit. Suppose that each unit has strength one. For each node λ ∈ L
and each unit k ∈]1, N [, define random variable Y i

l to be one if unit i is at
node λ, and zero otherwise. Then, letting [St]λ denote the expected strength
at node λ ∈ L at time t, one has

[St]λ = E

{
N∑

k=1

1 · Y k
λ

}

=

N∑

k=1

1 · E[Y k
λ ] =

N∑

k=1

[pk
t ]λ. (12)

Then,

[St+1]λ =

N∑

k=1

[pk
t+1]λ

which by (11),

=

N∑

k=1

∑

l∈L

Pl,λ[pk
t ]l =

∑

l∈L

Pl,λ

(
N∑

k=1

[pk
t ]l

)

which by (12),

=
∑

l∈L

Pl,λ[St]l. (13)

Consequently, with strength being the expected number of units at each
node, one obtains a strength update model of the form

St+1 = PT St.

In keeping with the deterministic model, we take F
.
= P.

With this model, the nominal strength flow is described by stochastic
matrix, F , where more specifically, F satisfies

Fi,j ∈ [0, 1] ∀ i, j ∈ L, and
∑

j∈L

Fi,j = 1 ∀ i ∈ L. (14)

We again allow commander input, described by matrix Ut. Note that the
F and F + Ut matrices above were, in fact, stochastic matrices of a specific
form. The constraint on control Ut is that
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[F ]i,j + [Ut]i,j ∈ [0, 1] ∀ i, j ∈ L
∑

j∈L

[F ]i,j + [Ut]i,j = 1 ∀ i ∈ L. (15)

The same proof as used for Proposition 4.1 yields the following.

Proposition 4.3 The stochastic flow propagation conserves strength, that
is with strength update given by (10) (or (9)), with stochastic flow matrices
F and Ut satisfying (14) and (15)

∑
l∈L[St+1]l =

∑
l∈L[St]l.

5 Input to Output Error Bounds and Robustness

There are certain properties that one would like an estimator to have. One
of these is a bound on the estimator errors as a function of the size of the un-
known inputs in the dynamics and observation processes. Such bounds are
often referred to as disturbance attenuation bounds in robust/H∞ filtering
(c.f., [1], [3], [13], [12]), and have the form of input-to-output bounds in the
general nomenclature (loosely used) of stability approaches (c.f., [6], [14]
among many others). Due to the irresolvable modeling issues with urban
combat, specifically the nature of the disturbances as stochastic and/or ad-
versarial, there are multiple forms that such bounds could take. We will
bound the L1 norm of the estimate errors by a function of the L1 norm of
the non-stochastic components of the dynamics and observation noise.

The observation update is more complex than the dynamics update,
and the process of obtaining the relevant bounds is correspondingly more
complex in the observation-update portion of the computations. We address
the dynamics contribution first.

5.1 Dynamics Disturbance Effects

We considered both of the models for the strength dynamics, deterministic
and stochastic. We let the true Red unit strength at time t be denoted by
Ht. From Section 4, one sees that in the deterministic case, we have

Ht+1 = [F + Ut]
T Ht, (16)

while in the stochastic case, we have
E[Ht+1] = [F + Ut]

TE[Ht]. (17)
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The dynamic update of the strength distribution, in both the deterministic
and stochastic cases, is

St+1 = FT St. (18)

In the following we use |s| to denote the L1 norm of a vector, s. For an
L×L matrix, M , we use |M | to denote the induced norm on the matrix as
a linear operator. That is, |M | = sup|s|≤1 |Ms|.

Remark 5.1 It is well-known that the induced norm of the transpose of a
stochastic matrix (i.e., a square matrix satisfying (14)) is one. To see this,
note that

|MT s| =
L∑

λ=1

∣∣[MT s]λ
∣∣ =

L∑

λ=1

[
L∑

l=1

Ml,λ|sl|

]

=

L∑

l=1

[
L∑

λ=1

Ml,λ

]

|sl| =

L∑

l=1

|sl| = |s|.

Lemma 5.2 In the stochastic case, we have

|St+1 − E[Ht+1]| ≤ |St − E[Ht]| + |Ut||E[Ht]| ≤ |St − E[Ht]| + N |Ut|.

In the deterministic case, we have

|St+1 − Ht+1| ≤ |St − Ht| + |Ut||Ht| ≤ |St − Ht| + N |Ut|.

Proof. The rightmost inequalities are obvious. The deterministic case
is an easy reduction from the stochastic case. Consequently, we prove only
the first inequality of the lemma statement. From (17) and (18),

|St+1 − E[Ht+1]| =
∣∣FT St −

(
FT + UT

t

)
E[Ht]

∣∣

≤
∣∣FT (St − E[Ht])

∣∣+
∣∣UT

t E[Ht]
∣∣

≤ |St − E[Ht]| + |UT
t | |E[Ht]| .

Theorem 5.3 Let the true strength dynamics update be given by (16) and
(17) in the deterministic and stochastic cases, respectively. Let the strength
estimator update be given by (18). Then, in the deterministic and stochastic
cases, we have

|St − Ht| ≤ |S0 − H0| + N

t−1∑

r=0

|UT
r |

and
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|St − E[Ht]| ≤ |S0 − E[H0]| + N

t−1∑

r=0

|UT
r |

for all t ≥ 0, respectively.

Proof. The proof is immediate by Lemma 5.2 and induction.

5.2 Observation Disturbance Effects

We now obtain bounds on the effects of observation errors. First, we consider
the case where there is no observation error, and obtain a bound on the a
posteriori strength estimator error given the a priori error.

Let St denote the strength distribution prior to the observation, and
Ŝt denote the strength distribution after the observation. The observation
is (l, y), i.e., strength y observed at node l. We again let Ht denote the
true strength at time t. We consider two cases separately, [Ht]l ≥ [St]l and
[Ht]l < [St]l.

In order to reduce the notation, in this discussion, we shall drop the t
subscript. More exactly, we will let Sl denote [St]l, Ŝl denote [Ŝt]l, and Hl

denote [Ht]l. First note from (6) that

Ŝl =
Sl + k(y − Sl)

1 + k (y−Sl)
N

.

Solving for y, we obtain

y
.
= y(Ŝl, Sl)

.
=

Ŝl − S + kS(1 − Ŝl/N)

k(1 − Ŝl/N)
. (19)

With a little work, one finds that

∂y

∂Ŝl

=
N(N − Sl)

k(N − Ŝl)2
> 0,

and so we see that y is monotonically increasing as a function of Ŝl Define
yu = y(Hl, Sl). The following lemma requires some technical analysis (not
included here).

Lemma 5.4 Suppose [Ht]l ≥ [St]l. One has

∣∣∣H − Ŝ
∣∣∣ ≤






|H − S| − Hl−Sl

N−Sl
|Hl − Sl| + 2 [G(y, Sl) − Hl] if y > yu,

|H − S| − (1 − F (y, Sl))|Hl − Sl| if yu ≥ y ≥ Sl,

|H − S| + 2k|y − Hl| if y < Sl.
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In particular, when y = Hl, |H − Ŝ| ≤ |H − S| − (1 − F (y, Sl))|Hl − Sl|.

A similarly technical result holds in the case where [Ht]l < [St]l.

5.3 Combined Disturbance Effects

If one does not observe a reasonably dense set of locations, one cannot guar-
antee that the estimator will converge to the true Red force laydown. For
instance, there could be a single location that is never observed, and where
Red is maintaining a hidden unit or group of units. However, combining
the results of Sections 5.1 and 5.2, one obtains a disturbance attenuation
result. Further, under sufficiently strong assumptions, one can prove that
the strength distribution converges to the true Red laydown.

However, it is worth noting that if one blindly accepts all observational
data as correct, an estimator would not typically have such desirable behav-
ior, and examples of poor behavior of such estimators are easily constructed.

6 Propagation of Strength Distribution: A Com-

putationally Reasonable Scheme

We now present a scheme to propagate the strength distribution in real-
time for the application domain of urban operations. Note that the true
strength can only be distributed amongst at most LR of the total L locations,
where LR is the maximum number of Red units. To model this constraint,
we allow the strength distribution, St, (at any t) to only have significant
strength components (> ǫ) at a few locations (denoted by Lt

1) and almost
no strength component (= ǫ) at most of the other locations (denoted by
Lt

2). Let L1
.
= ♯Lt

1 and L2
.
= ♯Lt

2, ∀t. The definition implies that we will
keep the number of locations constant in each set over time. This is a
reasonable assumption (since LR << L1) and obviously allows much better
computational speed. It is worth noting that typically L1 > L2. Define

N1
.
=
∑

j∈Lt

1

[St]j = N − N2 (20)

where
N2

.
=
∑

i∈Lt

2

[St]i = ǫL2 (21)

We first establish some constraints, and then prove that under these
constraints the convergence results given in section (3) hold for the scheme
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outlined in this section. We will need the following assertion (whose proof
we do not include due to space constraints).

Theorem 6.1 For any time t and observation Yt,ρ, such that the observa-
tion location l ∈ Lt

2, and the strength observed y ∈]1, 2N [, if L1 ≥ 3N
k

, then

s̄ ≥ s∗ ≥ ŝ∗ where s∗
.
= minj∈Lt

1
[St]j and ŝ∗

.
= minj∈Lt

1
[Ŝt]j , and s̄

.
= [Ŝt]l.

We need to continuously update Lt
1 based on dynamic updates (observa-

tions and movement) starting from some initial estimates. We only outline
the scheme for the update of Lt

1 after the observation process. Note that at
any time t, the observation location can belong to either Lt

1 or Lt
2. In the

former case, one does not need to update Lt
1 as the strength mass for any

location in Lt
2 will not exceed ǫ, if one chooses ǫ to be arbitrarily small. Con-

sider the latter case; suppose one observes Yt,ρ = (y, l) such that l ∈ Lt
2. The

scheme is then summarized as follows. We compute the posteriori strength
for the observation Yt,ρ, using equations (4) and (5) respectively. In partic-
ular for l ∈ Lt

2 we define

s̄
.
= [Ŝt]l

.
= G(y, ǫ) =

N(ǫ + ky − kǫ)

N + ky − kǫ
(22)

and for each j ∈ L \ l one has

[Ŝt]j
.
= F (y, ǫ)[St]j =

N

N + ky − kǫ
[St]j

Define the minimum strength in the set Lt
1 as s∗ = minj∈Lt

1
[Ŝt]j and the lo-

cation, l∗, of this minimum strength be l∗ = argminj∈Lt

1
[Ŝt]j Recall that the

Theorem 6.1 ensures that we always get, the observation y at any location
l ∈ Lt

2 to yield, s̄ > s∗. We update Lt
1 and Lt

2 as follows ,

Lt+1
1 =

{
Lt

1 if l ∈ Lt
1

Lt
1

⋃
l \ {l∗} otherwise

(23)

Lt+1
2 =

{
Lt

2 if l ∈ Lt
1 ;

Lt
2

⋃
l∗ \ {l} otherwise

(24)

Finally we redistribute any strength lost after the update in (23) and (24).
Let [S̄t]k denote the strength at location k after obtaining the sets Lt+1

1 and
Lt+1

2 . In particular, for k ∈ Lt+1
2

[S̄t+1]k = ǫ (25)
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The readjustment given above ensures that the total strength stays con-
served in the set Lt+1

2 at N2. Let’s define N̄1
.
=
∑

j∈Lt+1

1

[Ŝt]j and δN1
.
=

N1 − N̄1, then for all i ∈ Lt+1
1

[S̄t+1]i = [Ŝt]i

(
1 +

δN1

N̄1

)
(26)

Note that ∑

i∈Lt+1

1

[Ŝt]i
N̄1 + δN1

N̄1
= N̄1

N1

N̄1
= N1. (27)

Then using (25) and (27), we get the following corollary.

Corollary 6.2 The observation update scheme given in (22-26) maps SN

into SN .

Now we present the argument that given Theorem 6.1, our scheme out-
lined above retains the convergence properties given by Theorems 3.3 and
3.4. Note that the convergence is proved with the properties of G(y, s) and
its first and second derivatives. If we implement the scheme outlined above,
the only potential argument is that with observations at multiple locations,
certain node locations may move from Lt

1 to Lt+1
2 , and certain others may

move from Lt
2 to Lt+1

2 . However with repeated observations, any location at
which the observation is repeated will always end in the set Lt+δt

1 for some
δt, and stay there. Note that this is ensured by our assumption, L1 > LR,
the fact that y ⊂ Z+ and Theorem 6.1 (even with all the LR locations
having repeated observations). We skip the proof details because of space
constraints.

7 Application Example

We present an example application which motivates the advantages of the
proposed estimator. Consider a graph with almost 10000 nodes as shown
in Figure 1. The following color scheme is used for the terrain in the 2-
D plot. The black dots are the open area nodes (including the building
corners), the cyan colored dots are the boundary nodes of the rivers, the blue
colored circles are the bridges, and the magenta colored dots are the interior
points of the buildings (enclosed areas). The Red teams’ true locations
are shown in the figure by red colored ∗’s whereas the Blue teams true
locations (completely known) are indicated by blue colored ∗’s. The strength
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distribution estimator only knows partial information about the Red true
locations; indicated by the red circle enclosing the red ∗ in the top plot of
Figure 1. The red colored circles are used to depict the strength distribution
estimation (centered at the location with the radius of the circle indicating
the strength estimate at that location).

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
3500

4000

4500

5000

Initial Estimation Error: 24

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
3500

4000

4500

5000

Interim Estimation Error: 16.7979

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
3500

4000

4500

5000

Final Estimation Error: 0.18665

Figure 1: Observation Update Example

We assume that we have a priori knowledge of the maximum number
of Red teams. Let LR = 5, with each Red team having a scalar strength
value of 3 in the beginning of the game scenario. Other parameter values
used in this example are k = 0.9, L1 = 25 , and L2 = 9975. Recall,
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that Fi,j denotes the proportion of strength mass flowing from node i to j.
The individual entries in this matrix must be based on terrain and some
Red behavior modelling. To simplify the situational example, we allow for
uniform diffusion movement model with Fii = 0.7, ∀i and the rest of the
strength mass being distributed through the adjacent (connected) edges on
the movement graph.

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

3500

4000

4500

5000

Initial Estimation Error:24

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

3500

4000

4500

5000

Final Estimation Error:29.5439

Figure 2: Flow Update /Dynamics Example
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The initial strength distribution has only one Red team information and
hence the rest of the strength estimation red circles are appearing currently
at other locations (with minimum or no LOS from the current location of
the Blue teams). We will assume that the observations can be based on LOS
between the Blue and the Red team’s current locations as well as through
UAVs or other aerial sensors. At any time t, any sequence of observations
is used to update the strength distribution observation propagation (shown
as green colored circles at the current observed location in the second plot
of Figure 1). As this process is repeated without the dynamics and one
gets enough observations for each Red team, the estimation converges to
the ground truth (as shown in the final plot of the Figure 1 by strength
estimations, as red circles, enclosing the true strength, as red ∗’s). The
three plots also show that the estimation error reduces with repeated ob-
servations. Note that the convergence for each observation can be handled
with a different rate based on the sensor error or the confidence factor by
choosing an appropriate value of k in equations (6) and (7).

Figure 2 shows the pure dynamics update from the same initial condi-
tion without any observation. We consider the Blue teams to stay at their
initial locations throughout for simplicity. We also consider, as the worst
case, the commander input for Red to “stay put”. Another intuitive and
easily implementable input could be movement of all the Red teams such
that they all move to the (connected) adjacent node with least number of
LOS connections. As expected, the dynamic update without any new sen-
sor information leads to diffusion of the strength to the surrounding nodes
(based on the movement graph). This is depicted in Figure 2 by tiny red
dots (negligible strength) spread out across the plot instead of the clearly
visible red circle in Figure 1. The strength distribution based estimation
error increases but is bounded by the sum of the initial estimation error and
the norm (or the size) of the commander’s control input. Since the comman-
der input is to “stay put”, the entries in U matrix correspond to negative
of the entries in the F matrix everywhere and an entry 1 on the diagonal.
The upper bound in Theorem 5.3 is then (24 + 5(1)(n − 1)), where n = 100
is the number of dynamic updates (leading to the upper bound of 519).

Finally we show an example of the combined case where we track the
Red teams using both the observation and the dynamics from the above
two examples in Figure 3. In the lower plot of Figure 3, one can clearly
see that the diffusion of the strength is partially negated by the incoming
observation data. The estimation error for this case falls between the first
two cases; higher than the pure observation process and lower than the pure
dynamical movement case (as expected).
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Initial Estimation Error:24
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Interim Estimation Error:19.4314
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Final Estimation Error:18.9259

Figure 3: Observation and Dynamics, Combined Example

The time involved for the combined update using the proposed scheme in
Section 6 is of the order of milli-seconds which is at least three to four orders
better in magnitude than the existing schemes. The strength distribution
is a reasonable output for providing the commander with an assessment of
the hot-spots (or zones for Blue to watch for) in form of Red team strength
distribution across the map. It is also a reasonable object to feed into a
game engine that can assess the risk associated with a specific Red strength
distribution along with other key critical components of the value function
(c.f., [7, 9, 10]).
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Appendix A: Proof of Theorem 3.3

The proof of the convergence of the Si
λ for λ 6= l follows easily from (7) and

the convergence of Si
l , and so we only prove the claims regarding Si

l .
Let s0 ∈ [0, N ], and consider iteration si+1 = G(y, si). There will be

two cases to consider, s0 < y and s0 > y. (The case y = s0 is immediate as
G(y, y) = y.)

In the first case, one can directly apply the Banach Fixed-Point Theorem,
and we now do so. In order to apply the Banach Fixed-Point Theorem, we
need only prove that G(y, ·) is a contraction on [0, y], and that G(y, y) = y.
The latter merely proves that the unique fixed-point must be s = y, and is
easily seen by inspection of (6). To prove the first item, we need to show
that G(y, [0, y]) ⊆ [0, y] and that |∂G

∂s
(y, s)| < 1 for all 0 ≤ s ≤ y. First note

that, by the right-hand side of (6),

G(y, 0) = ky/[1 + ky/N ] > 0. (28)

Then, again by the right-hand side of (6),

G(y, s) =
(1 − k)s + ky

1 + k
(

y−s
N

) ≤
1

1 + k
(

y−s
N

) ≤ y. (29)

Now, multiplying the numerator and denominator of the right-hand side of
(6) by N , and differentiating yields

∂G

∂s
(y, s) =

(1 − k)N [N + k(y − s)] − [(s(1 − k) + ky)N ](−k)

(N + ky − ks)2
,

which upon rearrangement yields

∂G

∂s
(y, s) =

N [(1 − k)N + ky]

[N + k(y − s)]2
. (30)

<
N + k(y − N)

N + k(y − s)
< 1. (31)

22



Combining (28), (29) and (31) implies G(y, s) ∈ [0, y]. Note from (30) and
the fact that y ≤ N ,

∂G

∂s
(y, s) > 0. (32)

Combining this with (31) yields ∂G
∂s

(y, s) ∈ (0, 1). Consequently, the above
noted conditions for application of the Banach Fixed-Point Theorem apply,
and one finds that si → s̄ ∈ [0, y] where s̄ is the unique fixed point of G(y, ·).
However, as noted above G(y, y) = y, and therefore s̄ = y.

We now turn to the other case, s0 > y. First note, that G(y, y) = y
and G(y,N) = N where the latter follows by inspection of (6). Combining
these with the monotonicity implied by (32), one finds that for s ∈ [y,N ],
G(y, s) ∈ [y,N ]. Consequently, si ∈ [y,N ] for all i. Now, differentiating
(30) a second time yields

∂2G

∂s2
(y, s) =

2kN [(1 − k)N + y]

[N + k(y − s)]3
>

2kN [(1 − k)N + y]

[(1 − k)N ]3
> 0

on [y,N ]. Consequently, G(y, s) < s, on (y,N). This implies that si is
strictly monotonically decreasing given any s0 ∈ (y,N), and as shown just
above, bounded below by y. Consequently, there is some s̄ ∈ [y,N) such
that si ↓ s̄, and s̄ = G(y, s̄). However, this last equality is impossible unless
s̄ = y, and so si ↓ y.
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