
12TH ICCRTS “Adapting C2 to the 21st Century”

Modeling and Simulation

C2 Concepts, Theory, and Policy

Network-Centric Experimentation and Applications

Toward Efficient Optimal Resource Allocation for a

Frigate

Pierrick Plamondon∗, Brahim Chaib-draa
Laval University Québec, PQ, Canada, G1K 7P4

(418) 656-2131 x3226
Computer Science Department

{plamon; chaib}@damas.ift.ulaval.ca

Abder Rezak Benaskeur
Defence R&D Canada — Valcartier

2459 Pie-XI Blvd. North, Val-Bélair PQ, Canada, G3J 1X5
(418) 844-4000 x4478

Decision Support Systems Section
abderrezak.benaskeur@drdc-rddc.gc.ca

∗ Point of contact and student author

Abstract

The allocation of anti-air warfare weapon is an important aspect of com-
mand and control for a Frigate. This paper contributes to solve effectively
the stochastic resource allocation problems known to be NP-Complete. In-
deed, recently, efficient resource allocation algorithms have been developed
in Artificial Intelligence which could improve adapt C2 to the 21st century.
To address this complex resource management problem the Labeled Real-
Time Dynamic Programming (lrtdp) approaches is applied in an effective

1

way. lrtdp concentrates the planning on significant states of the environ-
ment only, as the search is guided by an initial heuristic. As demonstrated
by the experiments, lrtdp permits to obtain a very high survivability for
the frigate, when compared to two other well known techniques.

1 Introduction

The Combat System of a typical Frigate includes above water warfare (aww)
weapon systems for hardkill and softkill. Increasing complexity in threat
technology, and increasing speed and diversity in open-ocean and littoral
threat scenarios makes efficient and effective planning for weapons resources
more and more difficult. To counter these problems, research is ongoing to de-
sign and implement resource management decision aids, based on intelligent
agent technology to perform aww hardkill and softkill resource allocations
scheduling for a Frigate.

This paper aims to contribute to solve complex stochastic resource allo-
cation problems. In general, resource allocation problems are known to be
NP-Complete Zhang [2002]. In such problems, a scheduling process suggests
the action (i.e. resources to allocate) to undertake to accomplish certain
tasks, according to the perfectly observable state of the environment. When
executing an action to realize a set of tasks, the stochastic nature of the
problem induces probabilities on the next visited state. The number of states
is the combination of all possible specific states of each task and available
resources. In this case, the number of possible actions in a state is the com-
bination of each individual possible resource assignment to the tasks. The
very high number of states and actions in this type of problem makes it very
complex.

A common way of addressing this large stochastic problem is by using
Markov Decision Processes (mdps), and in particular real-time search where
many algorithms have been developed recently. For instance Real-Time Dy-
namic Programming (rtdp) Barto et al. [1995], lrtdp Bonet and Geffner
[2003b], hdp Bonet and Geffner [2003a], and lao⋆ Hansen and Zilberstein
[2001] are all state-of-the-art heuristic search approaches in a stochastic en-
vironment. Because of its anytime quality, an interesting approach is rtdp

introduced by Barto et al. Barto et al. [1995] which updates states in trajec-
tories from an initial state s0 to a goal state sg. rtdp is used in this paper
to solve efficiently a constrained resource allocation problem.

2

rtdp is much more effective if the generated trajectories are efficient.
To achieve this, Bounded rtdp (brtdp) McMahan et al. [2005], Focused
rtdp (frtdp) Smith and Simmons [2006], and bounded rtdp Singh and
Cohn [1998] are approaches for solving a stochastic problem using a rtdp

type heuristic search with upper and lower bounds on the value of states.
The efficient state trajectories updates made by state-of-the-arts brtdp and
frtdp are used here, are reduced in numbers when given tight admissible
bounds for our resource allocation problem. Also, we propose to prune the
action space of brtdp and frtdp as in the approach of Singh and Cohn
[1998].

The bounds proposed by Singh and Cohn [1998] are suitable to resource
allocation, and are extended in this paper, using in particular the concept of
marginal revenue Pindyck and Rubinfeld [2000]. Our bounds are compared
theoretically and empirically to the ones proposed by Singh and Cohn. The
problem is now modelled.

2 Problem Formulation

Our problem of interest is military naval operations which are known to be
very complex. In this context, a ship’s Commanding Officer needs to set his
resources to maximum efficiency in real-time where he is in face to multi-
threats situations. An efficient resource allocation can increase the chance of
survival of the ship. In the case of C2 Above-Water Warfare (aww), the list
of main operations are as follows :

• Threat detection: Based on data from several sensors.

• Resource allocation: Resources are assigned to engage each threat.

• Engagement control : The process by which decisions in the two pre-
ceding steps are executed in real-time.

In our concern, we address how we develop a decision support system system
that focusses specifically on some particular aspects of the C2, in order to
reduce the complexity of the domain. Here, the focuss is on the Resource
allocation and engagement control processes. To this end, the threat detection
is considered as a black box. Not working on threat detection reduces the
large volume of data that needs to be processed, which helps reducing the
system’s complexity to focuss on the resource allocation and execution parts.

3

The aww hardkill weapons are weapons that are directed to intercept a
threat and actively destroy it through direct impact or explosive detonation in
the proximity of the threat. The range of different types of hardkill weapons
varies, and the effectiveness of these weapons depends on a variety of factors,
like distance to the threat, type of threat, speed of the threat, environment,
etc. The aww hardkill weapons for a typical Frigate include surface-to air
missiles (sams) that have the greatest range, an intermediate range Gun, and
a Close-In Weapons System (ciws) that is a short-range, rapid-fire gun. The
Gun has a blind zone of ±35 deg at the back of the Frigate. Closely allied to
these weapons are two Separate Tracking and Illuminating Radars (stirs)
that are used to guide a sam to a threat, and to point the Gun. There is one
stir to the front and one stir to the back of the ship. In his case, both stirs
can be used simultaneously at ±30 deg to both sides of the Frigate. In all
other areas, only one stir can be used. The ciws has its own pointing radar
which has a blind zone of ±15 deg to the front of the ship. More details of
the model for hardkill can be found in ?.

The aww softkill weapons use techniques to deceive or disorient a threat
to cause the threat to destroy itself, or at least lose its fix on its intended
victim. Again, the range and effectiveness of these weapons varies consid-
erably. The aww softkill weapons for a typical Frigate include chaff and
jamming systems. The chaff system launches a shell that produces a burst
at a designated position. The resultant chaff cloud has a significant radar
cross-section that can be used to screen the Frigate or produce an alternate
target on which a radar-guided threat can fix. The jamming system uses elec-
tromagnetic emissions to confuse the threats sensors to cause the threat to
either lose its fix on its intended target, or to improperly assess the position
of its target.

The exact nature of the specifications and capabilities of the various aww

hardkill and softkill weapons on real Frigates is obviously very complex, and
much of that information is Classified. To avoid this issue, and in order
to maintain emphasis on the research interests and not be burdened by the
complexity and fidelity of the representation of hardkill and softkill, a con-
siderably simplified model of the relevant aaw hardkill and softkill weapons
was used. This model is a simple, non-classified version of aww hardkill and
softkill for a typical Frigate. The results could eventually be applied to the
Canadian HALIFAX Class Frigate.

The softkill weapons system consists of two types of resources, Jamming
and Chaff. In this application, there are two Jammers and four Chaff launch-

4

ers. Jammers can act on two threats each. During an attack, Jamming and
Chaff must act concurrently and in a complementary way. First, Jamming
is used to break the threat’s radar lock on the Frigate. Once the missile has
lost its target, Jamming creates a false target position on the threat’s radar.
Then Chaff is deployed at a position consistent with the false one provided
by the Jammer. In this way, the threat’s radar locks onto the chaff cloud as
its new target.

2.1 Resource Allocation as a MDPs

Both the efficiency of harkill and softkill weapons are stochastic. In our
problem, we assume the transition function and the reward function are both
known. A Markov Decision Process (mdp) framework is used to model our
stochastic resource allocation problem. mdps have been widely adopted by
researchers today to model a stochastic process. This is due to the fact that
mdps provide a well-studied and simple, yet very expressive model of the
world. An mdp in the context of a resource allocation problem with limited
resources is defined as a tuple 〈Res, Ta, S, A, P, W, R, 〉, where:

• Res = 〈res1, ..., res|Res|〉 is a finite set of resource types available for a
planning process. Each resource type may have a local resource con-
straint Lres on the number that may be used in a single step, and a
global resource constraint Gres on the number that may be used in to-
tal. The global constraint only applies for consumable resource types
(Resc) and the local constraints always apply to consumable and non-
consumable resource types.

• Ta is a finite set of tasks with ta ∈ Ta to be accomplished.

• S is a finite set of states with s ∈ S. A state s is a tuple
〈Ta, 〈res1, ..., res|Resc|〉〉, which is the characteristic of each unaccom-
plished task ta ∈ Ta in the environment, and the available consumable
resources. sta is the specific state of task ta. Also, S contains a non
empty set sg ⊆ S of goal states. A goal state is a sink state where an
agent stays forever.

• A is a finite set of actions (or assignments). The actions a ∈ A(s)
applicable in a state are the combination of all resource assignments
that may be executed, according to the state s. In particular, a is

5

simply an allocation of resources to the current tasks, and ata is the
resource allocation to task ta. The possible actions are limited by Lres

and Gres.

• Transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s).

• W = [wta] is the relative weight (criticality) of each task.

• State rewards R = [rs] :
∑

ta∈Ta

rsta
← ℜsta

× wta. The relative reward

of the state of a task rsta
is the product of a real number ℜsta

by the
weight factor wta.

• A discount factor γ ≤ 1.

A solution of an mdp is a policy π mapping states s into actions a ∈ A(s).
In particular, πta(s) is the action (i.e. resources to allocate) that should be
executed on task ta, considering the global state s. In this case, an optimal
policy is one that maximizes the expected total reward for accomplishing all
tasks. The optimal value of a state, V (s), is given by:

V ⋆(s) = R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′) (1)

where the remaining consumable resources in state s′ are Resc\res(a), where
res(a) are the consumable resources used by action a. Indeed, since an action
a is a resource assignment, Resc \ res(a) is the new set of available resources
after the execution of action a. Furthermore, one may compute the Q-Values
Q(a, s) of each state action pair using the following equation:

Q(a, s) = R(s) + γ
∑

s′∈S

Pa(s
′|s) max

a′∈A(s′)
Q(a′, s′) (2)

where the optimal value of a state is V ⋆(s) = max
a∈A(s)

Q(a, s). The policy is sub-

jected to the local resource constraints res(π(s)) ≤ Lres∀ s ∈ S , and ∀ res ∈
Res. The global constraint is defined according to all system trajectories
tra ∈ TRA. A system trajectory tra is a possible sequence of state-action
pairs, until a goal state is reached under the optimal policy π. For example,
state s is entered, which may transit to s′ or to s′′, according to action a.
The two possible system trajectories are 〈(s, a), (s′)〉 and 〈(s, a), (s′′)〉. The

6

global resource constraint is res(tra) ≤ Gres∀ tra ∈ TRA ,and ∀ res ∈ Resc

where res(tra) is a function which returns the resources used by trajectory
tra. Since the available consumable resources are represented in the state
space, this condition is verified by itself. In other words, the model is Marko-
vian as the history has not to be considered in the state space. Furthermore,
the time is not considered in the model description, but it may also include
a time horizon by using a finite horizon mdp. Since resource allocation in a
stochastic environment is NP-Complete, heuristics should be employed. In
particular, heuristic search reduces the complexity of a stochastic resource
allocation problem by focussing on relevant states, and by pruning the ac-
tion space, but usually requires tight bounds. The next sections describe
two separate methods to define hL(s) and hU(s) which are admissible heuris-
tics for the lower bound value of a state L(s) and upper bound value of a
state U(s). First of all, the method of Singh and Cohn [1998] is briefly de-
scribed. Then, our own method proposes tighter bounds, thus allowing a
more effective pruning of the action space.

2.2 Singh and Cohn’s Bounds

Singh and Cohn [1998] defined lower and upper bounds to prune the action
space in an mdp. Their approach is pretty straightforward. First of all, a
value function is computed for all tasks to realize, using a standard rtdp ap-
proach. Then, using these task -value functions, a lower bound hL, and upper
bound hU are as follows: hL(s) = max

ta∈Ta
Vta(sta), and hU(s) =

∑
ta∈Ta

Vta(sta).

The admissibility of these bounds has been proven by Singh and Cohn, such
that, the upper bound always overestimates the optimal value of each state,
while the lower bound always underestimates the optimal value of each state.
For readability, the upper bound by Singh and Cohn is named SinghU, and
the lower bound is named SinghL.

2.3 Reducing the Upper Bound

SinghU includes actions which may not be possible to execute because of
resource constraints, which overestimates the upper bound. To consider only
possible actions, our upper bound, named maxU is introduced:

hU(s) = max
a∈A(s)

∑

ta∈Ta

Qta(ata, sta) (3)

7

where Qta(ata, sta) is the Q-value of task ta for state sta, and action ata com-
puted using a standard Labelled rtdp (lrtdp) Bonet and Geffner [2003b]
approach.

Theorem 1 The upper bound defined by Equation 3 is admissible.

Proof: The local resource constraints are satisfied because the upper bound
is computed using all global possible actions a. However, hU(s) still overesti-
mates V ⋆(s) because the global resource constraint is not enforced. Indeed,
each task may use all consumable resources for its own purpose. Doing this
produces a higher value for each task, than the one obtained when planning
for all tasks globally with the shared limited resources. �

Computing the maxU bound in a state has a complexity of O(|A|×|Ta|),
and O(|Ta|) for SinghU. A standard Bellman backup has a complexity of
O(|A|×|S|). Since |A|×|Ta| ≪ |A|×|S|, the computation time to determine
the upper bound of a state, which is done one time for each visited state,
is much less than the computation time required to compute a standard
Bellman backup for a state, which is usually done many times for each visited
state. Thus, the computation time of the upper bound is negligible.

2.4 Increasing the Lower Bound

The idea to increase SinghL is to allocate the resources a priori among the
tasks. When each task has its own set of resources, each task may be solved
independently. The lower bound of state s is hL(s) =

∑
ta∈Ta

Lowta(sta), where

Lowta(sta) is a value function for each task ta ∈ Ta, such that the resources
have been allocated a priori. The allocation a priori of the resources is made
using marginal revenue, which is a highly used concept in microeconomics
Pindyck and Rubinfeld [2000], and has recently been used for coordination
of a Decentralized mdp Beynier and Mouaddib [2006]. In brief, marginal
revenue is the extra revenue that an additional unit of product will bring to a
firm. Thus, for a stochastic resource allocation problem, the marginal revenue
of a resource is the additional expected value it involves. The marginal
revenue of a resource res for a task ta in a state sta is defined as following:

mrta(sta) = max
ata∈A(sta)

Qta(ata, sta)−

max
ata∈A(sta)

Qta(ata|res /∈ ata, sta) (4)

8

The concept of marginal revenue of a resource is used in Algorithm 2.1 to
allocate the resources a priori among the tasks which enables to define the
lower bound value of a state. In Line 4 of the algorithm, a value function is
computed for all tasks in the environment using a standard lrtdp Bonet and
Geffner [2003b] approach. These value functions, which are also used for the
upper bound, are computed considering that each task may use all available
resources. The Line 5 initializes the valueta variable. This variable is the
estimated value of each task ta ∈ Ta. In the beginning of the algorithm, no
resources are allocated to a specific task, thus the valueta variable is initial-
ized to 0 for all ta ∈ Ta. Then, in Line 9, a resource type res (consumable
or non-consumable) is selected to be allocated. Here, a domain expert may
separate all available resources in many types or parts to be allocated. The
resources are allocated in the order of its specialization. In other words, the
more a resource is efficient on a small group of tasks, the more it is allo-
cated early. Allocating the resources in this order improves the quality of
the resulting lower bound. The Line 12 computes the marginal revenue of
a consumable resource res for each task ta ∈ Ta. For a non-consumable
resource, since the resource is not considered in the state space, all other
reachable states from sta consider that the resource res is still usable. The
approach here is to sum the difference between the real value of a state to
the maximal Q-value of this state if resource res cannot be used for all states
in a trajectory given by the policy of task ta. This heuristic proved to ob-
tain good results, but other ones may be tried, for example Monte-Carlo
simulation. In Line 21, the marginal revenue is updated in function of the
resources already allocated to each task. R(sgta

) is the reward to realize

task ta. Thus, Vta(sta)−valueta

R(sgta)
is the residual expected value that remains to

be achieved, knowing current allocation to task ta, and normalized by the
reward of realizing the tasks. The marginal revenue is multiplied by this
term to indicate that, the more a task has a high residual value, the more
its marginal revenue is going to be high. Then, a task ta is selected in Line
23 with the highest marginal revenue, adjusted with residual value. In Line
24, the resource type res is allocated to the group of resources Resta of task
ta. Afterwards, Line 29 recomputes valueta. The first part of the equation
to compute valueta represents the expected residual value for task ta. This

term is multiplied by
max

ata∈A(sta)
Qta(ata,sta(res))

Vta(sta)
, which is the ratio of the efficiency

of resource type res. In other words, valueta is assigned to valueta + (the

9

residual value × the value ratio of resource type res). For a consumable re-
source, the Q-value consider only resource res in the state space, while for a
non-consumable resource, no resources are available.

All resource types are allocated in this manner until Res is empty. All
consumable and non-consumable resource types are allocated to each task.
When all resources are allocated, the lower bound components Lowta of each
task are computed in Line 32. When the global solution is computed, the
lower bound is as follow:

hL(s) = max(SinghL, max
a∈A(s)

∑

ta∈Ta

Lowta(sta)) (5)

We use the maximum of the SinghL bound and the sum of the lower bound
components Lowta, thus marginal-revenue ≥ SinghL. In particular, the
SinghL bound may be higher when a little number of task remains. As
the components Lowta are computed considering s0; for example, if in a
subsequent state only one task remains, the bound of SinghL will be higher
than any of the Lowta components.

The main difference of complexity between SinghL and revenue-

bound is in Line 32 where a value for each task has to be computed with the
shared resource. However, since the resource are shared, the state space and
action space is greatly reduced for each task, reducing greatly the calculus
compared to the value functions computed in Line 4 which is done for both
SinghL and revenue-bound.

Theorem 2 The lower bound of Equation 5 is admissible.

Proof: Lowta(sta) is computed with the resource being shared. Summing
the Lowta(sta) value functions for each ta ∈ Ta does not violates the local
and global resource constraints. Indeed, as the resources are shared, the tasks
cannot overuse them. Thus, hL(s) is a realizable policy, and an admissible
lower bound. �

2.5 BRTDP and FRTDP

We now briefly describe Bounded rtdp (brtdp) by McMahan et al. [2005]
and Focused rtdp (frtdp) by Smith and Simmons [2006]. Both these ap-
proaches propose an efficient trajectory of state updates to further speed
up the convergence, when given upper and lower bounds. brtdp se-
lects a state s′ from a random distribution b(s′), such as

∑
s′∈S b(s′) =

10

Pπ(L(s))(s
′|s)(U(s′) − L(s′)). Similarly, frtdp selects the next state accord-

ing to a state priority p(s). p(s) = U(s) − L(s) for fringe (not expanded)
node, and p(s) = min(U(s) − L(s), maxs′∈S Pπ(U(s))(s

′|s)(p(s′)) for internal
nodes. So, both brtdp and frtdp consider the difference between both
bounds as well as the probability of transiting to the next possible states,
but in a slightly different manner. Another difference is the length of the
trajectories. On the one hand, brtdp stops the current trajectory when∑

s′∈S b(s′) < (U(s) − L(s)/τ), where τ is a constant > 1. On the other
hand, frtdp stops the current trajectory using an adaptive maximum depth
termination. The length D of a trajectory is slightly increased by a constant
kD when the states near the end of the trajectory have a greater Bellman
error (difference of value of upper and lower bounds) than the other states.
Finally, both approaches make a backup in a backward fashion on all visited
state of a trajectory, when this trajectory has been made.

3 Experimental Results

3.1 Racetrack

We evaluated the performance of frtdp Smith and Simmons [2006] and
brtdp McMahan et al. [2005] on problems in the popular racetrack bench-
mark domain from Barto et al. [1995]. For the experiments we used the C++
code implemented by Smith and Simmons [2006]. We developped brtdp in
their simulator, which is initialized with the same (loose) initial lower and
upper bounds Smith and Simmons used. Table 1 reports the convergence
time within ǫ = 10−3 for each (problem, algorithm) pair, measured both as
number of backups and cpu time. Singh and Cohn [1998] pruned the action
space when QU(a, s) < L(s). We implemented pruned versions of frtdp

and brtdp with p-brtdp and p-frtdp. This pruning can be implemented
efficiently with a vector of boolean, which does not require much memory,
to determine if an action is dominated or not in a state. From the results,
we observe that brtdp is usually more efficient than frtdp and the pruning
slightly improve the convergence time.

We suppose that brtdp is faster than frtdp because the maximum depth
termination is not well adapted for these problems, as it is the only main
difference for these algorithms. We also assume that the little improvement
with pruning is due to the fact that the bounds are very loose and it requires

11

Table 1: Millions of backups (CPU time) before convergence with ǫ = 10−3.
The fastest time for each problem is shown in bold. For brtdp, τ = 10.

Algorithm large-b-3 large-b-w large-ring-3 large-ring-w

frtdp 0.49(7.14) 0.85(26.81) 0.37(7.46) 0.96(37.60)
brtdp 0.41(5.94) 0.74(24.74) 0.37(7.58) 0.84(33.97)
p-frtdp 0.50(6.95) 0.86(25.24) 0.37(7.19) 0.98(34.65)
p-brtdp 0.41 (5.72) 0.74 (23.37) 0.36(7.21) 0.80 (31.58)

many backup for the pruning to start.

3.2 Resource Allocation

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

Number of tasks

R-FRTDP
S-FRTDP

LRTDP

Figure 1: Computational effi-
ciency of s-frtdp, r-frtdp and
lrtdp.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

Number of tasks

R-FRTDP
NPR-FRTDP

LRTDP

Figure 2: Computational effi-
ciency of r-frtdp, npr-frtdp

and lrtdp.

We also tested brtdp and frtdp in a resource allocation problem. The
domain is a the one described in Section 2. For this problem the frtdp and
brtdp approaches have been implemented. For frtdp, the initial length
D of a trajectory is 3 and the increasing ratio (kD) is 1.2. For brtdp the
constant τ was set to 10. We tried different variations of settings and this one
provided a fast convergence. Also, as Singh and Cohn [1998] proposed, we
pruned the action space when QU (a, s) < L(s) for both frtdp and brtdp.
Lets summarize the implemented approaches here:

• lrtdp: The upper bound of maxU is used for lrtdp.

12

Table 2: Planning time in seconds of frtdp and brtdp for our resource
allocation problem.

|Ta| 3 4 5 6 7 8

s-brtdp 0.34 2.4 29 287 2373 -
s-frtdp 0.3 2.1 23 202 1745 -
r-brtdp 0.23 1.5 12.4 76 482 3987
r-frtdp 0.21 1.4 11.2 69 450 3550

• s-brtdp: The SinghL and SinghU bounds are used for brtdp.

• s-frtdp: The SinghL and SinghU bounds are used for frtdp.

• r-brtdp: The revenue-bound and maxU bounds are used for
brtdp.

• r-frtdp: The revenue-bound and maxU bounds are used for
frtdp.

• npr-frtdp: r-frtdp, but without action pruning.

To compute the lower bound of revenue-bound, all available resources have
to be separated in many types or parts to be allocated. For our problem, we
allocated each resource of each type in the order of of its specialization like we
said when describing the revenue-bound. In terms of experiments, we first
compared the performance of frtdp and brtdp on our resource allocation
problem. In contrast with the racetrack problem, frtdp was faster than
brtdp with both the Singh and Cohn bounds and our proposed bounds. Our
intuition for this result is that the goal states in a resource allocation problem
has not a high depth from s0. On the other hand, for a racetrack problem,
the car has to traverse many states to reach the goal. The complexity of a
resource allocation problem is more in the branching factor and the number
of action in each state. In this case, the little trajectories’s lengths of frtdp

enables to not get “lost” in the huge state space as brtdp does. Also, the
initial state receives efficient updates for frtdp even if the trajectories’s
lengths are small since the goal states are usually reached, which is not the
case for the racetrack problem.

Also, as one can notice in this table, and in Figures 1 and 2, the efficient
trajectories of the two bounded approaches coupled with tight bounds reduce

13

the planning time significantly. Indeed, the lrtdp approach for resource
allocation, which does not prune the action space, is much more complex. For
instance, it took an average of 1112 seconds to plan for an lrtdp approach
with six tasks (see Figure 1). The s-frtdp approach diminished the planning
time by using a lower and upper bound to prune the action space and with the
efficient trajectories. m-frtdp further reduce the planning time by providing
very tight initial bounds. In particular, s-frtdp needed 202 seconds in
average to solve problem with six tasks and r-frtdp required 69 seconds.
Indeed, the time reduction is quite significant compared to lrtdp, which
demonstrates the efficiency of using bounds to prune the action spaces and
produce efficient trajectories. For example, the planning time to obtain the
optimal solution of r-frtdp for problems with 4 tasks is 1.4 seconds, which is
not excessive for our real-time resource allocation problem. Furthermore, as
discussed by Singh and Cohn Singh and Cohn [1998], a two bounded heuristic
search has a number of desirable anytime characteristics: if an action has
to be picked in state s before the algorithm has converged (while multiple
competitive actions remains), the action with the highest lower bound is
picked. Since the upper bound for state s is known, it may be estimated
how far the lower bound is from the optimal. If the difference between the
lower and upper bound is too high, one can choose to use another greedy
algorithm of one’s choice, which outputs a fast and near optimal solution.
Furthermore, if a new task dynamically arrives in the environment, it can be
accommodated by redefining the lower and upper bounds which exist at the
time of its arrival. Singh and Cohn Singh and Cohn [1998] proved that an
algorithm that uses admissible lower and upper bounds to prune the action
space is assured of converging to an optimal solution.

On Figure 2, we may also observe that the action space pruning is much
more efficient for our resource allocation problem than it is for the racetrack
problem. In average, npr-frtdp took 4/7 the planning time that lrtdp

required to solve the same problems. With action pruning, in average r-

frtdp required only 1/12 the planning time lrtdp needed, which is a higher
gain than obtained with the racetrack. Again, we explain this difference with
the racetrack results by the fact that the goal states are near of s0 with a
resource allocation problem, and the updates permit to tighten the bounds
early in the planning process, which enables to prune the action space. Also,
since the initial bounds are very tight with our bounds compared with the
very loose initial bounds Smith and Simmons [2006] used for the racetrack,
pruning can be made very early.

14

4 Conclusion

This paper has many interesting results. First of all, we implemented brtdp

in the racetrack problem that Smith and Simmons [2006] developed. brtdp

was slightly faster than frtdp and the action pruning enables to further
diminish the planning time for both brtdp and frtdp.

We also implemented brtdp and frtdp on a resource allocation problem,
in the context of above-water warfare for a Frigate. In this problem, frtdp

converges faster than brtdp, and we argue the low distance between the
goal states with s0 may explain this situation. Also, the initial bounds we
proposed enables a faster convergence in comparison with the Singh and
Cohn [1998] bounds. Finally, we observed that the action pruning is very
efficient for our problem. We think this is due to the tight initial bounds,
and because the distance between the goal states with s0 is small.

The only condition for the use of our proposed bounds is that each task
possesses consumable and/or non-consumable limited resources, which is the
case for hardkill and softkill weapons of a Frigate.

An interesting research avenue would be to include the time for the gen-
eration of our bounds. With a time dimension, it may be tricky to match
the state of the tasks within a global state as the starting and ending time
of the states may not match.

References

A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72(1):81–138, 1995.

A. Beynier and A. I. Mouaddib. An iterative algorithm for solving con-
strained decentralized markov decision processes. In Proceeding of the
Twenty-First National Conference on Artificial Intelligence (AAAI-06),
2006.

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning
with uncertainty and full feedback. In Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-03), August
2003.

B. Bonet and H. Geffner. Labeled lrtdp approach: Improving the conver-
gence of real-time dynamic programming. In Proceeding of the Thirteenth

15

International Conference on Automated Planning & Scheduling (ICAPS-
03), pages 12–21, Trento, Italy, 2003.

E. A. Hansen and S. Zilberstein. lao⋆ : A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

H. B. McMahan, M. Likhachev, and G. J. Gordon. Bounded real-time dy-
namic programming: rtdp with monotone upper bounds and performance
guarantees. In ICML ’05: Proceedings of the Twenty-Second International
Conference on Machine learning, pages 569–576, New York, NY, USA,
2005. ACM Press.

R. S. Pindyck and D. L. Rubinfeld. Microeconomics. Prentice Hall, 2000.

S. Singh and D. Cohn. How to dynamically merge markov decision processes.
In Advances in Neural Information Processing Systems, volume 10, pages
1057–1063, Cambridge, MA, USA, 1998. MIT Press.

T. Smith and R. Simmons. Focused real-time dynamic programming for
mdps: Squeezing more out of a heuristic. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence (AAAI), Boston, USA,
2006.

W. Zhang. Modeling and solving a resource allocation problem with soft
constraint techniques. Technical report: wucs-2002-13, Washington Uni-
versity, Saint-Louis, Missouri, 2002.

1 Annex

16

Algorithm 2.1 The marginal revenue lower bound algorithm.

1: Function revenue-bound(S)
2: returns a lower bound LowTa

3: for all ta ∈ Ta do
4: Vta ←lrtdp(Sta)
5: valueta ← 0
6: end for
7: s← s0

8: repeat
9: res← Select a resource type res ∈ Res

10: for all ta ∈ Ta do
11: if res is consumable then
12: mrta(sta)← Vta(sta)− Vta(sta(Res \ res))
13: else
14: mrta(sta)← 0
15: repeat
16: mrta(sta)← mrta(sta) + Vta(sta) -

max
(ata∈A(sta)|res/∈ata)

Qta(ata, sta)

17: sta ← sta.pickNextState(Resc)
18: until sta is a goal
19: s← s0

20: end if
21: mrrvta(sta)← mrta(sta)×

Vta(sta)−valueta

R(sgta)

22: end for
23: ta← Task ta ∈ Ta which maximize mrrvta(sta)
24: Resta ← Resta

⋃
{res}

25: temp← ∅
26: if res is consumable then
27: temp← res
28: end if
29: valueta ← valueta + ((Vta(sta)− valueta)×

max
ata∈A(sta,res)

Qta(ata,sta(temp))

Vta(sta)
)

30: until all resource types res ∈ Res are assigned
31: for all ta ∈ Ta do
32: Lowta ←lrtdp(Sta, Resta)
33: end for
34: return LowTa

17

