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Abstract

Service Oriented Architectures (SOASs) hold promise for use in Command and Control (C2)
application domains and contexts but this promise remains essentially un-tested and un-
validated. This un-tested and largely un-realized promise is particularly true in the context of
systems on the Edge where system connectivity is problematic. Gestalt and Villanova University
are partners in the Applied Research for Computing Enterprise Services (ARCES) program under
sponsorship of the Air Force Electronic Systems Group (ELSG/KI) at Hanscom Air Force Base.
ARCES has spent significant effort in trying to understand aspects and features of both SOAs
and their applications to C2. As part of this effort, we developed executable models to help
evaluate SOA-based approaches and architectures. This paper presents ARCES'’ findings to-
date, introduces several SOA models, discusses how these models are verified and validated,
and shows the direct application of these models to investigating the utility and practicality of SOA
solutions to C2 problems.
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1 Introduction

Service Oriented Architectures (SOASs) hold promise for use in Command and Control (C2)
application domains and contexts but this promise remains essentially un-tested and un-
validated. This un-tested and un-tried promise is particularly true in the context of systems on the
Edge where system and participant connectivity is problematic.

Gestalt and Villanova University are partners in the Applied Research for Computing Enterprise
Services (ARCES) program under sponsorship of the Air Force Electronic Systems Group
(ELSG/KI) at Hanscom Air Force Base. We (ARCES) have expended significant effort in trying to
understand aspects and features of both SOAs and their applications to C2. To that end, we
developed executable models to help evaluate SOA-based approaches and architectures. One
important modeling technology we employ is called MESA: Modeling Environment for SOA
Analysis. The Mitre Corporation created MESA under DISA (Defense Information Systems
Agency) sponsorship. MESA allows the creation of executable architectural models through
which the stressful conditions, under which C2 applications (realized in a SOA) are expected to
be deployed and operate, can be examined and experimented with.

This paper presents some of the research work that we have performed and discusses several
models and laboratory experiments conducted to validate the models. In these models, ARCES
attempts to define as-is and to-be architectures and their interplay in a large-scale communication
network that we call a C2 fabric. The fragileness and unpredictable nature of this fabric is of
particular importance and modeling constraints such as low bandwidth and intermittent
communication links is an important feature of these models. The use of compression
technologies to overcome some of these constraints appears to be a fruitful avenue of research —
in this paper we show how our models support this claim.

Along with modeling, ARCES is also concerned with evaluating and experimenting with particular
ESB (Enterprise Service Bus) implementations ranging from commercial tools such as BEA's
Aqual.ogic to open source technologies such as the Apache ServiceMix project. In fact, using
these technologies we built a laboratory test bed in which the ideas and approaches incorporated
in the SOA models can be demonstrated and used to verify and validate the models themselves.
At the same time, the suitability and maturity of the ESB products are examined to see how well
they are equipped to support C2 SOA needs and concerns.

Recently, ARCES has started to examine the difficult problem of service discovery from a Net-
Centric Warfare viewpoint and we are beginning to develop models to help understand and
document this problem and potentially outline solutions whose effectiveness can be
demonstrated using our models.

2 Overview of MESA Technology

As mentioned in the introduction, the SOA models created by ARCES are based on MESA.
MESA, developed by the Mitre Corporation, is primarily a set of library components for a
commercial discrete event simulation tool called Extend. MESA requires the Industry version of
Extend because it utilizes a database approach to capture information about computer and
network resources. In order to execute MESA models, you must first acquire the free Extend
Player tool and install the MESA libraries. The ARCES project has interacted with Patrick Van
Metre at Mitre who was a primary developer of MESA to obtain the MESA libraries and to suggest
some extensions to MESA functionality.




A screen snapshot of our Compression ESB Fabric model running in the Extend application is
shown in Figure 1.
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Figure 1. MESA Model in Extend

Each round node shown in Figure 1 represents a computational resource (most often a computer
or network component) on which programs can execute and through which messages (requests
and responses) can be sent. Web services in a Service Oriented Architecture (SOA) are
instances of such programs. With MESA it is possible to define rather complex logical behavior
that models the actions of web services including the invocation of one service by another. Web
services can be mapped to individual nodes in the model where their execution will be simulated.
Each node is defined with computational characteristics including CPU horsepower and number
of resident processors so that execution statistics can be gathered and measured. Connections
between nodes are also modeled as shown by the rectangular box between the WAN_4 and Z
Provider nodes in Figure 1. These connections or links can have characteristics of their own that
define their behavior including properties such as link speed (in bits per second: bps), link latency
and link background utilization. In the case where nodes are directly connected to one another,
there is no explicit link behavior imposed on the connection — MESA manages network traffic
using default behaviors built into MESA.

It is beyond the scope of this design document to fully explain the usage of MESA. A MESA
Users Guide is included in the MESA distribution that describes how to use MESA and



understand MESA models. The process of creating a MESA model conceptually consists of the
following steps:

¢ Define node names
¢ Define service names
e Create model layout from MESA node library

o Define service logic definitions

Some of these steps are facilitated by MESA user interface extensions to Extend and some of
them are performed using Extend model creation actions. For example, double clicking the MESA
Model Manager button as shown in Figure 1 brings up the dialog panel shown in each half of
Figure 2
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Figure 2. Node and Service Editing Panels

From this panel, model nodes are named by clicking the Create a New Node... button and
completing the subsequent dialog. Similarly, you begin to define the set of services to be modeled
by first clicking the Services tab in the right side of Figure 2 to bring up the panel shown in the left
side of the figure and then clicking the Create a new Service... button and completing the
subsequent dialog for each service to include in the model.

You define MESA nodes and their interconnections by choosing items from the MESA ToolKit
library shown in Figure 3 and then linking them together by dragging the mouse from one item’s
input to another’s output. Each connection is shown as having two elements to capture both
incoming and outgoing message flow. In particular, the model shown in Figure 1 is primarily
composed of the Link (DB) and Node (DB) items found in the MESA Toolkit library. MESA
supports DB items with properties defined in database tables. A database inspector is available
for viewing and editing these properties — you double click the Database button in Figure 1 to see
this inspector.
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Figure 3. MESA Toolkit Library

Each named service is fully defined in its own MESA database table. For example: Figure 4
shows the table defining the FabricServiceActual service that models the provider’s implemented
service. A service in MESA is composed of a number of Action steps — FabricServiceActual is
defined in 6 steps. Each action step may involve reference to a number of values obtained from
the other columns in the service table. For example, the Value computed in the Equation column
of step 1 results in the request size parameter being set to this value (Userl + 100). In step 3, the
Value of the equation (logic partially hidden) is used to set the processing delay. Equation column
values allow computations to be defined and Value column values allow computation results to be
used either in the current step or in other steps.
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Additional information regarding the structure and usage of MESA is provided in subsequent
sections of this document.

3 Model Validation

We begin this section with some definitions of model validation from the literature. In particular,
we consider these quotes from the paper by Robert Sargent [1].

e “Model validation is usually defined to mean “substantiation that a computerized
model within its domain of applicability possesses a satisfactory range of accuracy
consistent with the intended application of the model” (Schlesinger et al. 1979 [2]).”

o “Arelated topic is model credibility. Model credibility is concerned with developing in
(potential) users the confidence they require in order to use a model and in the
information derived from that model.”

e “A model should be developed for a specific purpose (or application) and its validity
determined with respect to that purpose. If the purpose of a model is to answer a
variety of questions, the validity of the model needs to be determined with respect to
each question.”

e “A model is considered valid for a set of experimental conditions if the model’s
accuracy is within its acceptable range, which is the amount of accuracy required for
the model’s intended purpose. The amount of accuracy required should be specified
prior to starting the development of the model or very early in the model development
process.”

e “The substantiation that a model is valid, i.e., performing model verification and
validation, is generally considered to be a process and is usually part of the model
development process.”

As software engineers we find it useful to consider familiar software quality assurance (SQA)
practices and compare them to similar practices for ensuring model quality. SQA practices
include:

e Unit Testing

e Integration Testing (Better: Automated Continuous Integration)
e Acceptance Testing (by third party?)

e Usability/Behavioral Analysis Performed

e A test-driven (preferably automated) software development process — this is becoming an
accepted software development best-practice

What are equivalent indicators of Model Quality Assurance practices? Is validation analogous to
acceptance testing or integration testing? Can we describe a pattern for continuous model
validation? Can we make the analogy that “tests are to software as use cases are to validation”?
Can we define a model development process that captures the spirit and intent of test-driven
software development?

As the quotations from the Sargent paper indicate, models ought to be created to answer specific
guestions. Before considering this further, we identify two general purposes for models:

e Prediction
e Exploration

Models can be built to predict the behavior of the system being modeled or to explore the
behavior of the system being modeled. The general purpose of a model will likely affect its
construction. However, keep in mind that exploration and prediction are not exclusive. Exploratory
models can evolve into predictive models. Predictive models can be used to explore the systems



being modeled. In any case, it is helpful to know what is the main purpose of a model before its
construction begins.

Validation criteria for each kind of model are likely to be different. How well can the model user
explore a system? How well, and how accurately, can the model user predict the behavior of a
system? Questions leading to the construction of each kind of model will be different.

The questions that a model is meant to answer should be identified before building the model.
Questions should be clearly understood by model builders, model validators and model
customers (stakeholders). Of course, questions can be refined and the set of questions
expanded, over time. New and refined questions should be the primary drivers for model
evolution. Questions typically reflect whether the primary model purpose is prediction or
exploration.

Validation should be understood in relation to the identified questions. Moreover, the questions
can be used to derive model acceptance criteria. If acceptance criteria are well defined and
“testable”, validation can be as simple as checking whether a model satisfies stated acceptance
criteria. Models will either “pass” or “fail” with respect to such criteria.

Fundamentally, what are model acceptance criteria? Acceptance criteria are related to, but not
the same as, requirements. Acceptance criteria should be related to the questions that the model
is supposed to answer. What kinds of answers are expected? What are the expected qualities of
the answers? Acceptance criteria can be quantitative or qualitative. Quantitative acceptance
criteria include performance measures and benchmark results. They allow the model to be
compared to reality in a numeric way. Qualitative acceptance criteria focus on observing and
documenting behaviors and specific results.

One possibility is for the acceptance criteria to be expressed as use cases that express intents
and effects of one or more requirements. Model requirements in turn are developed based on the
set of questions. And a question can be treated as a mega-requirement (overarching
requirement) that inspires the creation of specific requirements that collectively allow a
determination that the model is able to answer the question.

Use cases are based on questions and requirements and are meant to determine how well the
model matches the system being modeled. One point of view on validation is to say that a model
is valid if it supports the representation of a set of use cases that come from the real world — what
the model is meant to capture. This support includes an accurate reflection of the use cases
through model components that represent identifiable and recognizable pieces of the real world.
Thus, when one use case is a simple modification of another, and the expectation exists that the
outcome of this use case is an expected variation of the outcome of the first use case, the model
should reflect this modified outcome.

Thus, a valid model is one that takes "near things to near things" (this phrase is due to a favorite
Math professor of the author) where nearness is understood in the real world context. If we
modify a use case, and observe a modified outcome in the real world, it should be the case that
the model's reflection of the modified use case has an expectedly modified outcome. The model
is predictive in this rather weak sense. It conforms to real world observations.

One caveat would be that since the model is an abstract representation, rather than a parallel
implementation, we always have the potential for use case outcomes in a model that diverge from
the real world. And as we've seen in the past, sometimes such divergence is a bug in our model,
sometimes it is a bug in the real world implementation, and sometimes it is neither (or both).

A related observation is that when use case modifications exhibit large shifts in observed real
world behavior (discontinuities of behavior — singularities to steal another math term), the model's
reflected use case modifications should ALSO exhibit these large shifts in modeled behavior. So
if there is a use case on which the real world system exhibits a breakdown (or tipping point to use
another current buzzword), we would expect the model's handling of the use case to also exhibit
a breakdown. But once again, a singularity in the real implementation or in the model, might
signal a bug in either the real system or the model of that system.



One kind of use case validation is to measure the length of time it takes to complete a task or
process in the real world and then compare the corresponding time reported by the model. In
particular for SOAs, Round Trip Time (RTT) is often used as a performance measure: how long it
takes for a request initiated by a service consumer to result in a response received from a service
provider. This point-of-view includes the expectation of measuring service request and response
RTTs in the context of a range of experimental conditions such as varying numbers of
simultaneous requests, large message sizes, or other increasingly stressful operational
conditions.

So, if the reality is that there is a "gradual rise" of RTT as the test bed tries to generate 10, 20, ...
N simultaneous requests in a real world implementation, we expect that the model should also
show a gradual rise. It is not necessary that the SAME rise be seen. Nor is it necessary to tinker
with the model to get the same rise — getting an expected rising behavior might be enough. This
might be enough to claim validity for this aspect of the models behavior.

As shown below, for some models and experimental conditions we have been able to quantify
whether measurements (specifically of RTT) made using a model of a real world situation
statistically match measurements taken under real world experimental conditions. As such, we
can quantify the validity of the model with respect to these measurements.

Validity is NOT a condition but a spectrum of conditions where we as model builders, and others
as model stakeholders, have to agree on where in that spectrum we expect the model to be as a
reflection of reality. It's up to us to look at some section of this spectrum and agree to try to
validate our models within this spectrum.

We believe it is useful to concentrate on use cases to drive our work on model validation. We
expect to see correct use case behaviors for the most part. And, if in the real world, varying use
cases in a controlled way leads to observed outcomes, then in the model world, varying the
model's reflection of those use cases should lead to modeled outcomes that conform to the real
world outcomes.

4 Important C2 Domain Constraints and Concerns

While the discussion of models and model validation that is presented in this paper remains at an
abstract, general level of applicability, the ARCES mission is to look for problems and situations
that are of direct and immediate relevance to C2, and in particular C2 on the edge. In the area of
SOA and network based systems there are two main concerns that ARCES wishes to address:

e Dynamic presence of consumer, provider and ESB nodes;
e Fragile and constrained network connectivity within the nodal fabric of nodes.

Computer systems and the services they provide are expected to come and go. Their availability
and reliability cannot be relied upon. It will be best if there are multiple service providers deployed
whose ability to provide information in response to consumer requests can seamlessly be
incorporated in the fabric so that the “best fit” provider can be contacted to respond to a
consumer request. What is best will depend on operational circumstances such as the network
bandwidth available between consumer and provider, the workload currently being handled by
the provider, and perhaps other contextual pieces of information.

We believe that the services and architecture of ESBs can be of direct benefit in enabling an
effective edge operational scenario. The ESB can help support a dynamic population of
consumers and providers that can discover and interact with one another. As each provider plugs
into the bus, other current members of the bus are informed of the presence and service offerings
available within the provider. When a provider un-plugs from the bus, the removal of its available
services is communicated.

We imagine a dynamic network with multiple ESB-based enclaves that share information about
each other in a federated manner. To support this federation, a Google-like indexing mechanism
is available to allow consumers within one enclave to discover available service providers in



another enclave. Each ESB is aware of its own network context and the network conditions that
apply between different enclaves and routes consumer requests to the provider best able to
provide the needed information in a timely manner. As necessary, messages to be exchanged
are compressed and decompressed automatically on either side of a constrained network
between ESBs.

ARCES plans to address many of the problems and opportunities that this imagined view
suggests. So far, we have concentrated on interconnecting a set of ESBs, each of which supports
multiple consumers and providers. Our detailed modeling to-date has focused on the effective
use of compression technologies when constrained network conditions are known to apply.
Recently ARCES has begun to model the general discovery problem and how best to support
discovery under edge conditions. A preliminary conceptual model under development is
described in section 7.

5 ARCES Compression ESB Fabric Model

Figure 5 (a copy of Figure 1) illustrates the model topology for the Compression ESB Fabric
model we built to explore some SOA behaviors and the ability to improve component and
message flow performance. The model shows families of consumer, provider and ESB nodes
clustered in a fabric. A consumer node is the source of information (service) requests that are
ultimately handled by a provider node. An ESB node will act as a broker/proxy for a consumer to
help it locate a provider of a desired service and route the consumer’s request to an available
provider. In addition, the model includes a number of WAN (Wide Area Network) nodes that
represent the multiple network hops that are part of the fabric. The model includes a MESA link
object that separates the “A” and “B” families of nodes from the “C” family (the C family does not
include a consumer in the current version).
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Figure 5. Compression ESB Fabric Model



Double clicking the link object between WAN_0 and WAN _3 produces the dialog box shown in
the left side of Figure 6. Clicking the Select Button can set link characteristics for each direction.
As shown, the properties of each link are set to be 19200ARCES. Clicking the View or Edit
Current Link properties opens the model database view of the Link Properties table as shown in
the right side of the figure.
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Figure 6. Link Adjustments and Properties

You can make changes to the link properties of each of the named links by editing them in this
table view. Of particular interest are the settings for the Bandwidth of the link and the latency of
the link. This link object allows the model to support experimentation with constrained network
conditions in the fabric. One approach for handling messages, including service requests and
responses, over a constrained link is to apply compression to the message before it is sent. One
of the main goals of the model is to investigate under what conditions compression is meaningful
and efficient with respect to the goal of improving message transfer over the link.

MESA uses databases to store essential SOA properties but MESA service action patterns are
not able to read and write to database tables during model execution. Instead, the global array
feature of the Extend product is used for model run-time information that needs to be shared
across the blocks in the model. These arrays are indicated in Figure 5 by the globe icons in the
upper right of the display. Compression characteristics are stored in the Compress Table global
array. This table is actually initialized from an Excel worksheet that can be cut-and-pasted into
MESA. Sample contents for such a worksheet are illustrated in Figure 7.

Ca time to  time to Provider Mean Proxy Mean Pass Through Compress Proxy Compress Pass
midpoint compressed % compress decompress Delay Delay Mean Delay  Mean Delay Through Mean Delay
500 0.5 62 81 4 160 160 15 15
5000 0.27 40 40 4 150 150 15 15
50000 0.15 60 60 100 2500 2500 560 SB0
175000 0.11 150 150 280 8000 8000 1000 1000
1000000 0.24 2000 2000 2000 130000 130000 55000 55000

Figure 7. Compression Table Statistics

There are 5 rows and 9 columns in this table. Column 1 is a midpoint value (in bytes) for a
specific message size range. For example, 500 is the midpoint between 0 and 1000 bytes, 5000
is the midpoint between 0 and 10000 bytes, etc. Each midpoint is used in a compression
calculation within the model. The second column is a percentage reduction achieved by
compression for messages with a size in the range designated by the midpoint. For example,
messages with sizes above 10000 bytes but below 100000 bytes will have a compressed size of
0.15 x the message size. The next two columns represent the processing effort to perform
compression and decompression for messages with sizes in the range specified by the midpoint.
Each number is understood to be MESA Benchmark Units (BU’s) value. For a MESA node
identified as a Default Server, which has a benchmark rating of 1000 Benchmark Units Per
Second (BUPS), these numbers translate to milliseconds of processor time required to complete
the corresponding effect. For example, for a message of size 50000 bytes being compressed on
a standard MESA processor, it takes 60 milliseconds to compress the message and 60
milliseconds to decompress it.



The other five columns represent processing delays that are implemented in the model. Each is
an average (mean) delay and there are some probabilistic effects that vary the actual values
applied on a per message basis. There is a delay for the provider, and a pair of proxy and pass-
through delays corresponding to the effort spent by the ESB node on each side of the constrained
link to process the message as it is forwarded from consumer to provider and back again. When
compression is applied, there is one pair of delays, identified as the Compress Delays in Figure 7
in the last two columns, which apply when the message is being compressed and decompressed
on each side of the link. The other delay values apply when the message is not being
compressed. Since transmission over the link is expected to be significantly higher when there is
no compression, the compress delays are much smaller than the non-compression delays.

The compression statistics represented in this table are taken from actual compression
measurements compiled by a member of the ARCES team. The delays values are based on
measurements made in the lab.

The next two figures: Figure 8 and Figure 9 show a user interface, implemented using Extend, to
allow the user to select model configuration items and observe model run-time results The user
interface elements for the benchmarking consumer associated with the Alpha ESB and the
distribution-based consumer associated with the Bravo ESB are grouped together — there is a
thin blue line marking where each portion begins. The same statistics-reporting features support
each consumer: tables, statistical summaries and plots. More importantly, each consumer’s
processing of requests and responses is now affected by request and response size settings as
well as whether or not compression is applied to messages as they are processed within the
fabric. We will see examples of how changes to these settings affect message flow below. The
main difference between each section of the model is the means by which requests are
generated for nodes in the model to process. The Alpha consumer is aimed at exploring request
loads — numbers of simultaneous requests — whereas the Bravo consumer injects requests based
on inter-arrival time distributions.
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Figure 8. Model Notebook for Benchmark Consumer

The ovals on each figure show where the model user can set up important aspects of the model
prior to execution. You can define request and response sizes, whether a message is



compressed as part of its processing, and either how many simultaneous requests should be
generated (Figure 8) or how requests arrive for handing by the model (Figure 9).
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Figure 9. Model Notebook for Distribution Consumer

The next several figures will document 4 separate model runs for the Aqualogic calibrated model
for a sample request and response message size (59800 bytes — this corresponds to an actual
file used in the lab environment for testing AqualLogic and the Apache ServiceMix ESB product),
with and without compression applied to the messages, and with different Link object settings,
one representing a low bandwidth connection (modem speed: 56.2 kilobits per second) and one
representing a normal wired network connection. The consumer is modeled to generate a new
request as soon as a response is received to the previous request — the number of simultaneous
requests is set to 1.

Each of the model runs represent 6 minutes of actual AqualLogic model processing. The figure
captions identify which set of model runtime conditions were used to generate the data shown in
the figure. For example, Figure 10 documents a model run for the low bandwidth connection,
where messages are compressed. Over the 6-minute run, 90 request/response roundtrips were
processed with an average roundtrip time (RTT) of approximately 4 seconds. This figure can be
compared to Figure 11 that documents a similar simulation except that compression is off. Under
this constraint, only 15 roundtrips complete in the 6 minute run with an average RTT of
approximately 23 seconds. Thus, end-to-end, compression results in an overall five-fold increase
in performance compared to the no compression case over the runtime that the model simulates.
Comparing how well compression aids message throughput in the lab installation of AqualLogic
can then be used to validate such an increase in performance. This comparison is documented in
the next section of the paper.
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Figure 11. AqualLogic Low Bandwidth No Compression

Figure 12 and Figure 13 document the analogous Aqualogic model runs — same message sizes
and simulated runtime — where the link properties have been changed to simulate a normal
Ethernet network connection. Notice that the model runs show that adding compression to the
message exchange path actually reduces the number of roundtrips processed and increases



roundtrip time. This is because the model accounts for the processing time to compress and
decompress the message and, for fast connections, this extra processing overhead negates the
benefits that compression provides in reducing the size of the payload.
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Figure 12. AqualLogic Normal Bandwidth With Compression

The model runs report that when compression is applied, the average RTT is around 410
milliseconds with 881 complete roundtrips reported. Without compression, the average RTT is
reduced to around 160 milliseconds with the total number of message roundtrips reported as
2221. For the high bandwidth case, delays associated with compression are significant — the
roundtrip time is more than doubled.

The ARCES Test Report CDRL, submitted to ESC, reports in significant detail many more test
runs for various message sizes, link conditions, and compression settings. By running companion
experiments in the lab and comparing the results with related model simulation runs, we are
working to determine how accurate the model is: how well it matches observed behavior and if it
eventually can be used to predict real world behaviors. In addition, the lab experiments can help
calibrate the model by providing target runtime statistics that are used to adjust model
parameters.



Al luisiui - EorpressinnEsuFa s e

Request Success Probabilities Request Distribution

P Request Load
\alue Frobabiity 4 | Consumer S o Al Probabiy _ « | 7: FabricRequest ¥ =
] 7 TE 4 Snedont o) H B Lncalsgent Pool Size |10000
- v +1_|  Success Control 1: Timeout 1 g J 5 . :l
2 7 B Dﬁ"‘ 2: Not Availzble 4 = 13: NoFabricRequest  Simultaneous Requests |1
3 Consumer 3 equests |1
4 hd | = mins 4 L| Compress? E‘ Beve, : !
| D Timeout | J 1. Yes "
L) Al By = yuests 7i7e
Request Size |59800 Response Size 59300 _—
Roundirip  Response Consumer Statistics
Completed Request Trace Thread ID Time Code Local Request Fahric Re No Fabric Request
Aeriwlimin) Priorit Service Thread Hapsedime _ MizcResut | Rountrip Average | 0162069720076
o 872172006 12:05 A FabricProxyReq 20060 0.10206 mw |
il £/21/2006 12:05 A FabricProxy Reg 2007 .0 0055957 200.00 - Roundtrip Std Dev. |0 0102507415911
2 872172006 12:05 A FabricProxy Req 20080 016296 200.00
B 8/21/2006 12:05 A FabricProxyReq  Z009.0 0.31605 20000 Humber of Requests | 7371
n 2/21/2006 12:05 A FabricProxyfeg 20100 0082057 200.00 y
5 2/21/2006 12:05 A FabricProxy Req 20110 0.33796 200.00 Roundtrip Max 0.7499562
& 8/21/2006 12:05 A FabricProxyReq 20120 0.12796 20000
7 8/21/2006 12:05 A FabricProxyfeg 20130 032308 200.00 Rounddtrip Min 0.0253568
i 872172006 12:05 A FabricProxy Req 20140 025296 200.00
H /2172006 12:05 A FabricProxyReq 20150 0.093057 20000 =
10 2/21/2006 12:05 A FabricFroxyfeg 20160 0.095057 200.00 -| Settl n g s an d Data
Request RTT Graph Alpha ESB Consumer
253 Y G S PN
R, (“CS)D Jipha Consumer RTT Flot
[
0.6
0.5 . .
0.4, T _- s s 3 -
03 X w =t '.
ond o "_ ", 'l
0.2 d .E, R.-t = qﬂ"._, , O
rwf:'ab “ﬁ --kw!* mﬁﬁ
] 225 376 5.16 &
ol RTT — fabric RTT o foFabris BT cee NumMpeSEstedTat

Figure 13. AqualLogic Normal Bandwidth No Compression

6 Validating the ESB Fabric and Compression Model

The next four figures document partial tabulated results comparing our AqualLogic model runs
under low bandwidth conditions to AqualLogic execution results as reported in the lab. Both tables
and graphs help us document the comparison. We collect raw data in the lab and analogous raw
data from the model runs. We then use Excel to generate various. Each experiment and model
run was performed a number of times (usually 4 repetitions) and the separate data averaged into
a single RTT estimate. We also compute the average throughput (number of completed message
roundtrips per minute) since the model and lab runtimes were different for the various message
sizes. Figure 14 and Figure 16 show data comparison tables for the low bandwidth cases, with
and without compression. These tables show 5 different message size samples and computed
RTT and average throughput measured in requests per minute. The top table shows data
generated in the lab and the bottom table shows data collected in the model.

Message Size File Hame Uncompressed Size (KB) Avy. RTT AVG Throughput (requests'minute]
OKE - 1B classT.xml 0.7 442 134.33
1B - 10KB class2. xml (io.xml) 4.3 543 109.50

10KEB-100KE clagsd. xml {foxpro.xml) 298 3941 18.21

100KB-214KB classd sl (progress. xml) 173.2 8173 7.33
1ME - BMB classh.xml factbook. xml) 4124 392467 0.16

Message Size File Name Uncompressed Size (KB) Avy. RTT AVG Throughput {requests/minute)
OKE - 1KB clagsl.xml 0.7 440 136.13
1KB - 10KE clagsZ wml fio.xrnl) 43 540 110.88

10KEB-100KE classd xml foxproxml 5938 3340 15.13

100KB-214KE classd xml (progress. xml) 173.2 321 728
1MB - BMB classh.xml (factbook.xml) 4,124 397229 0.15

Figure 14. Model Vs. Lab Compressed Data Comparison

Figure 15 and Figure 17 show the average RTT's graphed next to each other with the model data
shown in red and the lab data shown in blue. The RTT values are in milliseconds and the scale
on the vertical axis is logarithmic to allow the widely differing roundtrip average times for each



message size category to be displayed on the same graph. Note however that the logarithmic

scale can make the bar heights appear to be identical for each message size.
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Figure 15. Model Vs. Lab Compressed Data RTT

Message Size File Name Uncompressed Size (KB) Avy. RTT AVG Throughput (requests/minute])
OKE - 1B classl.xml 0.7 555 107.83
1B - 10KB class2. xml (. xml) 43 1537 39.28
10KEB-100KE classd xml foxpro.xml) 598 2XA3 279
100KE-214KE classd. xml (progress. xml) 173.2 B3565 1.00
1ME - BMB classh. xml factbook xml) 4,124 1518644 0.04
Message Size File Name Uncompressed Size (KB) Avy. RTT AVG Throughput {requests/minute)
OKE - 1KB clagsl.xml 0.7 555 107.63
1KB - 10KB class2 uml (io.xml) 4.3 1544 38.63
10KB-100KB class3.sml (foxpro.xmi) 59.8 22038 263
100KE-214KE classd wml (progress. xml) 173.2 B3667 0.92
1MBE - BMB classh. xml factbook. xml) 4124 1452570 0.04

Figure 16. Model Vs. Lab Uncompressed Data Comparison
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Figure 17. Model Vs. Lab Uncompressed Data RTT

In most cases, the data produced in the lab and the data produced by running the model show
significant agreement. Recently, ARCES invited Dr. Averill Law [3], well-known author and
consultant on simulation modeling and analysis, to review our experimental methods and
reported results. He suggested that we take our replicated experiments, compute the difference in
means for each replication, and generate a confidence interval for this difference as an estimate
of the actual difference between reported lab and model RTT results. By doing this we can
statistically report how close the two methods of benchmark generation are to one another. In
particular, if the number 0 is in the confidence interval, we can assert that the model is a fair and
accurate measure of the data generated in the lab.

The next four figures summarize our statistically based comparison results. We provide tabular
reports of the difference in means for each lab and model run, the computed average difference
(the last column) and the generated 95% confidence interval. Then the confidence intervals for
the four smaller message sizes are shown graphically. The difference in scale for the largest
message RTT makes showing confidence intervals for all five message size categories on the
same chart problematic. Figure 18 and Figure 19 report our results for the low bandwidth, with
compression comparison.

Model and Lab Comparision
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Figure 18. Difference in Means, Low Bandwidth, Compressed Messages
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Figure 19. 95% Confidence Intervals, Low Bandwidth, Compressed Data

For the two smallest message size categories in the compressed data analysis, the width of the
confidence interval for the difference in means is very small, yet 0 is contained in the interval. For
all of the other message sizes, the width of the confidence interval is larger but still comfortably

contains 0.

The next two figures summarize the same statistical analysis for the low bandwidth, no
compression comparison. Once again, the confidence intervals are larger for the three largest
message size categories but all of them include 0. Only the four smaller message size intervals
are shown in Figure 21, once again for reasons of scale.

Model and Lab Comparision

STEP 1

Difference between the Labh and M.

del Avg. RTT (ms)
3

Message Size File Name Uncompressed Size (KB) 1 2 4 Avg Difference RTT
OKE - 1KB class 1. xml 0.7 5 9 -8 -8 0
1KB - 10KB class2.xrml (io.xml) 43 -1 2 a -20 -7
10KEB-100KB classd xml foxpro.xmi) 59.8 499 609 233 695 205
100KE-214KE classd xml {progress. xml) 1732 1740 803 -2348 -592 -99
1MB - BMB classh il (facthook swml) 4124 -51115 85623 o3z -42324 25674
STEP 2
M ge Size Confid Interval (Cl) | Awvg. Difference RTT-Cl |Avy. Difference RTT Avy. Difference RTT+Cl
OKE - 1KB 1438 -14.64 0 14.12
1KE - 10KB 1648 -23.80 -7 9.15
10KEB-100KB 913.57 -708.91 205 1118.23
100KE-214KE 2830.81 -2930.06 -93 273156
1ME - 8MB 134084 .55 -108410.54 25674 189758.56

Figure 20. Difference in Means, Low Bandwidth, Uncompressed Messages
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Figure 21. 95% Confidence Intervals, Low Bandwidth, Uncompressed Data

7 ARCES C2 Service Discovery Model

This is a placeholder for final version — actual text to be included as part of final paper submission
by April ICCRTS deadline. This is still a work-in-progress.



Simplified Web Service Discovery Diagram
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Figure 22. Conceptual Service Discovery Model

8 Conclusions

Based on the results reported on in sections 2 through 7 of this paper, we can make the following
conclusions:

1. There are significant advantages to having the means to define SOA architectural models
supporting C2 contexts and scenarios.

2. MESA/Extend provides a powerful and appropriate modeling technology to create,
execute and evaluate such SOA architectural models.

3. MESA's ability to separate a model topology from model service semantics provides
useful opportunities to independently alter service definitions and node arrangements
when experimenting with a SOA fabric.

4. SOA models should be built based on specific questions whose answers will help model
users to understand, explore and measure SOAs.

5. Use cases can serve as a rich elaboration of specific questions and be the basis for
model validation.



Real world data compression statistics and measurements can help provide additional
realism in model execution.

The same model topology and general service characteristics can serve as the basis for
specialized models reflecting particular ESB behaviors and performance characteristics
when combined with model support for message sizes and communication channel
characteristics.

It is possible to calibrate the models for different types of ESBs (Aqualogic and
ServiceMix) to get statistically validated performance data when simulated requests and
responses are generated in the model that approximate the actual processing of requests
and responses in the lab between instances of real ESB installations.

In order to allow the model to be tuned to have acceptably close correspondence to
performance measurements made in the lab, it was necessary to insert parametric
effects into the model so that model processing delays are adjusted based on message
size, communication link characteristics, and ESB type.
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