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Abstract 

 
We have argued that the success of Net-Centric Operations and Warfare (NCOW) de-
pends upon the ability of net-centric environment (NCE) users—both human and auto-
mated—to readily discover useful information and Web-based services. Effective discov-
ery requires, in turn, effective meta-data “tagging.” It was argued that no single, over-
arching classification scheme is adequate to provide the semantic support required for the 
successful deployment of such core enterprise services as discovery, collaboration, me-
diation, and storage. What was needed was a way to support multiple taxonomies with 
automatic taxonomy evolution using machine learning and intelligent agent technology. 
In this paper we analyze the underlying reasons for this claim and show that what is 
really needed is a way to allow multiple ontologies (along with their taxonomic corre-
lates) with cross-domain (i.e., inter-ontology) resolution (translation) to coexist in a net-
centric environment. After surveying some apparent theoretical limits to ontology com-
mensurability, we describe a conceptual framework that is sufficient to enable informa-
tion and Web-services interoperability for command and control NCE. We compare this 
framework to current semantic web approaches to show what our framework contributes. 
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1. Introduction 

It should be apparent that the success of Net-Centric Operations and Warfare (NCOW) 

depends upon the ability of net-centric environment (NCE) users—both human and 

automated—to readily discover and then use relevant information and Web-based ser-

vices. Minimally, discovery requires the effective “tagging” of the information and Web 

services that are being offered for sharing. Tagging is just another name for cataloging or 

classifying information or Web services to allow them to be found more easily. We ar-

gued in an earlier paper [1] that no single, overarching classification scheme was likely to 

be fully adequate for the effective discovery of core enterprise services or information. 

What was needed, we suggested, was a way to support multiple classification schemes, 

ideally with the suitability of each classification scheme to be evolved automatically by 

intelligent software agents. In this paper we recap the underlying reasons for the need for 

multiple classification schemes—multi-faceted classification—and then argue that what 

is really needed is a way to allow multiple ontologies (along with their taxonomic corre-

lates) with cross-domain (i.e., inter-ontology) resolution (translation) to coexist in a net-

centric environment. After surveying some apparent theoretical limits to ontology com-

mensurability, we describe a conceptual framework that is sufficient to enable informa-

tion and Web-services interoperability for command and control NCE. We compare this 

framework to current semantic web approaches to show what our framework contributes. 
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2. The Problem 

Why do we need multi-faceted classification? The simplest and most compelling reason 

is that the Department of Defense (DoD) will never be able to enforce the use throughout 

the enterprise of an information and services “tagging” standard (i.e., a single classifica-

tion scheme)—even if a reasonably good standard could be devised. The argument is 

straightforward. The military Services, the Office of the Secretary of Defense, the sup-

porting and unified combatant commands—i.e., the components of the DoD enterprise—

all have different responsibilities and different ways (functions) of meeting those respon-

sibilities. Even when a function is common among the different uniformed Services, the 

particular way in which the function is performed usually differs between DoD compo-

nents. And there are simply cultural differences that will never be fully resolved. (For 

reasons which are sketched below, it is not obvious that a single classification scheme 

sufficient to encompass all of the multifarious kinds of information and information ser-

vices regularly used throughout DoD is even possible. The necessary conceptual tools are 

just not available.)  

First some theoretical background. What exactly is the problem we are trying to solve? 

President Lincoln used to ask, “If you call a tail a leg, how many legs does a dog have? 

Four! Calling a tail a leg doesn’t make it a leg.” But a dog’s leg can be called a “leg.” It 

might also be called a “canine locomotive appendage”—or simply a CLA, in DoD acro-

nymese. If the Air Force calls a dog’s leg a “leg,” and the Army calls it a “CLA,” and 

each Service says they have so many legs and CLAs stockpiled, how are we to assess the 

Army’s capabilities vis-à-vis those of the Air Force, if we don’t know that the two con-

cepts are really equivalent? Simply put, how can we determine (without asking or con-

sulting a Service-specific lexicon) that the Air Force’s “leg” and the Army’s “CLA” refer 

to the same thing? More generally, how are we to determine the semantic equivalence of 

two syntactically distinct concepts?1 Conversely, how are we determine the semantic 

non-equivalence of two syntactically equivalent concepts (e.g., “tank” (qua container) 

                                                 
1 The two names of the concepts in our example (“leg” and “CLA”) differ syntactically (i.e., orthographi-

cally). By hypothesis, they are equivalent semantically (i.e., they refer to the same things and, when 
properly understood, have roughly the same connotation).   
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and “tank” (qua armored attack vehicle))?2 In terms of net-centric command and control, 

how are authorized users of the Global Information Grid (GIG) to “discover” the number 

of tanks (armored vehicles) allocated to the 1st Infantry Division and on-hand and fully 

operational at a certain time? How will the Global Directory Service (GDS)3 enable a 

GIG user, with the proper security credentials and “need to know,” find such informa-

tion? Is the “meta-data” prescribed to be specified and published in a meta-data registry 

or catalog per the DoD Net-Centric Data Strategy4 really sufficient to locate needed in-

formation (or relevant services, as the case may be)? 

As we argued in [1], a Google™-like search is often ineffective, especially if the search is 

to be automated. A recent Google™ search for “tank” returned 122,000,000 results. 

Searching for “tank” and “military,” Google™ returns about 8,420,000 results. To make 

Google™ and similar Internet search engines more useful, humans intuitively refine the 

search process by including terms that confine the search to the appropriate domain. The 

online version of WordNet®—which, by the way, gives five definitions for the noun 

form of “tank”5—has military as one of five domain categories applicable to “tank” 

when defined as “an enclosed armored military vehicle; has a cannon and moves on cat-

erpillar treads.” A domain category in WordNet® is a topical classification. In other 

words, WordNet® makes explicit the mechanism humans rely upon intuitively in disam-

biguating terms and fixing their meaning. Ultimately, it’s the linguistic context in which a 

term is used that determines its meaning, or, as Wittgenstein famously put it, “the mean-

ing of a word is its use in the language.”6 The meaning of a term emerges from and is 

                                                 
2 This is not a silly intellectual exercise. A few years ago the US Air Force, Navy, and Marines each had 

different definitions—with significant implications in terms of readiness reporting—for “available full-
up round” of the AIM-9 missile. The definitional differences turned on the Services’ assignment of dif-
ferent values to “time to assemble, time to bench-check as serviceable, and time to make ready for 
immediate load-out.” 

3 The GDS is one of the Defense Information Systems Agency’s  (DISA) Net-Centric Enterprise Services 
(Core Services). It purportedly “[p]rovides an enterprise-wide service for [the] identification [of] and 
other pertinent information about people, objects and resources, and makes it accessible from any place 
at any time (http://www.disa.mil/main/prodsol/1_enterprise.html).” 

4 http://www.dod.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
5 http://wordnet.princeton.edu/perl/webwn
6 Wittgenstein, Ludwig, Philosophical Investigations, §43. (This view is not—as with any philosophical 

issue—without considerable controversy. For our purposes it nicely sloganizes our view that for any 
formal data modeling effort to be useful for automatic knowledge discovery, contextual features—
entity attributes, their domains, and importantly their interrelationships—must be well formed and eas-
ily “navigated.”) 
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dependent upon the way it is used in the language and by a community of language users. 

This reference to and need for language user communities is reflected in DoD’s Commu-

nities of Interest (COI) approach to implementing its net-centric data strategy.7 Indeed, 

one role of a DoD COI is to “define COI-specific vocabularies and taxonomies,” vocabu-

laries “to improve data exchange within COI and among COIs” and taxonomies “to im-

prove precision discovery.” Both the theoretical and practical problems inherent in this 

latter are the focus of this paper and to which we now turn. 

3. Theoretical Issues in Information Discovery 

First, a few (stipulative) definitions. The terms “ontologies,” “taxonomies,” “vocabular-

ies,” “meta-data,” etcetera have become the DoD buzz-words du jour. They are not al-

ways used consistently or coherently. In philosophy, ontology is the study of being, per 

se.8 In computer and information science (and in DoD), an ontology is an account of the 

things (objects, entities) of interest (in a domain of interest). The account specifies the 

things (that exist or comprise the domain), as well as their attributes (properties) and the 

relations9 that obtain between the things of the domain. It’s typical to think of ontologies 

as consisting of both individual existing things (individuals or instances) and the concepts 

that characterize them. Person is a concept; Dave Alberts is an individual person, an in-

stance of the concept person, as it were. A taxonomy is that which you get by selecting 

all of the concepts of an ontology that are related by (something like) a “is-a-(kind of)” 

relation and then documenting the results in a way that preserves the “is-a” relation of the 

ontology. A taxonomy is just a handy “is-a”-based classification. A good taxonomy will 

also be one in which all of the X’s that “are-a-kind-of” Y are mutually exclusive (the sub-

domain X’s do not overlap) and collectively exhaustive (there aren’t any Z’s to be found 

                                                 
7 See, for example, Todd, Michael, “Implementing the Net Centric Data Strategy using Communities of 

Interest,” October 20, 2005, 
http://colab.cim3.net/file/work/caf/resources/10_20_05/DRM_COI_Net_CentricDataStrategy_Todd_2
005_10_20.ppt#612,1,Transforming the Way the DoD Manages Data    Implementing the  Net Centric 
Data Strategy using Communities of Interest, for one of many discussions of the critical role that COIs 
are intended to play in the net-centricity information environment. 

8 An excellent discussion of the differences (and similarities) between philosophical ontology and computer 
science ontology can be found in Smith, Barry, “Ontology and Information Systems,” 
http://ontology.buffalo.edu/ontology(PIC).pdf.  

9 A (dyadic) relation (e.g., “X is the daughter of Y”) can be also viewed as an attribute (“is the daughter of 
Y”) of X, reducing the definitional machinery to just things and their attributes. 
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(that “are-a-kind-of” Y) that aren’t among the X’s). Ideally, every information system on-

tology will exhibit a good taxonomy. A vocabulary is an account of both the language 

used to give an account of an ontology and its imbedded taxonomy (for example, the 

terms “concept,” “entity,” “attribute,” “relation”) as well as of the ontology itself (that is, 

of the things that actually comprise the domain of interest). In a genuine sense, a vocabu-

lary is meta-data.10 It describes what language (data) is used within a domain of interest 

by mentioning that language. It’s basically a more human-accessible form of what we 

now call an ontology, with or without a taxonomy. The central issue of this paper is how 

to effect ontology resolution when searching for information (or services) outside of 

one’s COI. By “ontology resolution” we mean the (partial) alignment of two distinct on-

tologies in order to facilitate information (or services) discovery within a COI other than 

one’s own. Each ontology provides the context necessary to verify the presence or ab-

sence of the sought for information. One can infer safely by analogy that if “tank” is-a 

“armored combat vehicle” within one’s own COI, say COIA, and a-kind-of “military 

weapon” in another’s COI (COIB), then the two concepts are likely to be the same; how-

ever, if “tank” appears as a-kind-of “freight car” in still another COI (COIC), then the two 

concepts are most likely distinct. This simple example is illustrated in Figure 1. 

                                                 
10 “Data about data” is the customary formula. “Meta” is Greek for “after.” (Metaphysics came by its name 

because the “book” in which Aristotle wrote of things metaphysical (and ontological) was physically 
placed after  his “book” on physics in a collected edition.) In logic (or in any formal discipline) it’s al-
ways important to bear in mind the distinction between the object language (the language being rea-
soned about) and the meta-language, the language in which the reasoning (about the object language) 
is carried out. The Knight in Lewis Carroll’s Alice Through the Looking Glass, used Alice’s ignorance 
of this “use-mention” distinction to thoroughly befuddle poor Alice. Remember too that meta-data is 
also data and can be talked about using meta-meta-data (meta-(meta-data)), ad infinitum. 
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Figure 1.  Discovery via Ontology Resolution 

Figure 1 depicts a fragment of three COI ontologies. The concept tank is equivalent in all 

three. But on the assumption that the two relations “is-a” and “a-kind-of” are semanti-

cally equivalent (or nearly so) and that the concept “armored combat vehicle” is qualita-

tively closer (in the ontological space that subsumes all three ontologies) to “military ve-

hicle” than it is to “freight car,” the tanks of COIs A and B are “equivalent” but the tanks 

of COIs A and C (and of B and C) are “distinct.” It is just this kind of reasoning that has 

to become automated if a net-centric GIG is to fully live up to our expectations. 

While we’ve been framing the discussion in terms of information (and information ser-

vices) discovery, the information exchange issue faces the same problem. For example, 

the Joint Command, Control, and Consultative Information Exchange Data Model 

(JC3IEDM) [7] is a key element of the Multilateral Interoperability Programme (MIP), a 

26 nation effort under the aegis of NATO, with the objective of achieving international 

interoperability of command and control information systems.11 The JC3IEDM is “in-

tended to represent the core of the data identified for exchange across multiple functional 

areas…. [I]t lays down a common approach to describing the information to be ex-
                                                 
11 See http://www.mip-site.org/010_Public_Home_News.htm.  
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changed in a command and control (C2) environment.” DoD’s Universal Joint Task List 

(UJTL) [8] is a warfighting mission area-focused “menu of tasks in a command language, 

which serve[s] as the foundation for capabilities-based planning across the range of mili-

tary operations.”12

Both the JC3IEDM and the UJTL have a concept of terrain as illustrated in Figure 2. Be-

tween the seven types of terrain in the UJTL and the five specific types available in the 

JC3IEDM, only one (“mountainous”) is common (on a syntactic basis). (The definitions 

provided in the JC3IEDM documentation add little but obvious synonymity by way of 

explication. “Flat,” for example, is defined as “terrain…characterized as broadly level.”) 

Are the two concepts—UJTL terrain and JC3IEDM terrain—equivalent, even roughly? 

How would we decide? How would we represent terrain information, generated on the 

basis of the UJTL ontology, for exchange via the JC3IEDM to a coalition partner? And 

could this ever be done automatically? Actually, the situation is a little more complicated. 

The UJTL actually provides additional and rather robust ways to characterize terrain, and 

terrain is only one of four major facets used to classify land. (The other three are geologi-

cal features; man-made terrain features, that includes urbanization; and landlocked wa-

ters.) The UJTL descriptors for terrain listed in Figure 2 are only “general characteristics 

of land areas.” Additional features include terrain relief, terrain elevation, terrain slope, 

terrain firmness, terrain traction, vegetation, and terrain relief features. These features 

(attributes), along with their allowable values, need to be compared with the analogous  

                                                 
12 CJCSM 3500.04D, August 2005, directive current as of 17 August 2006, 

http://www.dtic.mil/cjcs_directives/cdata/unlimit/m350004.pdf.  
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JC3IEDM
OBJECT-TYPE

FACILITY
MATERIEL
ORGANISATION
PERSON
FEATURE

CONTROL-FEATURE-TYPE
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Flat
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Mountainous
Undulating
Urban
Not known
Not otherwise specified

geographic-feature-terrain-code

UJTL
Conditions for Joint Tasks

Physical Environment

Military Environment

Civil Environment

Land

Sea

Air

Space

Terrain

Mountainous

Peidmont

Steppe (pampas, plains, savanna,
veldt)

Desert

Delta (river systems, lakes regions)

Arctic

Jungle

x

y
= “y is a (kind of) x”

 

Figure 2. Terrain in the UJTL and JC3IEDM Ontologies 

geographic features (and accompanying codes) in the JC3IEDM. In addition to the al-

ready mentioned geographic-feature-terrain-code, the JC3IEDM  can represent a geo-

graphic feature in term of bottom-hardness, solid-surface-composition, status-category 

(liquid-body, liquid-surface, solid-surface), status-surface-recirculation-indicator (will or 

will not recirculate as a result of rotor downwash), surface-category, type-category, and 

type-subcategory. These attributes are defined generically as “terrain characteristics to 

which military significance is attached.” 

With this brief survey of some of the fundamental issues in terms of ontology resolution 

that underlie—and threaten to obviate—effective discovery and information exchange in 

a net-centric environment, it is time to look at possible solutions. 

4. Ontology Resolution: One Approach 

One such possible solution to what we are calling ontology resolution is a tool developed 

by John Li of Teknowledge Corporation. His Lexicon-based Ontology Mapping tool—

LOM for short—matches terms between source and target ontologies and assigns an 

alignment confidence rating, a number between 0 and 1, to each putative match [3]. Li’s 
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work uses the Suggested Upper Merged Ontology (SUMO) [4] and its descendant, Mid-

Level Ontology (MILO) [5], as its context bases. It also uses the WordNet® [6] for syno-

nym discovery and comparison. Using these resources LOM has achieved precision and 

recall rates of 71% and 57%, respectively. This kind of performance makes it well suited 

to what Li calls “first-cut” comparisons, part of a scenario in which LOM identifies likely 

matches for subsequent human verification.  

LOM demonstrates the feasibility of automatically resolving term equivalence across on-

tologies. But with only a 71% precision rate, this technology is not (yet) practical for 

daily application in an environment as large as the NCE.  

In what follows we extend Li’s approach by considering only those ontologies that are 

related to command and control. We do so by discarding SUMO and MILO as context, 

using instead the ontology that informs JC3IEDM. We hypothesize that a domain-

specific ontology is likely to yield better performance in ontology resolution than the 

general-purpose ontologies of SUMO and MILO, at least with respect to the domain of 

primary interest, C2. 

This remainder of this paper is organized as follows. Section 5 presents an overview of 

Li’s approach. Section 6 presents our extensions to Li’s work. Section 7 covers the 

framework in which our approach might be used. Section 8 summarizes our findings. 

5. An Overview of Li’s Approach 

Li, like most researchers in the area, assumes that information is captured in an ontology. 

He assumes an ontology is represented in a formal language that gives precise meaning to 

kinds of terms and the relationships between them. As is appropriate to semantic web and 

NCE research, he uses ontologies formally represented in the Web Ontology Language 

(OWL) [2]. This provides, among other things: 

• A hierarchical class model 

• Properties of and relations between classes 

• Individuals, each of which is a member of one or more classes 

 10 



LOM takes as input a source ontology and a target ontology, both represented in OWL. 

The tool’s output is a list of the “terms” of the source ontology that “match” terms of the 

target. A “term” here is, roughly, the name of a class, a property or relation, or an indi-

vidual. 

LOM uses a four-step algorithm: 

1. Match whole terms. In this step LOM looks for matching names. If both ontolo-

gies contain a term with the same name, these terms are considered to match. The 

whole-term-matching step is quite literal in its treatment of terms: “ObjectItem” 

and “Object-Item” do not match. It does, however, ignore case distinctions. 

2. Match word constituents. LOM next divides “compounded” terms into their com-

ponents by considering capitalization, concatenation, and punctuation. Thus “Ob-

jectItem” and “Object-Item” are treated as “Object Item” and would match. LOM 

also uses stemming and permutations, and uses a stop list to filter out prepositions 

and similar, usually irrelevant words. Therefore, “BirthDate” and “Date-of-Birth” 

would match. 

3. Match synonym sets. LOM then uses WordNet® to generate synonym sets for 

each term of each pair of terms of the input ontologies provisionally considered to 

be equivalent. LOM then performs a term-by-term comparison of these synonym 

sets. If the sets are equivalent, then the two terms are equivalent. For instance, 

LOM determines that “capability” and “ability” match, as do “motor vehicle” and 

“automobile.” 

4. Match types. In its final step, LOM uses a predefined set of mappings from 

WordNet® words to SUMO/MILO terms. LOM finds SUMO/MILO terms for 

words in the synonym sets identified in step 3, then sees if each source ontology 

term has a counterpart term in the target ontology. 

Each step of the algorithm assigns a confidence-factor score to a pair of matched terms. 

The first step is a binary 0 or 1 score: either two (whole) terms match or they don’t. The 

remaining steps assign a number between 0 and 1 based on the ratio between the number 

of matched words and the average number of words being considered. Furthermore, each 
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step uses a weighting factor that reflects the decreasing confidence in matches for the 

successive steps. The final score for a matching pair at each step is the maximum value of 

its score from an individual step times the step’s weighting factor. 

The overall result of the algorithm is therefore a sequence of candidate source/target term 

pair matches, ordered by the alignment confidence computed for each pair. An imple-

mentation of the algorithm would also include a minimum confidence value to filter out 

pairs whose alignment is calculated as highly unlikely. 

An ontology developer/maintainer could use these results to add equivalence definitions 

to his ontology. He would first want to verify each match by examining supplied textual 

definitions and term context. This would help him find and eliminate terms with variant 

meanings (e.g., tank, which would satisfy whole-term matching). It would also let him 

ascertain whether lower-scoring results are in fact valid “matches.” 

6. A JC3IEDM-Based Extension to Li’s Approach 

Li’s algorithm described in Section 2 is, by design, a general-purpose approach. As such 

it is an important tool for comparing ontologies from arbitrary domains. However, we 

believe that many ontology comparisons will be between ontologies from a common do-

main. As an example, consider ontologies that model the JC3IEDM and the UJTL. Both 

are predominantly C2-oriented; they share a concern for the same domain, namely C2. 

Our goal is to dramatically improve accuracy in ontology resolution, at this point between 

different sub-domains of a single major domain (i.e., C2). We therefore propose an ex-

tension of Li’s algorithm that incorporates both domain-specific context and technology-

specific properties. The domain-specific context improves on the use of SUMO and 

MILO by providing analysis of C2-related terms. The technology-specific properties 

capitalize on features of OWL. The rest of this section presents our proposed algorithm. 

1. Match whole terms.  This step is virtually identical to LOM’s first step, though as 

we discuss below our ranking approach differs. The algorithm compares pairs of 

names of conceptually similar elements: class names to class names, property 

names to property names, and individual names to individual names. In some 
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OWL dialects an individual can also be a class. We treat such an element as a 

candidate for comparison in two element categories. 

2. Match terms in element definitions. An OWL element typically has a comment 

that intends to convey the element’s meaning in natural language. In our experi-

ence these comments typically contain a lot of domain-specific jargon and as such 

could be used in the element comparison process. We only compute a confidence 

factor if both elements have such a comment. We too employ stop lists to filter 

out common words such as prepositions, and we use a stemming algorithm to re-

duce words to their roots (eliminating plural and infinitive forms). 

3.  March word constituents. This step is identical to LOM’s second step. As in step 

1, we apply it to element names. 

4. Match synonym sets. This step is similar to LOM’s third step. However, we use 

the results of step 2 to prioritize synonyms.  If WordNet® generates a set of syno-

nyms for a given term, we look for set members that include terms from the ele-

ment’s definition. This increases our confidence we have correctly picked the in-

tended meaning. 

5. Perform property comparisons. We have in the source and target ontologies in-

formation about classes/individuals and their properties. In this step we examine 

the classes and individuals identified as possibly related and examine their proper-

ties. If we have identified matches in some of their properties, we use this infor-

mation. For instance, if classes C1 and C2 both have a “has-parent” property, we 

examine the cardinality of the property in each class. Suppose one is functional 

and the other requires exactly two instances. This would indicate that the first de-

notes a strict hierarchy—a taxonomy, perhaps—whereas the other is a network, 

possibly describing a genealogy. This should weaken our confidence in the possi-

ble equivalence of C1 and C2. (It would certainly change our confidence in the 

near equivalence of the two “has-parent” properties.) We may apply these kinds 

of tests to other aspects of properties, such as whether the properties are func-

tional, reflexive, symmetric, or transitive. We can also test for property equiva-

lence by simply comparing their respective extensions. 
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Of course, the absence of corresponding matching properties does not guarantee 

the non-equivalence of two classes. Two classes with different but not inconsis-

tent properties may be equivalent, with the different properties simply reflecting 

different views or perspectives of the same concept by different COIs. 

6. Classify the ontologies. We have now accumulated a set of likely equivalences 

between elements of the two ontologies. We can use this information by using a 

description logic reasoner to check the classes for consistency [9]. We include as 

input to the reasoner the two ontologies along with the equivalence statements we 

posit to be true. The reasoner will report whether these statements lead to any 

contradictions, that is, classes which can have no members. Each contradiction 

indicates a mistaken assumption and indicates that an equivalence does not in fact 

exist. 

A reasoner can also determine all of the classes of which an individual is a mem-

ber. We exploit this property to test conceptual similarity confidence. Suppose we 

have individuals I1 and I2 in source and target ontologies. If the reasoner identi-

fies I1 as belonging to a class of which I2 cannot be a member, then I1 and I2 can-

not denote the same concept. (That I1 cannot be identified as belonging to any 

class in the target ontology is inconclusive. It only means that we do not have 

enough information to fully categorize I1.) 

7. Map terms to JC3IEDM terms. This step corresponds to LOM’s fourth step, but 

we use the JC3IEDM ontology instead of  SUMO and MILO. We attempt to cate-

gorize a class as equivalent to a JC3IEDM class. Since all JC3IEDM sibling 

classes are disjoint, this step gives us a simple way to determine that two classes 

are not equivalent unless they are subclasses of the same class. Moreover, we can 

use the term mappings to place source and target ontology concepts into their 

proper places in the taxonomy of JC3IEDM classes. 

LOM performs this step using a custom-created, predefined set of mappings from 

WordNet® terms to SUMO/MILO terms. We also use a mapping in this step, 

though we are able to create it with less effort because we can generate much of it 

automatically. We start with high-level JC3IEDM terms such as “Facility” and 
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Action.” We use WordNet® to identify the common synonyms and hypernyms of 

these terms. We then map the synonyms and hypernyms back to the JC3IEDM 

terms. 

Our overall ranking approach is similar to LOM’s. We assign a 0 to 1 rating to terms in 

the first step, then assign a fractional value (between 0 and 1) in steps 2, 3, 4, and 7. 

However, we allow the results of steps 5 and 6 to override the rankings of steps 1–4. 

Steps 5 and 6 have the potential to demonstrate conclusively that two concepts are not 

equivalent. These steps also have the potential to increase confidence in equivalence by 

showing fundamental and formal similarities, so we allow them to increase a value com-

puted in previous steps. 

Steps 5 and 6 make our algorithm for computing rankings more convoluted than that em-

ployed by LOM. However, only after step 4 do we have the information available to per-

form them.  

7. A Framework for Ontology Resolution 

The algorithm in Section 3 yields a set of rankings. This section discusses how to use 

those rankings. 

LOM’s confidence factor scores were judged to have 71% precision. We believe 71% 

precision makes LOM a good tool for a human analyst, but the figure is not nearly good 

enough for use in a fully automated mode when matches are accepted without human re-

view, especially during life-risking military C2 operations. Therefore, our algorithm 

would be used by a software agent whose task is not to determine equivalences between 

terms but rather, given a source ontology, to discover target ontologies that probably con-

tain conceptually equivalent terms. The agent would search the NCE for ontologies (by 

checking registries).  On finding an ontology, it would analyze terms in the ontology and 

generate a report of confidence factor scores. A human analyst would analyze this report 

and decide which terms are in fact matches. She would then modify the source ontology 

to record, for each match, the term in the target ontology to which it is equivalent. 
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Barring an unforeseen technological leap, we do not think it likely that an automated 

agent could ever be trusted to determine the equivalence of two terms for which no for-

mal relationship already exists. A more probable scenario is one in which an agent would 

determine that two ontologies describe the same domain. This kind of evaluation would 

be based on an overwhelming similarity between the terms in a source and target ontol-

ogy. That is, some large percentage of terms in the source ontology would correspond to 

terms in the target ontology (the term pairs would have a high confidence factor).  For 

any non-trivial ontology, the likelihood of its terms matching those in another ontology 

and yet not being conceptually related to that ontology is low. 

8. Summary 

The NCE is intended to be an environment in which automated agents can discover in-

formation and services. A prerequisite of discovery is that the agent be able to infer the 

“meaning” of a discovered term. Ontologies have been proposed as one mechanism to 

enable inference. For this mechanism to work, there must exist some means to discover 

and state the conceptual similarities that exist between ontologies. 

In this paper we have built on LOM, an existing tool to help analysts create mappings 

between ontologies. Our extension to LOM capitalizes on the similarities we expect to 

exist between two ontologies that deal with command and control. In particular, our use 

of the JC3IEDM provides a more specific context for term resolution than does LOM’s 

use of SUMO and MILO. This should improve the precision of the confidence factors our 

algorithm generates. Our tool is clearly less of a general-purpose aid than LOM, but C2 is 

an important application area and we expect that the NCE will contain many ontologies 

that include C2 concepts. A domain-specific algorithm should fill a comfortable niche. 

Like LOM, the framework in which our approach is used requires human assessment of 

confidence factors. Technology has not reached the point where automated tools can be 

trusted to infer contextual similarity. However, any improvement that decreases analysts’ 

workloads should be welcome. 
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