
12th ICCRTS

Adapting C2 to the 21st Century

Use of a Systems Information Broker to Aide in the Dynamic Interfacing of C2 Nodes

Networks and Networking
C2 Metrics and Assessment

C2 Technologies and Systems

Dagohoy H. Anunciado [STUDENT]
Dagohoy H. Anunciado

SPAWARSYSCEN 24226, San Diego, CA & Naval Postgraduate School, Monterey CA
53605 Hull St Bldg A-33

San Diego CA 92152-5001
619-553-5604/619-553-6025 FAX

doug.anunciado@navy.mil

Abstract

Missions assigned to military forces will change as world events occur. Recent events like the
Indian Ocean Tsunami and Hurricane Katrina in the United States required a massive
humanitarian effort that included military forces. Information about the event needed gathering,
distributing, and analyzing to determine how best to use resources to help the people in the
devastation. Once observers gather information, establishing communications is needed before
information can be distributed. Command and Control (C2) node functions perform one or all of
the tasks of information gathering, distribution, analysis, decision making, and distribution of
decisions. C2 nodes in these situations will be mobile or fixed and will come and go as a mission
unfolds. Interfacing of C2 nodes may be hampered when the interface mechanisms are not
worked out before an event and would take time to manually work out, which delays rescue and
relief efforts. This research defines a framework and methodology for dynamically interfacing
C2 nodes to a C2 enterprise to accomplish large missions such as responding to operations other
than war (OOTW), e.g., natural and man-made disasters, peacekeeping, and counter drug
operations.1 Regional conflicts and general war are other situations requiring C2 enterprise to
accomplish a large mission.

 ii

1. Introduction (Motivation)

Missions assigned to military forces will change as world events occur. Events like the Indian
Ocean Tsunami2 devastated coastal regions of Indonesia, Sri Lanka, India, and Thailand, and
also affected Somalia, Myanmar, the Maldives, Malaysia, Tanzania, Seychelles, Bangladesh,
South Africa, Yemen, Kenya, and Madagascar. Hurricane Katrina in the United States created a
storm surge that caused severe and catastrophic damage along the Gulf coast, devastating the
cities of Mobile, Alabama, Waveland, Biloxi, and Gulfport in Mississippi, and New Orleans and
other towns in Louisiana. Levees separating Lake Pontchartrain from New Orleans were
breached by the surge, ultimately flooding 80% of the city and many areas of neighboring
parishes for weeks.3 Both events required a massive humanitarian effort that included military
forces.

When these types of events occur, information about the event needs gathering, distributing, and
analyzing to determine how best to use resources to help the people in the devastation. Once
observers gather information, establishing communications is needed before information can be
distributed. Command and Control (C2) node functions perform one or all of the tasks of
information gathering, distribution, analysis, decision making, and distribution of decisions. C2
nodes in these situations will be mobile or fixed and will come and go as a mission unfolds.
Since C2 systems may have pieces of information that a decision maker will need, interfacing
with other C2 systems is necessary in order get a big picture for decision makers to formulate
their decisions. The goal of this research is to present and implement a systematic method for the
dynamic interfacing of C2 systems. The core of this method is an entity called the Systems
Information Broker (SIB). The SIB serves as an arbitrator that will determine whether the
interfacing is feasible, and as a uniform interfacing platform to support the interfacing of real-
time and non-real-time systems. To aid in the interfacing feasibility, a pre-formulated set of
methods will be determined that are predicted to yield interfaces among systems. The focus of
this research is determining the constraints on the methods used in interfacing systems that will
allow a static calculation that can predict that an interface between systems is feasible.

2. Basic Architecture and Framework

The goal of this research is to present and prototype a systematic method to facilitate the
dynamic interfacing of real-time and non-real-time systems. The core of the method is an entity
called the Systems Information Broker (SIB). We propose to breakdown the responsibility of the
SIB into two parts with this research focusing on the first part.

1) SIB will serve as an arbitrator that will determine whether the interfacing is feasible by
considering the satisfaction of timing constraints and resource usage.

a) SIB serves as an arbitrator taking into account the reconfiguring issues involved in the
enterprise of systems supporting forces and units used to fulfill a new mission. We will
need to create a calculation or mechanism for determining whether the proposed methods
for interfacing systems are schedulable as systems are dynamically added, deleted, and
immigrated.

 1

b) In addition, we will need to determine the optimality goals and constraints for the
resources used on the interfacing systems. Before determining the optimality goals and
constraints, we will need to determine the metrics and calculation mechanisms that
determine the current resource use. Once current resource use is known, one can then
chose optimality goals and constraints for the interfaced resources. A mechanism will be
needed to adjust the resource use to comply with the goals and constraints when
resources are being over used. The SIB will use these mechanisms to determine if
resources are used properly and make adjustments to comply with goals and constraints,
but since we will not have complete information of the global state of the interfaced
systems these mechanisms will only give suboptimal resource use. The goal is to still
provide effective use of resource, but not necessarily optimal resource use.

2) SIB will also serve as a uniform interfacing platform to handle data interoperability and
timing constraints to support the interfacing among systems. SIB will be used in an
operational mode and serves as a uniform platform to handle the scheduling of system
interactions, and interoperability among systems.

Figure 1 is the framework of the systematic method to facilitate the dynamic interfacing of real-
time and non-real-time systems.

Systems Information
Broker

Arbitrator

Uniform
Interfacing
Platform

Model of
Real-time

Force Systems

Model of
Non-Real-time
Force Systems

Integration
Feasibility

Profile of
Force

Systems

Real-time
Force Systems

Non-Real-time
Force Systems

Schedule of
System

Interactions

Interoperability of
Systems

Figure 1 Framework of the proposed method

 2

3. Mechanism for Determining if Systems Can Interface

We plan to develop a criterion that the SIB uses to determine whether interfacing systems is
feasible. The SIB will use this criterion to determine if the enterprise of systems is schedulable
after some systems are added, deleted, or immigrated from the enterprise. We imagine that this
schedulability determination will be similar to embedded real-time schedulability but with a
higher magnitude of timing constraint values due to network delays and jitter. The immigrating
capability will be limited to non-real-time systems. To develop this criterion, a dynamic
scheduling analysis algorithm for distributed systems with non-real-time and real-time tasks
needs to be presented. Breaking down the mission the enterprise is required to accomplish into
phases of operation and placing systems to address one phase may provide a way to bound the
timing constraints that the systems handling a phase needs to meet. Calculating probabilities of
moving from one phase to another may provide an additional means of bounding the timing
constraints among real-time and non-real-time systems.

Another criterion that the SIB uses is to determine whether the enterprise of systems still has
good resource usage after some systems are added, deleted, or immigrated from the enterprise.
To develop this criterion, a resource usage metric needs to be defined and a method will be
developed to compute this metric.

This framework will model systems with the base component being a single system. The model
will not go much below the system level. A description of a system will include characteristics of
the system and applications running on the system.

3.1. Alternative Methods for Interfacing Systems

The idea is to have several methods to choose from when interfacing systems. Methods will be
ranked by scoring criteria that is explained in the next section, with the top scoring method being
the primary interfacing method and the remaining methods as alternatives.

3.1.1. Modeling Systems Being Interfaced

We are working the model at a systems level where simple constructs and events are passed
between systems. Modeling the systems with layers, and allow different layers of a system with
past-through channels may allow for response times for the overall system not being hindered by
individual layer transformations.

To create time-budgets with existing deployed applications and services we are going to need
tools to measure resource usage using existing OS facilities. We are also going to need a method
for determining excess resource capacity and heuristics to estimate it.

The excess capacity would be available to support the interfacing with other systems and
ultimately all or a few tasks required to fulfill a mission thread.

Figure 2 illustrates the constructs used to interface systems together.

 3

Figure 2 Modeling Constructs Used to Interface Systems

Systems would list out the resources it possesses and also list the resources it seeks. The system
sends this list to the SIB for recording and future servicing. A list of excess resource capability
would also be passed to the SIB. The SIB would coordinate the various lists of requested
resources and map with available resources. The goal is to do this mapping without human
intervention.

Applications used on a system vary in degrees of complexity from simple to very complex. On
the complex end are applications that require many data sets, perform a high number of
calculations on a subset of the data sets, and graphically render the calculated results. Without
these data sets, desired results may not be precise enough to be useful. Many times developers
will have an idea of what data their applications need to ingest, but these data sets are not well
documented such as what the data is making up the data set, the way data is being gathered, what
organization is maintaining the data sets, or how to get access to the data sets.

Table 1 contains the attributes that can determine the complexity of an application. An
application that is real-time and performs any of the other attributes would be considered a very
complex application. An application that is non-real-time, calculation intensive, data intensive,
and graphical, or has only the real-time attribute is a complex application. A semi-complex

 4

application would be non-real-time and has two of the three remaining attributes. A simple
application would be non-real-time and has only one of the remaining attributes.

Table 1 Complexity Attributes for an Application

Complexity Real-time Calculation
Intensive Data Intensive Graphical

 Timing
constraints
bounding
computed
results

Requiring high
number of math
calculations

Requiring high
number of data
points

Requiring high
use of graphics
to rendering
information

Simple X
Simple X
Simple X
Semi-Complex X X
Semi-Complex X X
Semi-Complex X X
Complex X X X
Complex X
Very Complex X X
Very Complex X X
Very Complex X X X
Very Complex X X
Very Complex X X X
Very Complex X X X
Very Complex X X X X

Without knowing what data sets or information one needs or an application, process, or system
needs, one cannot perform processing with the data sets in order to get results from a formula or
model. Before processing formulas or models, data is needed and depending on the use of the
formulas or models, continuous processing of formulas or models may also require continuous
access to the data sets or results to be relevant to a user. Relevant means that a user will be able
to take actions to avoid harmful consequences.

Understanding what data sets are used is a good starting point to keeping an application relevant
to its users. Keeping the data sets organized, and knowing who and where to get updated data
sets also adds to an application relevance to a user.

Making the data sets organization simple to understand may make its maintenance easier.

Information base used to keep an enterprise of systems working may do well when the data sets
making up the information base is organized.

Having a flat organization of data sets may be an ideal way to understand the data sets that an
application or system will otherwise need.

 5

3.1.2. Real-time and Non-real-time System Attributes

We will model systems by first separating real-time and non-real-time systems by their
attributes. Table 2 contains the attributes used to model real-time systems used by a force.

Table 2 Real-time System Attributes

Attribute Comment
Tasks
CPU Cycles used CPU cycles used to accomplish a

tasks
Network resource usage
Time Constraints: Finish Within or Maximum
Execution Time

Periodic, Event Driven, or Both for Task
Execution

Non-real-time force systems will be modeled with similar attributes shown in Table 3.

Table 3 Non-real-time System Attributes

Attribute Comment
Tasks
CPU Cycles used CPU cycles used to accomplish a

tasks
Network resource usage
Periodic, Event Driven, or Both for Task
Execution

3.1.2.1. Breaking down the System Resources

Resources used by systems will be broken down into system resources and network resources.
Systems resources are further decomposed into CPU resources, memory resources, and I/O
resources. Tied with each resource are resource concerns that have the potential of diminishing
the quality of service of the resource.

Table 4 and Table 5 below have the resources being modeled plus the resource concerns for each
resource.

 6

Table 4 Real-time System Resources Modeled

Resource Resource Concern
System

CPU Lack of CPU cycles to complete a task
calculation that will cause a task to miss its
deadline.

Memory Lack of memory causing a task to miss its
deadline.

I/O Waiting for I/O resources that causes a task
to miss its deadline.

Network
Bandwidth Lack of Bandwidth that causes a task to

miss its deadline.
Quality of Service Jitter and Latency that degrade information

flow and causes a task to miss its deadline.

Table 5 Non-real-time Systems Resources Modeled

Resource Resource Concern
System

CPU Lack of CPU cycles prevents a task from
completing its computations in a usefully
timeframe.

Memory Lack of memory prevents a task from
completing its computations in a usefully
timeframe.

I/O Waiting for I/O resources prevents a task
from completing its computations in a
usefully timeframe..

Network
Bandwidth Lack of Bandwidth case prevents a task

from completing its computations in a
usefully timeframe.

Quality of Service Jitter and Latency that degrade information
flow and prevents a task from completing
its computations in a usefully timeframe.

3.2. Scoring Criteria of Interfacing Methods

Interfacing methods are scored using criteria of the interfacing latency, capacity, and quality of
service which includes availability and reliability. Other criteria may include cost of using the
interface.

 7

3.2.1. Computational Model for an Enterprise of Systems

Y. Qiao, et al., developed an admission control method for dynamic software reconfiguration in
the systems of embedded systems (SoES) domain.4 This method prevents dynamic software
reconfiguration from damaging the high confidence of SoES. We plan use many of the concepts
of the SoES admission control method to provide the computational model for the enterprise of
systems (EoS) admission control method.

The EoS admission control method has to parts 1) modeling the systems making up the
enterprise of systems and 2) the dynamic scheduling analysis for the EoS. The modeling of the
systems mathematically describes the functional and non-functional aspects of the EoS
requirements. This description has an external view model and an internal view model. The
external view model is customer view focused, while the internal view model is designer view
focused.

The external view model is denoted as ζ ′ , and represented as

()HG,=′ζ (1)

G is the functional emergent property vector that represents the functional aspect of the EoS
requirements, , where),,,(21 igggG K=]),1[(ligi ∈ . denotes one of the functional emergent
properties describing the emergent behavior of the EoS and l is the number of functional
emergent properties. The most typical functional emergent property identified in the external
view model is timing properties such as maximum response time.

ig

H denotes non-functional emergent properties related to high confidence. It is described by a
high-confidence metric vector. In this context,),,,(21 ihhhH K= , where is a set of
metrics for a measure of high confidence. Some typical metrics are failure rate, maximum time
between two successive failures, the number of faults that can be tolerated, maximum time
between safety violations and security level etc.

]),1[(zihi ∈

The Internal view model is denoted as ζ , and represented as

()21,,,,, FFDCES=ζ (1)

S is a component system set, {],1[| nisS i }∈= . denotes a component system constituting the
EoS and is the number of component systems in the whole EoS.

is
n E denotes the interaction s

between component systems,
ets

{ }],1[,| nkjeE jk ∈= ere jke denotes a set of interactions from
component system js to component system ks . C en tes the constraint sets on how the
component systems are used in the given environment,

, wh
d o

{ }],1[| nicC i ∈= . is a set of
constraints imposed on . denotes the constraint sets on interactions between component
systems,

ic

is D
{ }],1[,kj| ndD jk ∈= , where is a set of constraints applied to interactions in . jkd jke

 8

1F and are two mappings that refine emergent properties of EoS into local constraint sets
imposed on component systems and interactions, i.e.,

1F
),(1 HGFC = and .),(2 HGFD =

In internal view model, timing constraints are included in C and . Typical timing constraints
include deadline and maximum execution time of the component system and latency of the
interaction between two specific component systems. Furthermore, some resource constraints
such as access mode and control constraints such as trigger method are also included in C and

. All these constraints can be extracted as parameters used by dynamic scheduling analysis for
the EoS. In addition, each component system is either atomic or composite in internal view
model. For convenience, to support the scheduling analysis, we take each atomic component
system as a task to be scheduled by the scheduling algorithm.

D

D

3.2.2. Dynamic Scheduling Analysis for an Enterprise of Systems

3.2.2.1. Dynamic Scheduling Task Model

Since EoS are characterized by dynamic combinations of component systems, in this paper we
only consider the aperiodic tasks. Y. Qiao et al., presented a task model for the use of dynamic
scheduling analysis in SoES and we propose to extend this model for the dynamic scheduling
analysis for EoS as follows:5

1) Each task T is described as a tuple ()TTTTT EvDra ,,,, . Here, is task Ta T ’s arrival time and
 is Tr T ’s ready time. denotes TD T ’s deadline. is the number of Tv T ’s different logic

versions. represents TE T ’s maximum execution time. For hard real-time tasks, is a
vector denoted by

TE
()m

TT ,...,2
T eee ,1

(mjvie T
ij
T =

, where is the maximum execution time of
task when it executes on processor and is the number of processors in the EoS. For
soft real-time tasks, the maximum execution time is a matrix denoted by

, where is the maximum execution time of task

),...,1(mje j
T =

jp m

TE
),...,1;,...,1= ij

Te T ’s logic
version i when it executes on processor . Furthermore, for each , the

maximum execution time of each logic version is ordered such that . Non-
real-time or best-effort tasks provided periods of execution time that can change at runtime.
With non-real-time tasks the arrival time and ready time are the same, and the
deadline equals the end of the provided period.

jp),...,1(jj m=
jv

T
j

T
j

T
Teee ≤≤≤ ...21

TT ra =

2) Hard and software real-time tasks are non-preemptive and non-periodic, and these tasks plus
non-real-time tasks can not be parallelized.

3) Besides processors, tasks might need some other resources such as data structures, variables,
and communication buffers for their executions. Every task can access a resource either in
shared mode or in exclusive mode.

The characteristics of the task listed above can be extracted from internal view computational
model addressed in Section 3.2.1. For example, the deadline and maximum execution time of a
task can be derived from constraint sets imposed on the corresponding component system, and
the access mode of a task can be derived in the same way.

 9

3.2.2.2. Dynamic Scheduling Precedence Graph

We will use the same precedence graph concept as Y. Qiao, et al.6, to represent tasks, but we will
have two levels of representations. The first level will model task precedence at the individual
system level, and the second level will model task precedence at the EoS level. Tasks requiring
remote resources or remote execution on other system will have their resources allocating and
dispatching coordinated through the SIB.

3.2.3. Maintaining System Schedule

Interfacing a system into an EoS must not interfere with an individual system’s processing to
meet local task schedules. An EoS schedule is first determined by the time-budget for the
mission threads that an EoS supports. Development of time-budget allocations for time-critical
mission threads is a recommendation of the Committee on C4ISR for Future Naval Strike
Groups.7

The below tuple represents a mission thread time-budget.

(MTID, TCM, MTD, R) (1)

MTID Mission Thread Identification

TCM Time to Complete Mission Thread

MTD Mission Thread Description

R Set of n Resources Needed to Accomplish Mission Thread, where n > 0.

A mission thread may be made up of multiple tasks and each task is represented by the following
tuple.

(TID, TCT, TD, TR) (2)

TID Task Identification

TCT Time to Complete Task

MTD Task Description

TR Set of Resources Needed to Accomplish Task where TR ⊆ R.

Resources needed to complete a task mainly include data sets, but may include computational,
storage, networking, radio, and other physical resources.

 10

3.2.4.

Maintaining Optimality Goals and Constraints with Respect to
Resource Usage

The goal is to use individual system resources to close to maximum, at least 80%, with 20% to
surge processing. But the emphasis is to maintain the system processing schedule even at the cost
of underutilized resource use.

4. Conclusion

This research provides a systematic method for dynamically interfacing systems to form an
enterprise of systems. At the EoS level the SIB serves as an arbitrator for the tasks requiring
remote resources or remote execution on other systems in the EoS. Given the attributes of the
systems and remote resource needed by a task, the SIB will determine if the tasks and the
systems making up a mission thread will be able to interface with the EoS and continue to
maintain local tasks schedules.

1 Joint Doctrine for Military Operations Other Than War, Joint Pub 3-07, 16 June 1995.
2 2004 Indian Ocean Earthquake, Wikipedia,
http://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake, Accessed on 12 November 2006.
3 Hurricane Katrina, Wikipedia, http://en.wikipedia.org/wiki/Hurricane_Katrina, Accessed on 12
November 2006.
4 Qiao, Y., H. Wang, Luqi, and V. Berzins, “An Admission Control Method for Dynamic
Software Reconfiguration in Complex Embedded Systems,” International Journal of Computers
and Their Applications, Vol. 13, No. 1, March, 2006, pp. 28-38.
5 Ibid.
6 Ibid.
7 C4ISR for Future Naval Strike Groups, Committee on C4ISR for Future Naval Strike Groups,
National Research Council, 2006, http://www.nap.edu/catalog/11605.html, Accessed on 13
November 2006.

 11

http://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake
http://en.wikipedia.org/wiki/Hurricane_Katrina
http://www.nap.edu/catalog/11605.html

	1. Introduction (Motivation)
	2. Basic Architecture and Framework
	3. Mechanism for Determining if Systems Can Interface
	3.1. Alternative Methods for Interfacing Systems
	3.1.1. Modeling Systems Being Interfaced
	3.1.2. Real-time and Non-real-time System Attributes
	3.1.2.1. Breaking down the System Resources

	3.2. Scoring Criteria of Interfacing Methods
	3.2.1. Computational Model for an Enterprise of Systems
	3.2.2. Dynamic Scheduling Analysis for an Enterprise of Systems
	3.2.2.1. Dynamic Scheduling Task Model
	3.2.2.2. Dynamic Scheduling Precedence Graph

	3.2.3. Maintaining System Schedule
	3.2.4. Maintaining Optimality Goals and Constraints with Respect to Resource Usage

	4. Conclusion

