

12TH ICCRTS
“Adapting C2 to the 21st Century”

Using JCIDS DoDAF Architecture Primitives
to

Assemble a Repository for
Enterprise-wide Analysis and Decision-Making

Topics:
Track 1: C2 Concepts, Theory, and Policy
Track 8: C2 Technologies and Systems

Track 3: Modeling and Simulation

Lawrence McCaskill,
Robert Hicks,

and
Ian Komorowski

POC: Lawrence McCaskill
Whitney, Bradley, & Brown, Inc.
1604 Spring Hill Rd, Suite 200

Vienna, VA 22182
703-448-6081 x127

lmccaskill@wbbinc.com

Introduction

Abstract

As part of the Joint Capabilities Integration and Development System (JCIDS) process,
the Department of Defense (DoD) has mandated development of DoD Architecture
Framework-compliant architectures in support of the Net-Ready Key Performance
Parameter used in both requirements (Initial Capabilities Documents, Capabilities
Development Documents, Capabilities Production Documents) and acquisition
documentation (Information Support Plans). With this requirement, the DoD is
recording vast amounts of information, including information flows that move on and off
from the described platforms, with uses far exceeding the sphere of JCIDS. However,
this information is not being gathered into repositories that will enable reuse of this
information not only in the JCIDS process, but for myriad other uses including Modeling
and Simulation.

This paper will propose a methodology for capturing and amalgamating information
collected during the JCIDS process, enabling true enterprise architectures to be built
using their constituent parts, with far-reaching application beyond the realm of JCIDS.
Additionally, the paper will recommend a governance process by which this information
can be maintained throughout the life cycle of the various programs for use in the
JCIDS process, as well as other applications, including Modeling and Simulation
supporting analyses for acquisition, operations, and simulation of operations.

Thesis

DoD Architecture Framework (DoDAF) artifacts, developed in support of the JCIDS
process, contain a plethora of information about individual systems. When properly
structured, this information can be used to develop enterprise architectures representing
the amalgamation of several systems in a coherent and executable framework.

The data compiled in the DoDAF architectures is also very useful in establishing the
structure and baseline functional environment for modeling and simulation (M&S)
efforts. Architectures describe system functionality, how they are used operationally,
and what information and data flows between components. M&S provides an
operational laydown in which the disparate architectures are interconnected and
exercised.

Interrelated information is compiled via DoDAF architectures, the M&S community, and
any of a number of efforts across the spectrum of Doctrine, Organization, Training,
Materiel, Leadership, Personnel, and Facilities (DOTMLPF), as well as the testing and
financial communities. This information should be made accessible in searchable,
updatable data stores available to the disparate communities who will use the data,
using a governance policy enforceable through technical means. Technologies to bring
this to fruition are beginning make themselves available.

Architecture “primitive”, a definition

As defined by the Encarta Dictionary: English (North America), a primitive is a “a simple
element of a computer program or graphic design from which larger programs or
images can be constructed” or “something such as a concept, feature, or formula from
which something else is derived”.

Architectures are composed using discrete parts, including activities, system functions,
business processes, and ties to doctrine (Universal Joint Task List [UJTL], Service Task
Lists, Department of the Navy Common Systems Functions List [DoN CSFL], Net-
Centric Operations and Warfare Reference Model [NCOW RM], etc.). These
composeable parts are what we are addressing when we speak of architecture
primitives, and these primitives can be used and reused across multiple architectures in
multiple domains.

Background

The Net Ready-Key Performance Parameter (NR-KPP) is a required element of the
Capability Development Document (CDD), Capability Production Document (CPD), and
Information Support Plan (ISP). Within the context of these documents, the NR-KPP
provides the underlying information and structure needed to assess the interoperability
and supportability, and provide system developer and managers the means to
effectively and efficiently build and maintain the required capabilities.

Relationship of JCIDS documents and the Information Support Plan (ISP)

The Initial Capability Document (ICD) describes capability gaps in joint warfighting
functions and establishes the need for a materiel approach to resolve a specific
capability gap derived from the JCIDS assessment and analysis process.1 While a NR-
KPP is not required for the ICD, the basic concepts of interoperability should be an
inherent part of the resulting documentation

The Capability development Document (CDD) defines the user’s requirements for the
specific capability. It provides the operational performance attributes, including
interoperability and supportability, necessary for the acquisition community to design the
proposed system. As part of the CDD process, The NR-KPP shall be defined by the
acquiring authority, certified by the Chairman of the Joint Chiefs of Staff, and
documented in the CDD.2

The Capability Production Document (CPD) is evolved from the CDD during the System
Development and Demonstration (SDD) phase of the acquisition process. It provides
the operational performance attributes necessary for the acquisition community to
produce a single increment of a specific system. It presents performance attributes,

1 DODI 4630.8, June 30, 2004, Para 6.2.2
2 ibid

including KPPs, to guide the production and deployment of the current increment. CPD
development is guided by the integrated architectures and relevant JCIDS
documentation. A NR-KPP, certified by the Chairman of the Joint Chiefs of Staff, shall
be documented in the CPD. 3

While the ICD, CDD, and CPD are JCIDS documents produced by requiring
organizations, the Information Support Plan (ISP) is an acquisition document produced
by the acquisition community. The ISP identifies Information Technology (IT) and
National Security Systems’ (NSS) information needs, dependencies, and interface
requirements, focusing on interoperability, supportability, and sufficiency. The ISP
includes an operational employment concept; system interface descriptions; required
information exchanges; IT and NSS information support requirements derived from
analysis of applicable Joint Operational Concepts (JOCs), Joint Functional Concepts
(JFCs), and JCIDS documentation, and the associated integrated architecture(s);
potential issues; and proposed solutions. IT and NSS systems dependencies and
interface requirements are described in sufficient detail to enable test planning for
verification of the NR-KPP.4

Platform Architecture Primitives Collected in the NR-KPP

The NR-KPP embodied in the ISP is maintained and subject to recertification
throughout the life-cycle of the system. This puts the NR-KPP in the unique position of
being initially developed in the requirements community (CPD & CDD), redefined and
enhanced during system development (ISP), and maintained and updated while the
system is in operation (ISP). During the course of NR-KPP development and
refinement, the system architect collects an expansive set of data that forms the
underlying structure of the integrated architecture. Consistent with DoDAF guidance,
and the Core Architecture Data Model (CADM), the following products are identified in
CJCSI 6212 01D (Chairman of the Joint Chiefs of Staff Instruction) to be used to collect
and present the data in the NR-KPP.

3 ibid,
4 ibid

Table 1: NR-KPP Products Matrix5

The current requirements and acquisition process is structured to define and build
individual platforms and systems. They do not, in a single program, address broad
spectrum requirements to acquire specific “capabilities.” As a result, the NR-KPPs and
supporting integrated architecture normally address individual platform or systems.
However, given this constraint, and the need to truly address interoperability issues, we
must define a method to logically connect the platform level architectures into enterprise
architectures suitable for end-to-end analysis. The enterprise architecture needs to
reflect the interoperability of numerous systems operating within well defined
environments.

5 CJCSI 6212 01D, 8 March 2006

Difficulties in the Development of Enterprise Level Architectures

Figure 1: Joint C4I Interoperability

(Jim Klossner, Federal Computer Week, 1998)

The overarching goal of the development of enterprise architectures is the
interoperability of systems across the sphere of Joint operations. A precondition of this
interoperability should be the interoperability amongst enterprise architectures.
However, even with DoD architects “speaking the same language” (i.e. DoDAF),
enough inconsistencies exist across architectures to make the above cartoon
applicable. An inexhaustive list of reasons for these inconsistencies is noted in the
following paragraphs.

Figure 2: Clean Data Concept

Even if multiple architectures have been developed by the same team, many times the
“data” (i.e. artifacts collected within the architecture) is “dirty” when compared between
separate efforts. Spelling, abbreviation (or lack thereof), synonym and homonym
differences all will exist in the naming conventions, unless the organization has
developed well defined ‘pick lists’ for common artifacts used in the architecture.

So what should be done when one platform’s architecture defines <X> information
exchange as being sent to anther platform, but the receiving platform’s architecture
defines the receipt of <Y>? It comes down to an either/or choice, that of ‘scrubbing’ the
dirty data to clean it, or creating a bridge between the two artifacts. Neither choice is
easy.

There is currently no facility being employed to “check the homework” of the programs.
Since the process of accomplishing integrated architectures as part of the JCIDS
process is relatively new, the organizations responsible for ensuring correctness of
architectures being submitted to the JCIDS process (OASD/NII, Joint Staff/J-6I, and
service CIO architecture representatives) have been checking architecture viability by
checking whether the artifacts within the architecture are internally consistent. While
internal consistency within platform architectures important and necessary, it is not
sufficient for establishing interoperability. Thus, we assert the primary focus of these
“homework checking” organizations should be the interrelationships between
architectures, ensuring that the individual components of their respective enterprises

are correctly and accurately represented, such that they can amalgamate the
information and perform enterprise-wide analysis of the architectures in order to
determine possible gaps, economies-of-scale that can be leveraged, and provide
primitives for use in subsequent architectures.

However, there is no facility or methodology being employed that can pull disparate
platform architectures into a coherent enterprise. In performing the cross-enterprise
analysis, the CIO-oriented organizations need to be focusing on collecting and
amalgamating information for analysis. These datasets can (and should) be made
available across the enterprise, across all facets of DOTMLPF, finance, and enterprise
resource planning (i.e., it’s not just about IT). This is what was codified in the Clinger
Cohen act, and it simply isn’t happening.

Figure 3: Strategic Information Asset Base

Vast amounts of information is being collected via several different disciplines (M&S,
Operational Testing and Evaluation [OT&E], etc.) as well. None of it is going into a
federated data store for use across multiple disciplines (Portfolio Management,
Manpower, Doctrine, etc.). Assuming one is collecting information about disparate
programs across the life cycle of the enterprise, these pieces of information should be
feeding a federated data store such that information gets used, reused, and updated as
better information becomes available. Some examples of extreme waste: every
platform architecture depicting air operations contains references to AWACS, E-2, and
other command and control (C2) platforms; however, none of them have the same
depiction of the platforms, and often create their own from scratch. Testing data related
to the platform links isn’t in a centralized location; example: one shouldn’t be forced to
come up with Information Assurance, size, throughput, etc. about Link 16 – it’s a

program of record, and thus should be available for programs to use via “pick list” type
data sets. Modeling and Simulation has performance characteristics built in to each
model; if one is to assume these are correct , why can’t these performance criteria be
made available for others to use? As for the manpower equation, shouldn’t one be able
to leverage from these datasets to provide the primitives for use in manpower analyses?
The answer is obvious, and yet we continue to develop these sets of information in
stovepipes. There is also the question of whether the amalgamation of information
makes it classified, but in the endgame, one should be able to perform that analysis on
what to make available to whom via their “role in the world,” and tailor or filter the
information presented to the appropriate level of visibility and classification.

The Enterprise Primitive Amalgamation Process

We posit that the DoDAF architectures that have been and are currently being created
for the JCIDS acquisition process, while generally focused at the platform level (aircraft,
missiles, vehicles, etc), and often not being built with the idea that they must be merged
with other platform level architectures, are a rich resource that can be parsed as sets of
primitive elements to be utilized in developing the enterprise level architecture and for
analysis in modeling and simulation.

Common models for the exchange of information have been an unachievable goal for
many years. Several efforts aimed at standardizing information structure across the
DoD enterprise have failed due to a number of reasons, including cost of entry, difficulty
in implementation, and lack of a overarching authority to enforce adherence to the
standards amongst programs. In the endgame, we do not believe achieving a huge,
monolithic data resource for all entities across the DoD is possible. However, we do
believe a methodology exists that can amalgamate disparate data resources for
analysis on an as-needed basis. This methodology has the ability to assist the architect
in analyzing how disparate architecture artifacts may be combined into a larger
architecture for use in subsequent analyses. Additionally, using this methodology, one
can begin to develop reusable architecture, data, and reference primitives from which to
draw information for future analyses.

Integrating independently developed architectures is a difficult process. Regardless of
the automation involved, it will take manual intervention by a person with unique
qualifications: they must be technically inclined and be extremely knowledgeable in the
subject area (i.e., for military applications, they must have a keen understanding of
military operations).

One advantage that the DoD has at this point is that all architectures created for JCIDS
are in roughly the same language, that of the DoD Architecture Framework. Therefore,
there is a basic starting point, as theoretically the architectures are described in the
same format, and most of the architectures have the same set of “buckets” for the
structure of their artifacts. However, since the framework does not provide strict
guidance with regards to the types of notations to be used (IDEF, UML, BPMN,
structured analysis, etc), and in the methodologies (ABM, the FEAC process) to develop

the architecture, there are often variations in what artifacts are captured.

With that being understood, the primitives that can be compared between architectures
are the following:

• OV-2 Operational Nodes
• OV-3 Information Exchanges
• OV-4 Organizations and Roles
• OV-5 Activities
• SV-1/2 Systems Nodes
• SV-1/2 Systems
• SV-4 System Functions
• SV-6 System Data Exchanges

However, one person’s enterprise is another person’s system. Differences in scope,
purpose, and viewpoint also create issues, but the basic DoDAF structure does allow for
federation of the architectures. If disparate architectures, no matter which modeling
tools or modeling tool suites they were created in, are collected into a repository, they
can be analyzed for touch points and potential touch points. When those are identified,
they are in essence federated, as no changes have been made to the original work.

Federation though, does not lend itself to easy analysis, amalgamation, or abstraction
up to the next or enterprise level, due to the probable difference in purpose, scope,
view, and in terminology. This is where emerging technologies allowing for fuzzy
search, or a search that is not 100% literal (results are returned that may be similar, and
are ranked as to the degree of similarity) may provide assistance.

A nominal flow for taking independently developed architectures and amalgamating
them follows in Figure 4.

Create Enterprise Level
Architecture from Source

Content

Verify and Complete
Architecture Artifacts

Link Re lated _Ext_Activities
and _Ext_System Functions

with Alias

Nominate Initial
Architecture Touch

Points

Scrub Data/ Harmonize
and Merge Externals

Nominate Certain
Alias/Bridge
Instances for

Community Use

Automated
Assessment of Touch

Points

Create Alias or Bridge Class

Evaluate
Relationships of

Touch Points

Register
Architecture

Metadata

Import
DoDAF

Artifacts

Analyze Content

Will the original be maintained
in the original tool or program office?

Start

End

No

Yes

Figure 4: The Enterprise Primitive Amalgamation Process

• Import DoDAF Artifacts

It is assumed that one is using an automated tool, based on a relational
database, to accomplish this methodology. Most modeling tools on the market
currently won’t allow for the queries and analysis that are demanded by the
methodology, but a new class of tools is emerging that will allow this. As a result,
the source architectures, no matter which tool they were originally created in, are
imported into the repository management tool.

• Nominate Initial Architecture Touch Points
The analyst or amalgamator will be able to recognize some potential artifacts that
may be related: Operational Activities, Operational Nodes, Information Exchange
requirements, System Functions, System Nodes, and/or System Data
Exchanges. Even if the analyst did not create the original architecture, their
expertise of the enterprise should allow them to identify these, even if they are at
different levels of abstraction.

• Automated Initial Assessment of Touch Points
In addition to the amalgamator’s expertise in the identification of touch points, an
automatic analysis is performed on the source architectures. On all but the
simplest DoDAF architectures, there is generally a high level of detail. Due to
this factor, fuzzy searches will be performed, and architecture primitives will be
nominated that may be additional touch points.

• Evaluate Relationships of Touch Points
A manual assessment is made of the architecture primitives that have been
nominated as touch points in the previous two steps. Do the objects that have
been selected really mean the same thing? Are there issues with levels of
abstraction?

• Decision Point
The decision point is whether or not the original architectures will be maintained
by the program office, or by whomever is building the enterprise architecture.
This is a question of stewardship, or who owns the architecture when it’s done. If
the owner of the enterprise architecture will also own all the data, then matters
become somewhat easier – one proceeds to the “Scrub Data/Harmonize and
Merge Externals.” If the owner of the enterprise architecture does not own the
source data, one proceeds to “Create Alias or Bridge Class”.

• Scrub Data/Harmonize and Merge Externals
The scrubbing of enterprise architecture data, while potentially able to be
assisted by technology, is essentially a manual process. Once the terms that are
thought to mean the same thing are collected in the initial steps, one needs to go
through them and clean them up. For example, USAF, U.S.A.F, US Air Force,
and Air Force may have been used in four different program level architectures to
describe the United States Air Force. A common term needs to be agreed on,
and then all instances of the above need to be changed to the common term.
Since the architectures have been collected into a common repository with this
methodology, this can be easily accomplished on the technical side. However,
the biggest difficulty in scrubbing is not technical. Who has the authority to
enforce these changes in the source architectures? If the “dirty” data is just a
matter of different use of abbreviations, this may be easily decided or agreed
upon. However, if the original terms have a social or emotional value, or if they
are only understood in the original terms by the audience they were originally
intended for, the authority to make the change needs to be well established, and
this generally needs to be as a result of funding/budget control. Note: at some
point, the enterprise architect will need to be able to provide these standardized
primitives to the creators of subsequent architectures and mandate their use, or
the “do loop” regarding harmonizing the architectures will continue ad infinitum.
See also the last step in this process.

• Create Alias or Bridge Class
This step in the flow is reached if the assumption is that the architectures are to
be federated, with the original being owned by its creator (assumed to be in a
program office). If the different terms for artifacts cannot be changed (whether
due to lack of authority or for other reasons), the common term can be identified
(and a new artifact can be created if the common term has not been utilized yet).

• Link Related _Ext_ Activities* and _Ext_ System Functions* with Alias
All synonyms can be linked to an Alias or Bridge class instance with a “this is the
same as” relationship. This in effect creates a consistent artificial construct that
can be used to analyze information flows across platforms or programs. While
the bridging concept does create an additional aspect of complexity, it does avoid
the political and funding implications of scrubbing the data.
*Note: the _Ext_ Activities/Functions are artifacts of how WBB implements the
Activity Based Methodology – certain Activities and Functions have “_Ext_” as
part of their name to alert the architecture reader that these are external to the
scope of the architecture, and are only included as sources/sinks of
information/data. For more information on this methodology, see “An Activity-

Based Methodology for Development and Analysis of Integrated DoD
Architectures”. Regardless of the naming conventions used, there will likely be
the same “dirty data” problem discussed earlier – these names will have to be
identified as aliases in an Alias or Bridge class of object, which will be used in
subsequent queries and analysis.

• Verify and Complete Architecture Artifacts
This is where the difficult part of the analysis begins. One must determine
whether the primitives (activities, nodes, exchanges, roles, systems) are indeed
the same, and whether or not the architectures are in agreement regarding what
pieces of information are flowing between them. In the case where there’s
disagreement on the information flow (i.e., there are exchanges depicted in one
model, and not the other, or exchanges that cannot be mapped), this is where
governance should dictate how to rectify “who is right” and “who changes their
architecture.” Governance is covered in more detail in section 5.

• Analyze Content
This is where one can begin branching out of the “strictly architecture” uses for
architecture. An example: use the architecture primitives to source modeling
and simulations to determine gaps, bottlenecks, and overall feasibility of
operational concepts. Results of the analysis would feed back into the
architecture, and the data regarding performance (size, bandwidth required, etc.),
as well as the architecture primitives can be made available for reuse in
subsequent architectures under the purview of the enterprise.

• Create Enterprise Architecture from Source Content
Just linking the touch points of the source architectures may not be enough. In
order for an enterprise perspective to be complete, other artifacts and primitives
may need to be created, and/or certain subsets of the source data may need to
be abstracted.

• Register Architecture Metadata
As we are not advocating the creation or development of a single massive DoD
database for architectures, the metadata that allows for others in the Community
of Interest (COI) to identify and find the newly created architecture needs to be
registered. Currently, the DoD Architecture registry System (DARS) is the tool
that facilitates this.

• Nominate Certain Alias/Bridge Instances for Community Use
In order to facilitate future uses of this methodology, instances of the new alias or
bridge class object types can be tagged with metadata that identify it as an object
that may need to be included in a common list.

Two possible scenarios are envisioned for this process. The easiest, but nontrivial and
highly abstracted case is where there are two architectures being combined with one
obvious touch point in the OV-2’s of each. An example of this would be a multi-role
tactical fighter (Architecture 1) communicating with an airborne C2 Element, such as an
AWACS, or E-2 (Architecture 2). Via identification of the “start here” touch points, the
obvious articles to examine regarding the architectures are the node names (both
operational and system), the information/data exchanges, organization names, roles,
and systems. Once these have been rectified via the above process, one is “done” (at

least with this iteration of “enterprise via amalgamation”).

Ext
NodeC2C

Airborne
C4I

Ext
Node C2B

Ext
Node C2A

Ext
Tactical
Fighter

Ext
NodeC2C

Tactical
Fighter

Ext
Node C2B

Ext
Node C2A

Ext
Airborne

C2

Combine/Amalgamate

Ext
NodeC2C

Airborne
C4I

Ext
Node C2B

Ext
Node C2A

Ext
NodeC2C

Tactical
Fighter

Ext
Node C2B

Ext
Node C2A

New Enterprise
Architecture

Figure 5: Simple Amalgamation Scenario

The more difficult case is where two architectures are being merged that contain the
same or similar elements, but do not necessarily have only one touch point. A concrete
example is the attempt to combine the following architectures:

• A Joint Fires Architecture: within which only AF support to Army units is
depicted, with the Army RSTA (Reconnaissance, Surveillance, and Target
Acquisition) units being depicted as internal to the architecture because they
are part of the joint fires chain-of-events (i.e., Enlisted Terminal Air Controllers
within the UA are who initiates the Call for Fires).

• An Army Combined Arms Unit of Action (UA) Architecture: within which all
facets of the UA are detailed.

A3.2
Perform
RSTA

Operations

A3.1
Maneuver Forces

A3.3
Execute

Surface-to-Surface
Fires

A.3
Execute

Ground Operations

A3.2.2
Reconnoiter
NAI and TAI

A3.2.1
Perform

Surveillance

A3.2.3
Locate Targets

A3.2.4
Call for Fires

Ground OpsAir Ops

Joint Fires Architecture (Army and AF only)

Figure 6: Joint Fires Architecture

Within the Joint Fires Architecture, Army operations are “oversimplified” due to the
scope and viewpoint of the architecture, which, from an Army perspective, is only
concerned with the activities that generate a call for fires that will be answered by an AF
close air support asset.

With the goal of combining this architecture with an Army Combined Arms Unit of Action
architecture, one begins to see the complexity of this endeavor.

Army Combined Arms UA Operational Arch (Notional)

Figure 7: Army Combined Arms UA Operational Architecture

The activities assigned to the Army RSTA unit will be at different levels of abstraction in
the two architectures. The activities depicting Army Maneuver, RSTA, and Fires
execution will be depicted (in one form or another) in both architectures, but deciding
where to “join” the architectures will require both manual and (hopefully) automated
analysis aided by tools. Code can be developed to accomplish fuzzy searches at each
level of nodes being compared in each model to determine candidate joins in the

architecture. In the case of activities being searched, the searches at each level
(traversing of levels easily accomplished via n-tree algorithms in any 300-level
programming textbook) should accomplish analyses of:

• Is this the same activity (fuzzy search of name and definition to determine
relative match of name/key words in definition)

• Inputs/Outputs (fuzzy search of title and definition, similar to above)

Once matches are determined, the tool should facilitate the merging of architectures,
including the building of bridge/alias objects, as applicable.

Ground Ops

Analysis Start Point(s)
Potential Architecture Overlaps

Architecture Amalgamation Analysis

Figure 8: Complex

Additional sources for primitives to be amalgamated

The repository that is used for the collection and amalgamation of JCIDS architecture
data can be linked to multiple types of tools, additional sources can be utilized for the
development of the primitives. These include Modeling and Simulation, Operational
Testing and Evaluation, Doctrine and others. The more communities that rely on the
repository as the “source of the gospel,” the more current, relevant, and usable it
becomes. It is a question of getting enough organizations “on board” to reach the
tipping point at which the ubiquity of its use becomes an across-the-board enhancement
to the enterprise.

Even when political hurdles surmounted, there’s going to be the issue of security and
access. Essentially what we are proposing with a system such as this is a “net centric
in the slow” – tailored, filtered, and access control/security-appropriate information to
specific users. The information amalgamated would be provided at certain URLs. To

accomplish this, each organization (including the “unanticipated user”) needs to have
either a Service Level Agreement (SLA) or published documentation regarding “what to
expect” from different tailored user views.

Facilities, governance, and most importantly, funding will be required to accomplish
these goals. The information collected by the various DoD programs and other
components needs to be federated and made available in a user friendly way, in an
access control-based or Service Level Agreement-based paradigm across multiple
disciplines, not just enterprise architecture. Authority must be established so that the
determination of “who’s right” and “who’s paying for changes” to the architectures can
be discussed and resolved. Even though the charter of most CIO and “-6” organizations
reflects this, to this date the mandate has been unfunded, and as a result has not been
accomplished. This will be discussed in the next section.

Governance Process

Why governance? According to Wikipedia, “The term governance deals with the processes
and systems by which an organization or society operates.”

What do we mean here when we assert that a governance process is required to
support this methodology? Due to the way in which program offices are funded and
staffed, there is simply no impetus for the program manager, with limited budget and
resources, to adopt the use of tools such as this without a quid pro quo.

Therefore, the governance process we’re advocating is a combination of “carrot and
stick” – build useable tools, and the user will be inclined to use them (carrot) – codify the
use of the tools in a service-level agreement between organizations, with funded,
actionable roles that have decision-making power over “outliers” – the stick.
Organizations won’t “sign up” to the latter, without having the former in place. As a side
note, OASD/NII has recognized the requirement for governance, and is in the process
of releasing new guidance on this subject as this paper is being written; our suggestions
here codify a means (but not necessarily the means) for implementation of governance
of this process.

While not advocating the monolithic “architecture and everything else” data store, we
believe something in-between makes sense. Thus, we’re suggesting a 2-tier (or n-tier)
structure in which product centers (Navy: NAVAIR, NAVSEA, etc.; AF: Air Armament
Center, Aeronautical Systems Center, etc.; Army: Tank and Automotive Command,
Aviation and Missile Command, Communications & Electronics Command) build and
maintain the repositories containing the “enterprise by amalgamation” architectures,
with a feed-in to a larger repository (i.e., Defense Architecture Registry System) that
would manage and present enterprise architecture primitives and data via a useable
interface.

This method would require some degree of service level agreement be enacted at the
product centers, in which an arbiter at the product center would be assigned to review

individual platform architectures, and adjudicate differences in the assertions made by
each of the program offices in building their architectures. But, why would a program
office “sign up” for that?

In doing so, the product center would be building a resource that could be reused
across all architectures within the product center. For a concrete example, take
NAVAIR or Aeronautical Systems Center, which are concerned with building air vehicles
for the Navy and Air Force, respectively. If each of these, as a function of building their
enterprise data store via amalgamation, could assemble “reuse modules” regarding
activities, systems, nodes, etc.; each individual platform architecture would then benefit
from not having to develop these from scratch. A concrete example: the architect
beginning a platform architecture goes to the portal for the data store (which
presupposes one exists, is user friendly, etc.), and upon identifying himself and his
purpose, gets a package of “pick list seed data” for his architecture, including
architecture artifacts related to air traffic control, aerial navigation, and general “fly the
plane” information, all tied to the requisite doctrine.

Upon completing a build of their specific architecture, the program office would submit it
up-chain to the product center for assessment. The product center assessors would
then assess the architecture for cross-program interoperability and connectivity, and be
able to adjudicate inconsistencies between platform-level architectures. For a concrete
example, we return to our C2 platform and Tactical Fighter example and look at
information exchanges asserted by each in their respective architectures:

• C2 Platform, to/from Tactical Fighter:

o To (from Tactical Fighter): Air_Tracks, Surface_Tracks
o From (to Tactical Fighter): Air_Tracks, Surface_Tracks

• Tactical Fighter, to/from C2 Platform:
o To (from C2 Platform): Air Track, Ground Track
o From (to C2 Platform): Air Track, Surface Track, PPLI

The product center assessor would need to (at a minimum), facilitate the reconciliation
of number and type of exchanges between the two platform architectures. We’ve
already discussed “scrubbing vs. bridging” earlier – this merely provides the means to
get agreement across disparate architectures of information being sent, such that one
can chain together multi-platform architectures for analysis purposes.

As they are built, these groups of “pick list seed data” can be submitted up-chain to
DARS or other service-level (as in Army, Navy, Air Force, Marines), enterprise-level
architecture data stores for further reuse.

Implications:

• Wherever the “pick list seed data” are amalgamated, serviced, and offered to
the user (i.e., product center, service [Army, Navy, AF, Marine] architecture
repositories, or DARS), the interface for submitting and retrieving the artifacts

must be user friendly. There’s no way of sugar-coating this one: current and
previous implementations of reuse libraries (DoD Data Standardization
Process, DoD MetaData Registry, DARS, etc.) are “user-hostile.” If the user
cannot find information applicable to the task he’s trying to accomplish within
about 5 minutes of logging on to the portal (which implies a management
process in-and-of itself, including management of profiles, and classes of
user…), then the tool simply won’t be used.

• It must be noted once again that the assessor needs to be the “rare breed”
that understands both operations and technology – this person cannot be
someone “right out of school.”

• Implementation needs to be properly funded. This is a “pay now, or pay more
later” alternative. Engineers know that paying to get the design correct up-
front saves money in the long run; this is counter-intuitive to financiers, who
want to delay all expenses for as long as possible.

• One might argue that the DoD MetaData Registry process, already is
providing the facility to accomplish what we’re speaking of here. User-
hostileness of the interface aside, “the way it’s supposed to work” is
Communities of Interest (COIs) are supposed to build and maintain the
structures and formats of information passed within and between COIs.
However, there is no COI management process with the DoD; case in point -
COIs in the DoD Metadata Registry do not match the COIs within DARS, and
don’t match the COIs listed in the Global Information Grid Enterprise Services
website - if these don’t match, who’s in charge…?

• In order for a process such as this to work, there needs to be a fully-
understood-by-the-program-office Data Administration and Stewardship
process put into place. This process would need to contain an agreement
similar to service level agreements which state agreed upon responsibilities
between program offices and an overarching management process. This
would enable an overall data administration process to begin in earnest.

Application to Other Fields

While DoDAF architectures are mandated in support of the JCIDS process and
Information Support Plans, the use of architecture products extends much further. One
example is found in the modeling and simulation process supporting system
development.

Design and development of information infrastructures, processing systems, and
communication networks includes the specification of many complex communication
mechanisms and protocols whose logical behavior must be verified and whose
performance must be evaluated, in order to detect and correct conceptual errors and to
minimize overall risk and cost. In this context, at the conceptual level, it is essential to
use cost-effective formal description and Modeling and Simulation techniques that will
enable inferences to be drawn about the future behavior of the systems being designed
and developed.

The modeling, analysis, and performance evaluations of Command, Control,
Communications, Computers and Intelligence (C4I) systems and large-scale wireless
mobile networks require the use of concise, formal modeling and description techniques
that can (1) simultaneously represent configurations of large numbers of components
and behavioral mechanisms like parallelism, competition, synchronization by message
exchange, and time constraints; (2) allow qualitative analysis to verify properties such
as boundedness, liveness, sequence of events, and temporal relation between two
events; and (3) allow quantitative analysis to obtain measures of effectiveness (e.g.,
performance evaluation, capacity planning, dependability, reliability, fault tolerance,
removal, and forecasting).

The starting point for defining much of the required data to support modeling and
simulation is the development of a well formed system architecture. As depicted in the
following diagram, the artifacts of the system architecture process are incorporated into
the simulation Description File and provides the basis for the simulation.

Airframe

Ext Depot M aintenance Center

Ext Communications Squadron

_Ext_GPS Sat

Ext Weather Serv ice

Ext
Air Operations Center

_Ext_USSTRATCOM

_Ext_Air Inte l ligence Agency

_Ext_Ai r Warfare Center (AWFC)

_Ext_Airborne C2 Pla tform

_Ext_Other B-2 Aircra ft

Ext Nationa l Geospatia l Inte ll igence Agency

_Ext_Threat Pla tform

_Ex t_US SPACEC OM

_Ext_BLOS Gateway Sate l li te

Muni tions
Squadron

Aircra ft
M aintenance

B-2 M iss ion
Planning &

Debrie fing System

_Ext_Ai r Tra ffic Control Fac il ity

Ext Ai rfie ld

Ext Other Friendly AC

_Ext_LOS Link-16 Interface
Fac il it y

_Ex t_Na vig ation St ation

Sate ll ite

BLO S
Link 16

LO S
Li nk-16

I M IS Net work

Ext Air Refueler

Ai r Gap Interface
between Network and B-2
M iss ion Planning System

Strategic
M iss ion

Pl anni ng &
Debrie fing
System

AF Global
Weather
Cen tr a l

(AFGWC)

GPS Transmitter

Air Force
Weather

Forecas t System

I MIS

OTAR Key
Distribution

System

IFF Interrogator

Threat System

IFF Interrogator/
Transponder

IFF Interrogator

KU Band
Transponder

DMDSI IE

IFF
Interrogator/
Transponder

EHF
SAT COM

EHF SATCOM

IFF
Interrogator/
Transponder

Battlespace
M anagem ent/C2

EHF SATCOM

OBITS

IMDS
RSS

EHF
SATCOM

OGP

OGP

PRC-117

JWICS

JTIDS
TAC AN

JTIDS

JTIDS

TBMCS

DCGS JWICS

JTIDS

AFEKMS

TACAN

JTIDS

IMIS

DM VR

PRC-117

JTIDS

C&TCS

NSS MMS

JM PS

DMS

JW ICS

TACAN

TACAN

ILS

TACAN JTIDS

IMIS - WAN

IMIS - WAN

Sate l li te Com munications

Sate lli te Communications

EHF SATCOM

EHF SATCOM

EHF SATCOM

EHF SATCOM

SIPRNET

Radar

Data Trans fe r Dev i c e

Removable Media

SIPRNET

NIPRNET

JWICS

Sate l li te Com munications

SIPRNET

SIPRNET

IFF

GPS Network

Raw Sensor Data

Link-16

Link-16

TACAN

Link-16

Link-16

TACAN

TACAN

IFF

IFF

IFF

ILS

IFF

SIPRNET

Key Transfer Device

Link-16

Link-16

IM IS- LAN

System
Views

Data
Comm Devices, OpNode
Networks

Operational
Views

B-2
Aircraft

Ext
JAOC / CAOC

E xt
Air Force Information

Warfare Center

E xt
Depot-Level

Maintenance Facilities

Ext
Other Mission

Package
P articipants

Ext
USSP ACE COM

Ext
Airborne C2 Platform

E xt
Threat Platform

Ext
Air Traffic

Control Facility

E xt
National Geospatial
Int elligence Agency

E xt
GP S P latf orm

Mission Planning

Ext
Higher Echelon

Misson Elements

Ext
Other B-2 Aircraft

Munitions Unit

Unit-Level
Maintenance

Ext
Navigation Site

Ext
Fr iendly AC

E xt
Air Force S pace

Command

E xt
Air Intelligence

Agency

Ex t
Air Refueling Unit

Ext
Subordinate Mission

E lements

_Ext_Forward
Observer

Ext
Air Force Weather

Agency

Ext
US STRATCOM

E xt
Local Crypto Key

Provider

Ext
Airfields 58

57

18

55 54

30

53
52

25

23

40

34

44

33

4

42

36

29

9

46

51

48

13

17
47

11

35

2

26

1

6

50
24

22

39

43

5

14

41

8

45

49

12

16

3

7

IERs & Traffic Model

Operational
Concept

Forces & Organizations
Data

Data
Simulation
Description

File

Device
Models

Analysis

Modeling & Simulation Engine
Results

Design
ProcessEngineering Changes

System Architecture Support to Modeling &
Simulation During the Design Process

Figure 10: System Architecture Support to Modeling and Simulation

Other Useful Work on This Concept

Other groups and organizations are currently exploring the concepts discussed in this
paper as well. Some are focusing on governance (DoD CIO), others on tools (SADIE,
Front End). What we have proposed is a methodology that should be able to be used

with any toolset that has the necessary technical capabilities and is used with the
necessary governance. A list of some (but not all) of the related work follows.

Steve Ring and others of the MITRE Corporation continue to do work and research on
the use of architectures for other DoD processes. The “Integrated Architecture-Based
Portfolio Investment Strategies” was presented at the 10th annual ICCRTS in 2005.
Further information on this and their work on ‘executable’ architectures can be found at
the MITRE website (http://www.mitrecorp.org/news/the_edge/).

The office of the DoD CIO is putting forth an effort to direct the governance of DoD
architectures. The recently released draft version of the DoD Enterprise Architecture
Federation Strategy (04 December 2006) is the first of a number of documents that will
outline how OASD/NII intends to administer the relationships of federated architectures.

The Swedish Defence Material Administration has commissioned Front End AB, a
software company (www.frontend.se) to develop a tool (SBA Toolbox –a concept
demonstrator) that interfaces with architecture tools (like Telelogic System Architect®)
and runs scenario based simulations from the architecture data collected, specifically in
the OV-6c DoDAF and NAF work products. This tool is not currently publicly available
for purchase or use, but the company is publicizing their work at events such as the
DoD Enterprise Architecture Conference held October 2006 in Williamsburg, VA.

The Defense Modeling and Simulation Organization, among others in the M&S
community, are actively involved in creating Data Interchange Formats (DIF) for
exchange of data among simulation engines. A DIF defines how data will be
exchanged between applications; it is a formal specification of the structure and format
of data to be interchanged between data producers and consumers. A DIF is specified
sufficiently so that tools and applications can be developed which may support the
specific subject area to exchange information which both for data input and output. A
DIF as the following characteristics:

• Independent of the communications method used to exchange information
• Encourages the development of related tools and applications that can be easily

integrated with existing tools and data
• Becomes the blueprint for mapping the data elements from one database to

another
For more information on DIFs, see the Defense Modeling and Simulation website:
https://www.dmso.mil/.

The SYSCOM Architecture Development & Integration Environment (SADIE) has been
developed and maintained by SPAWAR. SADIE can be generally thought of as an
application service, where SPAWAR and the SADIE program are providing fee based
access to a number of enterprise architecture modeling and integration tools (the
Enterprise Elements Repository, the Telelogic System Architect tool suite [multiple
versions], Telelogic DOORS, Microsoft Access, and the Citrix MetaFrame Conferencing
Manager) to allow collaborative development and configuration management of DoDAF
architectures for the Navy Systems Commands. This suite of modeling, repository, and

management tools is in essence an enterprise resource that allows for collaborative
development, configuration, analysis and reporting on the enterprise. While there is no
publicly available website, information about SADIE can be found in “SWEA SADIE 101
rev2.ppt”, written by Paul W. Johnson of SYS Technologies and at promotional booths
that SPAWAR sponsors at events like the DoD Enterprise Architecture Conference held
October 2006 in Williamsburg, VA. The actual role based access to SADIE is found
here: https://sadie.spawar.navy.mil.

Conclusion

The need for enterprise level architectures is intuitive. Everyone understands the need
to bring platform level architectures together in larger environments so we can manage
the interoperability process and understand the system-wide implication of changes.
The best way to accomplish this is, however, not well understood. Some have
suggested that a well structured data dictionary will solve the architecture integration
problem. Unfortunately, the idea of common data dictionary has been around for more
than thirty years without reaching success; and we have no reason to believe we will
see success in this area within the next thirty years.

In this paper we have suggested an approach to addressing the problem; we have not
suggested a definitive solution. We believe substantial research remains in this area.
The research needs to address, concepts for integrating architecture, tools required to
support the methodology and governance required to manage the process.

References

“An Activity-Based Methodology for Development and Analysis of Integrated DoD
Architectures”; C2 Assessment Tools and Metrics Track; S.J. Ring, D. Nicholson, J.
Thilenius, S. Harris; 2004 Command and Control Research and Technology
Symposium - The Power of Information Age Concepts and Technologies.

“An Activity-Based Methodology.ppt”; S. Harris, S.J. Ring, D. Nicholson, J. Thilenius;
March 2003.

Chairman of the Joint Chiefs of Staff Instruction 6212 01D: 8 March 2006.

“Common Activities in Data Interchange Format (DIF) Development”; Peggy D. Gravitz,
Jack Sheehan, Thom McLean.

Department Of Defense Instruction 4630.8; June 30, 2004.

DoD Enterprise Architecture Federation Strategy, Draft Version 1.01; 04 December
2006.

"Governance"; Wikipedia, the free encyclopedia; 26 Dec. 2006;
http://www.reference.com/browse/wiki/Governance.

“Integrated Architecture-Based Portfolio Investment Strategies”; Assessment, Tools,
and Metrics; S. J. Ring, B. Lamar, J. Heim, E. Goyette; 2005 International Command
and Control Research and Technology Symposium - The Future of C2, June 2005.

“Joint C4I Interoperability” (Cartoon), Jim Klossner, Federal Computer Week, 1105
Media, Inc.

“SWEA SADIE 101 rev2.ppt”; Paul W. Johnson, SYS Technologies; June 2005.
Chairman of the Joint Chiefs of Staff Instruction 6212 01D; 8 March 2006.

Acronym List

ABM: Activity Based Methodology
AF: Air Force
AV: All Views
AWACS: Airborne Warning and Control System
BPMN: Business process Modeling Language
C2: Command and Control
C4I: Command, Control, Communications, Computers, & Intelligence
C4ISR: Command, Control, Communications, Computers, Intelligence, Surveillance, &
Reconnaissance
CADM: C4ISR Core Architecture Data Model
CAIV: Cost as an Independent Variable
CDD: Capability Development Document
CIO: Chief Information Officer
COIs: Communities of Interest
CPD: Capability Production Document
DARS: DoD Architecture Registry System
DIFs: Data Interchange Formats
DISRonline: Defense Information Systems Registry online
DoD: Department of Defense
DoDAF: DoD Architecture Framework
DoN CSFL: Department of the Navy Common Systems Functions List
DOTMLPF: Doctrine, Organization, Training, Materiel, Leadership, Personnel, and
Facilities
GIG: Global Information Grid
IAW: In Accordance With
ICD: Initial Capability Document
IDEF: Integrated DEFinition methods
ISP: Information Support Plan
IT: Information Technology
JCIDS: Joint Capabilities Integration and Development System
JFCs: Joint Functional Concepts

JOCs: Joint Operational Concepts
KPP: Key Performance parameter
LISI: Levels of Information Systems Interoperability
M&S: modeling and simulation
NAF: NATO Architecture Framework
NATO: North Atlantic treaty Organization
NCOW RM: Net-Centric Operations and Warfare Reference Model
NR-KPP: Net-Ready Key Performance Parameter
NSS: National Security Systems
OASD/NII: Office of the Assistant Secretary of Defense/Network & Information
Integration
OASIS: Organization for the Advancement of Structured Information Standards
OMG: Object Management Group
OT&E: Operational Testing and Evaluation
OV: Operational View
PfM: Portfolio Management
RSTA: Reconnaissance, Surveillance, and Target Acquisition
SADIE: SYSCOM Architecture Development & Integration Environment
SDD: System Development and Demonstration
SLA: Service Level Agreement
SPAWAR: Space & Naval Warfare Systems Command (US Navy)
SV: Systems View
SYSCOM: Systems Command
TV: Technical Standards View
UA: Unit of Action
UJTL: Universal Joint Task List
UML: Unified Modeling language
W3C: World Wide Web Consortium

