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Identifying the Enemy – Part I: Automated Network Identification Model 
Abstract 

To successfully predict the actions of an adversary and develop effective counteractions, the knowledge of the enemy 
organization, objectives, and the modus operandi are needed. Current approaches to analyzing the threat are manual, 
labor-intensive, and require significant amount of time. In empirical studies, humans exhibited decision and 
confirmatory biases, which negatively impacted their assessment of the adversary. Compounded by huge amounts of 
data, large information gaps, and significant complexity of the problem people need to analyze, the ability of the 
intelligence teams to recognize an active enemy is reduced, further resulting in decreased effectiveness of 
counteractions and unintended consequences. 

In this 2-part paper, we discuss a project that focused on developing an automated adversarial organization 
identification technology. Used as decision support system, this technology, called NetSTAR, promises to result in 
significant manpower, decision time and error reductions during threat analyses tasks. In our experiments, the 
NetSTAR system has significantly outperformed unaided human analysts. In part I of this 2-part paper, we discuss the 
problem setup and provide a description of the computational algorithms at the core of the NetSTAR system. A 
computational experiment is provided to assess the capabilities and robustness of the NetSTAR algorithms to data 
uncertainty and problem complexity. 

1. Motivation: Adversarial Analysis Problem 

The U.S. Army conducts operations using doctrinal military decision-making process (MDMP) (Wade, 
2005). One of the important steps in the MDMP process, intelligence preparation of the battlefield (IPB), 
requires the assessment of enemy’s command and control structure to predict the actions of the adversary, 
identify high-value targets, and develop effective counteractions. Currently, the intelligence operations 
officer provides input to help the planning officer develop the IPB templates, databases, and other products 
that portray information about the adversary and other key groups (Figure 1) in the area of operations and 
area of interest. These products contain information about each group’s leaders and decision makers, size 
and location of enemy forces, and linkages among groups and leaders. The linkage information is produced 
manually from the data on activities (using activity matrix template) and intelligence on the relationships 
between individuals.  Using this information, a link diagram is developed to show the interrelationships of 
individuals, organizations, and activities.  
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Figure 1: Sample Information Operations Doctrinal Template (adapted from (FM 3-13, 2003)) 

Knowledge of connections (e.g., communication, command) between individuals and specific roles of 
individuals in the covert organization are needed because of the following effects. First, connections 

 

2 

 



12th ICCRTS-2007 “Adapting C2 to the 21st Century” 

 

3 

 

provide a means to share information and resources, and coordinate execution of operations. Second, 
captured individuals can share information about those to whom they are connected. Since it is a given that 
members of a cell share information and can compromise one another, the relevant question might be how 
interconnected are the cells that make up the organization? And third, capturing individuals, destroying 
bottleneck resources, or disabling organizational connections would allow the disruption of enemy’s 
operations and decision–making processes for preemptive actions. Therefore, identifying an enemy 
objectives and C2 organization – command hierarchy, communication networks (formal and informal), 
control structure (amount, distribution, and access to resources), and roles of individuals – are the key 
elements of current U.S. Army information operations. 

Generally speaking, an organization is a group of people intentionally brought together to accomplish an 
overall, common goal or a set of goals. Organizations can range in size from two people to tens of 
thousands. One of the most common ways to look at organizations is as social systems (McNamara, 2005). 
Simply put, a system is an organized collection of parts that are highly integrated in order to accomplish an 
overall goal. Organizations exist in many domains – military, business, civic, political, religious, as well as 
virtual. These organizations have different decision-making principles, levels of decentralization, 
formalization and adherence to strict organizational rules and doctrines. There are many difficulties 
associated with identifying the organizations that have many informal relationships among their members 
and change dynamically over time. In our research, we focus on the command and control (C2) 
organization, which is designed to manage personnel and resources to accomplish the mission requiring 
their collective employment. Such organizations are distinguished by relatively formal structures and 
limited variability over time, and are common to both friendly and adversary military forces. Given specific 
functions and principles of individuals together with the structural form in which they are organized, 
myriads of the different potential organizations can be constructed. All of them are based on the underlying 
C2 principles defining how individuals interact in the organization and what actions they perform (Alberts 
and Hayes, 2006). These interactions can be utilized to detect and understand organizational relationships. 

Currently, only a limited set of tools is available to intelligence operators to analyze, correlate and visualize 
the data.  The two most commonly used network analysis tools are StarLight1 and AnalystNotebook2. 
These tools are often used together with technologies performing data mining and automated entity and link 
discovery from text sources (Miller et al., 2000; Grishman, 2003; Stolfo et al., 2003) or manually using 
HUMINT and other data sources.  They rely on domain understanding (Krebs, 2001; Sageman, 2004) or 
applied social network analyses (Van Meeter, 2001; Dombroski and Carley, 2002; Dombroski, Fischbeck, 
and Carley, 2003; Skillicorn, 2004). However, these tools merely present and visualize the networks formed 
by observations and do not solve the network identification problem of “cleaning uncertain observations” in 
the presence of missing, irrelevant, deceptive, and mislabeled attributes and links. It is evident that none of 
the existing  tools provide automated threat prediction and assessment capabilities that can reason from 
multi-source data and that support the decisions about the enemy command and control organization. 

As a result, current approaches to analyzing the threat are manual: the intelligence analysts rely on their 
experience to make sense of visualized structural and temporal data. Large information gaps, including 
missing data, deceptions, and errors, have to be dealt with, and analysts often fill the gaps with their 
experience, which may not be applicable to the problem they need to solve, thereby resulting in decision 
biases. In addition, people tend to exhibit confirmatory biases when the first seemingly valid hypothesis is 
selected and further relied upon during the analysis. This issue is compounded by huge amounts of data and 
complexity of the problem people need to analyze, influencing what data is used and which is filtered out 
and thus never studied. All these factors negatively impact the ability of the intelligence team to recognize 

                                                 
1 http://starlight.pnl.gov/  
2 http://www.i2.co.uk/Products/Analysts_Notebook/default.asp  

http://starlight.pnl.gov/
http://www.i2.co.uk/Products/Analysts_Notebook/default.asp
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an active enemy and further result in decreased effectiveness of counteractions and unintended 
consequences. 

At present, there are no tools that can help the analysts reduce the number of hypotheses that need to be 
analyzed, or focus their attention on only the most critical information, thereby filtering out the information 
that is not critical to identification of adversarial roles and relationships. None of the existing tools can 
utilize previous experiences of adversarial network analyses in making cross-references from current 
situation to previous case studies. In addition, only experts in organizational theory can take full advantage 
of the existence of topological constraints on the organizational structures of the adversary and effects of 
structures on individual and team behavior. 

In our 2-part paper, we discuss a project that focused on developing an automated adversarial organization 
identification technology. Used as a decision support system, this technology, called NetSTAR, promises to 
result in significant manpower, decision time and error reductions during threat analyses tasks. In particular, 
this decision support system will offer the following benefits: 

• Detect and classify the groups and individual actors’ roles; 
• Identify the adversaries’ objectives and predict their next actions; 
• Allow users to define hypotheses 

about the adversarial networks; 
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• Construct and store network 
models from previous adversarial 
analyses; 

• Match hypotheses and model 
networks against currently 
observed data to rank-order 
hypotheses and offer the users a 
limited set for further analysis; 

• Focus the user on analyzing or 
collecting the data elements most 
critical to adversary’s 
identification. 

As the first phase of system validation, we 
have compared the ability of NetSTAR to 
automatically identify observed (data) 
networks against unaided human analysts. 
The set of potentially true (model) 
networks was given, and both human 
analysts and NetSTAR system had to pick a model network to correspond to observed data network and 
specify the match between the nodes of model and data networks. In our experiments, the NetSTAR system 
has significantly outperformed unaided human analysts. In part I of this 2-part paper, we discuss the 
problem setup and provide a description of the computational algorithms at the core of the NetSTAR 
system. Computational experiment results are provided to assess the capabilities and robustness of the 
NetSTAR algorithms to data uncertainty and problem complexity. 

EnvironmentEnvironment
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Real-time activity log
Real-time comm. intercepts
Properties

data C3I
network
data C3I
network

2. Method: Automated Organization Identification Model 

NetSTAR is an optimization-based model to identify an adversarial organization and mission using 
observations about actors’ actions and interactions (Levchuk and Chopra, 2005; Levchuk, Levchuk, and 
Pattipati, 2006). The NetSTAR (Fig. 2) model performs hypothesis testing using a probabilistic attributed 
graph matching algorithm. The algorithm finds a mapping of observed actors (nodes in observed data 
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Figure 2: NetSTAR Adversarial Identification Process 
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network) to organizational positions (nodes in model networks from organizational library) and rank-orders 
the organizational network hypotheses based on their likelihood values.  

The data used by NetSTAR for identifying adversarial organization and mission consists of partially 
categorized interactions and relationships among tracked actors (e.g., communication transactions, such as 
“members of a militant wing engaged in a meeting with weapons suppliers at 11:35 am for 35 min to 
procure explosives”) and their individual actions (e.g., individual and joint operations, such as “BLUE team 
discovered a safe house and apprehended RED operatives attempting to manufacture weapons”).  Such data 
is very noisy and sparse due to challenges in data collection, e.g. limited sensors and/or human intelligence, 
security of adversary communications, uncertainty in voice capturing and text translation, data association 
uncertainty, etc.  Therefore, our framework has to rely on probabilistic association between tracked actors 
and the nodes in the model (hypothesized) networks.   

As a result of observation pre-processing, we are observing a network of relationships of different types 
among the enemy actors (individuals, groups, physical resources), tasks, goals, etc. This network must be 
mapped to the network of command, control, and communications of the hypothesized organization.  Given 
this type of data, we pose the problem as one of finding the mapping between the nodes of two graphs: 
observed (also termed data) network of adversary actors and their interactions/relationships, and hidden 
network corresponding to the hypothesized (also termed model) network (Fig. 3).  The mapping is found by 
maximizing a match score, which could be a likelihood function or a posterior probability. The mapping 
must account for the attributes or features of both nodes and links that are mapped, and the models of 
attribute uncertainty (the probability of observing the attribute(s) correctly).  Node attributes can include 
areas of responsibility, performed functions and/or tasks, expertise of the node (e.g., sniper operations; 
weapons sales; money laundering; etc.), while the link attributes may correspond to types of interactions 
and relationships between nodes in the adversary C3I organization (e.g., communication messages may be 
of the following type: request for or transfer of information, resource, action; acknowledgement; etc.). 

Enemy commanders

Units/Assets

Tracked Actors Observed Interactions Labeled Network
d1

d2

d3

d4

d5

r1

r2
r3r4

c1,4 c1,2c1,3

c2,3

a2,3
a3,2

a3,1

a1,1

c4,5
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• Vector of values for 

quantitatively representing 
multiple relationship types

• Value weighs the relationship

Link labels
• Source: types of messages
• Example: transfer of information; 

action request; synchronization; 
etc.

Node labels
• Source: area of responsibility, 

performed functions/tasks, 
expertise

• Example: sniper ops; sales of 
weapons; money laundering  
Figure 3: Problem Setup 

Formally, the NetSTAR model is the following. We represent a hypothesized organization as a graph 
),( MMM EVG = , – a model network where  is a set of CMV 2 and resource nodes and  is a set of edges ME

among them.  Without loss of generality we assume that we deal with a single network structure of the 
enemy organization.  The edges can also be expressed in the form of an adjacency matrix: βα ,MM = , 
where  if and only if 1, =βαM ME∈),( βα . Observed data is aggregated to a data network – a graph 

),( DDD EVG =  with adjacency matrix βα ,DD = . Here,  is a set of observed individuals and resources, DV

and  is a set of observed relationships among them. We need to discover the mapping from actors to DE
their roles in the organization – that is, from the nodes of data graph to the nodes of model graph. This is 

 

5 

 



12th ICCRTS-2007 “Adapting C2 to the 21st Century” 

accomplished by finding an assignment matrix 
MD VVaasS

∈∈
=

αα ,, , where 1=αas  if data node  is mapped a

to model node α .  

In our previous research (Levchuk et al., 2006), we have presented an algorithm for finding an assignment 
matrix  that maximizes the likelihood function S ( )SGGP MD ,| , which is equal to the probability that the 
observation (data network) has been generated by the hypothesized organization (model network) given the 
roles of tracked individuals (mapping between nodes of data and model graphs). In this model, the 
uncertainty of observing relationships between the network nodes is modeled using false alarm probability 
for observed, but deceptive, activities and probability of a miss for unobserved secure/covert activities. 
While direct optimization of the likelihood function is infeasible, an approximate solution can be obtained 
by relaxing a structural consistency measure to consider subgroup matches, and then employing expectation 
maximization algorithm to find the mapping iteratively. Not only do we obtain the correspondence of 
tracked individuals to specific nodes in each hypothesized organization, but we can also rank-order these 
associations for each organization using values of likelihood functions ( )SGGP MD ,| .  

Hypothesis:
Model Network

Observation:
Data Network

Leader

Materials Execution

Joe

Joanna

Steve

Need to find:
f: {Leader,Materials,Execution}→{Joe,Steve,Joanna}

map

(a) Network Mapping Problem (b) Equivalent HMRF Formulation

Random Field:
Hidden Nodes

HMRF Observations

V1

V2 V3

Set of node values:
{Joe,Steve,Joanna}

Leader

Materials Execution

 
Figure 4: Application of HMRF to Network Mapping 

An alternative to likelihood function estimation is to find the mapping that maximizes the a-posteriori 
probability . A corresponding maximum a-posteriori (MAP) estimator (Yu et al., 2007) is the ( DM GSGP |, )
basis for the results described in this paper. This estimator uses the Hidden Markov Random Field (HMRF) 
theory (Sutton and McCallum, 2006) to approximate the posterior probability using energy functions. In 
HMRF, a hidden field is defined by specifying the set of nodes, a finite set of values that those nodes could 
take, and a neighborhood structure and the concomitant probabilistic influence among nodes with Markov 
property. The observation about a point in the random field is obtained, and the problem is to find a node in 
the field that corresponds to this observation. The HMRF theory states that MAP-based solution can be 
found by minimizing an energy function equal to the sum of clique potentials of the HMRF graph. Figure 4 
shows how the HMRF is applied to finding the mapping between the nodes of data and model networks. 
The graph structure of the model network is used to construct the neighborhood structure of the HMRF 
graph. Each node of the model network is thus a node in the random field, and these nodes can take values 
from a set of names of tracked actors. The attributes of the model network nodes and links then constitute 
the observation for HMRF. The outcome of the HMRF is equivalent to a model-to-data node mapping, 
because HMRF produces a point in the random field that assigns the names of tracked actors to the nodes in 
the model network. 

3. Example of the Problem: How to Quantify Organizational Networks? 

The NetSTAR system evaluation leveraged many years of similar model-based experimentation cycles 
executed for the Adaptive Architectures for Command and Control (A2C2) research program (Diedrich et 
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al., 2003; Entin et al., 2003, 2004; Levchuk et al., 2003; Kleinman et al., 2003). This work studied the 
ability to use models to develop optimized military organizational structures for different missions and to 
encourage organizational adaptation. The A2C2 program included iterative cycles of human-in-the-loop 
(HIL) experimentation to evaluate and validate different command and control team structures. The A2C2 
experiments have catalogued a diverse set of outcomes from HIL runs for various organizations and mission 
conditions. For each HIL run from an A2C2 experiment, the data logs have been captured which include 
task execution logs (who does what, where, and when) and the communication interactions among team 
players. The latter information has been coded into distinct categories corresponding to several types of 
formal and informal interactions in a C2 organization.  

For our validation, we have inverted the problem to study the ability to recognize the U.S. military 
command and control Joint Task Force organization. The JTFs from A2C2 experiments under consideration 
consisted of 6 commanders, 8 regional leaders representing the commanders of ship platforms and bases, 
and 62 field assets (including helicopters, boats, special forces, UAVs, and weapon systems). The scenarios 
contained 36 classes of operations (including search and rescue, seize and capture ops, mine clearing, SAM 
sites, etc.) and a total of over 100 engagements. To geo-locate the engagements and define the areas of 
responsibility of commanders and leaders, we defined 6 geographical areas. The interactions among human 
and simulated entities have been captured from interface logs, voice communications among commanders 
have been recorded and manually tagged with one of the 12 communication categories (Entin, Diedrich, and 
Rubineau, 2003), and the links among simulated entities have been defined from simultaneous engagement 
in attacks on the same target (similarly to activity templates using currently in information operations). 

Table I:  Messages extracted from A2C2 Experiments 
Matrix 

ID 
From-To Message Types Events from A2C2 

scenarios 
Role in modeling 

(attribute of) 
1 Commander-Commander Command Voice communications Link 
2 Commander-Leader Command Launch messages Link 
3 Commander-Commander Coordination Voice communications Link 
4 Asset-Asset Coordination Attacks on same target N/A 
5 Commander-Asset Control Attack/Detect log messages Node 
6 Leader-Asset Control Attack/Detect log messages Node 
7 Commander-Area Responsibility Target selection and 

information request 
Node 

8 Commander-Task Responsibility Target selection and 
information request 

Node 

9 Asset-Task Responsibility Attack/Detect log messages N/A 
10 Asset-Area Responsibility Target selection and 

information request 
N/A 

Various events and activity logs have been translated into messages of four major types: command, control, 
coordination, responsibility. Table I explains how these messages have been generated. For each HIL 
simulation, based on the main four message types, we have constructed on the order of 1000-4000 messages 
and organized them into a set of 10 matrices, each corresponding to messages among specific entity classes. 
These matrices were specified using the counts of corresponding messages. To further simplify the 
problem, we defined the network nodes as consisting of commanders and regional leaders (14 in total). 
Nodes had attribute vectors assigned to them which quantified the amount of messages of the class 
corresponding to the attribute type. Commander nodes had asset control, task responsibility, and area of 
responsibility messages as attributes, while leader nodes had only asset control messages as attributes. 
Links among commanders had command and coordination messages as attributes, while links between 
commanders and leaders had command messages used as attributes. As a result, only 7 out of 10 matrices 
have been presented to analysts and the NetSTAR model. 
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The baseline 7-matrix data has been stored and normalized, and both a 2-person human analyst team and 
the automated NetSTAR model received a noisy version of it (Fig. 5) as a set of observations with deceptive 
messages (which did not exist in the original matrices), missing data (obtained by deleting messages from 
matrices), and noise and errors to other data elements (obtained by removing the entries in the matrix and 
randomly moving it to another entry of one or the other matrix). For the human team, we have generated 
network drawings based on the message matrices. 

(c) Normalized matrix

xxxCMD3

xxxCMD2

CMD1

CMD3CMD2CMD1

ScalingScaling

(b) Noisy Interactions

445CMD3

517CMD2

101CMD1

CMD3CMD2CMD1

Uncertainty
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Uncertainty
Model

(a) True Interactions

239CMD3

525CMD2

103CMD1

CMD3CMD2CMD1

 
Figure 5: Example of Data Setup 

The outcomes of human analyst team and automated identification model were then compared to judge the 
benefits of NetSTAR in terms of  identification accuracy (of organization identification and node mapping) 
and the time required to identify the adversary (which could be equated to manpower needs). 

4. NetSTAR Validation: Computational Experiment 

A set of 7 sample datasets from HIL runs for different organizational C2 structures has been selected for 
testing. In order to properly evaluate the NetSTAR benefits, we needed to answer the following two 
questions: 

(1) Is it possible to judge the impact of uncertainty on the quality of the organization identification and 
node mapping solution? 

(2) Is it possible to judge the impact of problem domain and complexity on the quality of the 
organization identification solution? 

To address the first question, our study included exploring various levels of uncertainty in the data. To 
address the second question, we conducted comparisons according to the type of organization that needs to 
be recognized. Different types of information is needed to recognize different types of organizations. In our 
pilot studies, we found that when the low-noise commander-to-subordinate intercepts can be obtained, a 
functional organization, where a single commander controls resources of the same type distinct from other 
commanders, is easier to recognize than a divisional organization, where each commander controls a variety 
of resources but has similar capabilities to other commanders. The divisional organization, which is similar 
in nature to militia organizations and is a standard for current U.S. Army force structuring, is more complex 
than the functional organization (which is specialization-based and a doctrinal organization for U.S. Navy’s 
composite warfare command) in terms of resource control, but can be easily recognized given the low-noise 
data of commanders’ activity locations, since commanders’ geographic responsibilities in divisional 
organization are distinct. Both functional and divisional organizations have elements that are encountered in 
today’s command and control teams, and thus a study of such “hybrid” teams is essential to explore how 
difficult it is for human analysts to use multiple types of information for C2 organization discovery.  

To simplify the analysis, the uncertainty in data was controlled using two parameters: (i) % of missing data 
( ), and (ii) % of deceptions or false alarms ( ). The approximate signal-to-noise ratio was then found mp fp

as 
f

m

p
p−1 . More details about human experiment and results are presented in the companion part 2 paper. 

Here, we describe the results of the computational experiment that compared the impact of seven levels of 
uncertainty (Table II). 
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Table II:  Levels of Data Uncertainty for NetSTAR Computational Experiments 

 Uncertainty Level Low-1 Med-1 Med-2 Med-3 High-1 High-2 High-4
% missing data 10 30 40 50 55 60 70
% deceptions/errors 10 20 30 30 30 35 45
SNR = true messages/deceptive messages 9 3.5 2 1.6666667 1.5 1.1428571 0.6666667  

For each of the uncertainty levels and the baseline organization, we have conducted 5 Monte-Carlo runs. To 
answer the question about sensitivity of identification to uncertainty, figure 6 shows the average results of 
organization and node identification accuracy for all organizational baselines. We can see that NetSTAR 
provides >2.5X better detection than human analysts under same uncertainty level, and NetSTAR achieves 
the same performance as human analysts under 3X higher uncertainty level. NetSTAR algorithm also 
provided a robust solution by being able to correctly identify 70% of actor-role mapping for 50% of missing 
data and 30% detection rate. 
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Figure 6: Sensitivity Analyses – Average Performance Results 

(Random = results of random identification; NetSTAR = results of automated algorithm identification; Humans = 
results of threat identification by human analysts during table-top experiment) 
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Figure 7: Sensitivity Analyses – Performance Results for specific Baselines (F=Functional; D=Divisional; 

D2=Hybrid; F3=Functional alternative) 

To answer the second question about the impact of domain and complexity of baseline solution, we have 
analyzed separately the accuracy of predicting specific organizational forms. Figure 7 shows the 
organization identification and node mapping accuracy for 4 out of 7 baseline cases. We have observed that 
there where no specific patterns in the data except for recognition of D2 (hybrid) organizational structures. 
Further analysis of the distance between organizational hypotheses networks revealed that this structure was 
significantly benefiting from the hypotheses set: all other model networks were far away from it (Fig. 8). 
The distance is found using the a-posteriori energy function for a situation without uncertainty. We then 
concluded that NetSTAR’s performance is affected only by distinguishability of organizational hypotheses 
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and not by experience biases. Since some hybrid organizations exhibit unique structural patterns, these 
patterns would improve the accuracy of NetSTAR in detecting non-traditional adversaries. 
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Figure 8: Minimum Distance from given Organization to Alternative Hypotheses Networks 

5. Conclusions and Next Steps: Guided Information Collection for Improved Identification 

In this paper, we have presented the NetSTAR system that can help information analysts to deal with 
complexity of adversarial characterization problem and improve the accuracy of their decisions. The 
experiments conducted during the NetSTAR program showed significant improvements that this technology 
can bring compared to unaided analysts. NetSTAR outperformed humans in both accuracy of organization 
identification and actor role identification, and was able to handle higher levels of uncertainty than unaided 
human analysts. Used as decision support system, NetSTAR promises to result in significant manpower, 
decision time and error reductions during threat analyses tasks.  

Current information operations and adversarial analysis require continuous situation monitoring and 
assessment. NetSTAR system is well-suited to handle online data collection due to the iterative nature of its 
algorithms and its ability to define how information elements can improve the ambiguity of current 
predictions. When additional information collection is possible, the ability to prioritize and plan these 
activities might be needed, especially when the data collection resources (sensors, human collection teams, 
reconnaissance units, interrogation facilities) are limited and the impact of collection efforts needs to be 
taken into account. Our core hypotheses-testing network identification approach can be extended to conduct 
cost-effective intelligence gathering to achieve maximum identifiability of the enemy network over time. 
The approach uses current network hypothesis ranking to come up with the most important missing 
information elements (features) that would facilitate the largest reduction in the ambiguity of organization 
identification. The data collection plan is then developed by ordering the data collection efforts for feature 
exploration in a collection tree. The construction uses the constraints on information collection resources 
and aims at maximizing the information gain from data collection efforts. As illustrated in Figure 9, 
intelligence collection planning can be integrated with network mapping and has the following steps: 

Step 1 (Network Mapping Output): The data network derived is matched against all hypothesis networks. 
The most probable hypotheses can then be further explored. Each node from the hypothesized network  is 
mapped to a data network node, or in other words is given an ID. This allows relating hypotheses to each 
other.  

Step 2 (Feature Extraction): We compare the hypothesis networks with the current data network to see 
which of the potential data elements (attributes of nodes and links) are missing. The resulting data elements 
are then classified as relevant (ones that distinguish the hypotheses) and irrelevant. The latter subset is 
discarded, and the former is categorized according to the action that needs to be performed to collect the 
data element, the cost of this action (e.g., in terms of time, money, effects of the action such as making the 
enemy suspicious of our presence, etc.), the question it is supposed to answer, and the corresponding 
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network relationship that it will resolve. Each action-data element is then called a “probe” to indicate that it 
is trying to explore the existence of a specific attribute and its value through active search in the 
environment. 

Step 3 (Intel Plan Design): An intelligence collection plan is constructed in the form of a decision tree. 
The nodes of this tree correspond to probes to be conducted to reduce the ambiguity of predictions. 
Branches from a decision node correspond to feasible probe outcomes and lead to nodes defining the next 
probing actions. Organization of the probes into a data collection tree is based on maximizing the 
anticipated information gain which contributes to our ability to distinguish among hypotheses. The probes 
can then be merged together for integrated intelligence collection actions. 

Step 4 (Guided Intel Collection): Guided intelligence collection is a dynamic execution of the intelligence 
collection plan, and is performed by taking actions based on a decision tree. After performing an action 
from a tree node, the process moves to the next node in the tree along the branch corresponding to the 
selected action’s outcome. At every step, the ranking of hypotheses is updated, which may result in a 
reduction of feasible hypotheses list. Guided intelligence collection can be conducted either sequentially or 
in a batch mode based on the availability of the budget (time, cost, resources, etc.).   
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Figure 9: Guided Information Collection Process 

The outcome of adversarial predictions would allow analysts to define the high-value targets and conduct 
counter-actions resulting in better effects against the adversaries. Automated tools are therefore needed that 
incorporate the knowledge of enemy C2 networks and mission into assessing  the vulnerabilities of an 
adversarial organization and finding the impact of BLUE’s actions against a partially identified RED side. 
Since adversarial analysis often produces multiple predictions of similar rank about the adversary, effective 
vulnerability and impact assessment models should rely on stochastic and robust approaches. Our current 
research is focused on addressing these challenges. 
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