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ABSTRACT 
 

Applying Spatial-Temporal Model and Game Theory to Asymmetric Threat 
Prediction  

Accurate predictions of enemy course of actions (ECOA) are  important to the  command 
and control optimization strategies in long-lasting battles. In most Command and Control 
(C2) applications, the existing techniques, such as spatial-temporal point models for 
ECOA prediction or Discrete Choice Model (DCM), assume that insurgent attack 
features/patterns, or at least the trends of behavior patterns, are static. However, this static 
assumption is no longer true for intelligent and organized insurgents in recent anti-
terrorism war.  These insurgents sometimes deliberately violate [Rational???] probability 
theory predictions so they can apply surprise attacks to create more casualties and spread 
terror. 
 
In this paper, a new game theoretic framework is proposed for modeling dynamic 
changes of enemy behavior features and predicting future threats. This framework 
semantically combines several different approaches; namely, a feature prediction game, 
higher level hybrid data fusion, techniques to provide concrete spatial-temporal modeling 
and prediction, emotion analysis of adversary rationality and non-rationality, deception 
identification and modeling, hierarchical knowledge representation, and a non-zero sum 
stochastic adversarial Markov game. We mainly describe the modification of existing 
spatial-temporal point models, the fusion of dynamic game feature selection technique 
and dynamic cohesiveness feature selection technique, the ontology about 
selected/unselected features, and construction  of probability predictions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
1.    Introduction 
 
In recent years, many models and techniques have been applied to symmetric adversarial 
situations such as wargaming or criminal cases with  plenty of prediction results. 
However, asymmetric adversaries faced by U.S. forces become more and more frequent 
and satisfying predications are still quite difficult to obtain. With a belief that the end 
justifies the means and not constrained by some basic morality, asymmetric adversaries 
are often able to engage surprise attacks and successfully disappear before U.S. forces 
have time to concentrate. Adversaries’ ability to learn and adapt their attack patterns and 
the often unstructured data sources such as ontology information complicate this problem 
even more. Information that could be used to dynamically identify attack patterns and 
changes of patterns and predict when-where-how such attacks are most likely to happen 
will greatly benefit U.S. forces by reducing such surprise attacks to non-surprising 
events. 
 
To successfully model and predict the adversaries’ most likely future courses of actions 
(COAs), automated processing techniques that identify patterns of COAs and assess 
possible future threats are critical needs. By dynamically mining and analyzing terrorists 
and insurgents’ preferences and features of actions, U.S. forces can locate dangerous time 
slots and locations more accurately, prepare counterstrike COAs, or at least mitigate the 
impact of attacks. At the same time, the new information identified can be automatically 
fused to the existing system and prediction performance will be improved.  
 
Liu and Brown [11] applied extended discrete choice models to prediction of spatial 
probability of criminal activity, which produces much higher accuracies than traditional 
hot-spotting techniques. The fundamental technique utilized by Liu and Brown is to 
utilize  more features in predictions. However, a key limitation of the approach is that the 
changes in the subjects' decision-making processes are not modeled. This is to say, the 
subjects' preferences are assumed static.   
 
To solve such problem, a new framework for modeling dynamical changes of features 
and predicting future threats is proposed. In this framework, techniques that can provide 
concrete spatial-temporal modeling and prediction, higher level hybrid data fusion, 
emotion analysis of adversary rationality and non-rationality, deception identification and 
modeling, hierarchical knowledge representation, and a non-zero sum stochastic 
adversarial Markov game are combined semantically.   
 
This paper is organized as follows. In Section II, we will summarize the technical 
approach, which includes problem description, the refinement of spatial-temporal models, 
the feature ontology, the fusion of different feature selection techniques, and production 
of probability predictions. Section III describes the experimental results and explanations. 
Section IV provides conclusions for the paper.  
 
 
2.    Technical Approach 
 
2.1 Framework 



The new framework for modeling dynamical changes of features and predicting future 
threats is shown in Fig. 1. 

 
Fig. 1  Overall System Architecture 

 
Inputs are fed into the data refeinement (Level 0) and object assessment (L1) data fusion 
components. The refined objects and related pedigree information are used by a 
feature/pattern recognition block to generate primitive prediction of intents of adversary 
asymmetric threats. If the observed features are already associated with adversary intents, 
we can easily obtain them by pattern recognition. In some time-critical applications, the 
primitive prediction can be used before it is refined by relatively time-consuming high-
level data fusion.  
 
High-level situation and threat refinement (L2 and L3) data fusion based on a Graphical 
Markov game model, Hierarchical Entity Aggregation (HEA), Ontology, and 
Hierarchical Task Network are proposed to refine the primitive prediction generated in 
stage 1 and capture new unknown features, which will be associated to related L1 results 
in dynamic learning block. In the dynamic learning model, we take deception reasoning, 
emotion reasoning, trend/variation identification, and distribution model and calculation 
into account. Our approach to deception detection is heavily based on the application of 
pattern recognition techniques to detect and diagnose what we call out-of-normal 
conditions in the battle space. Out-of-normal conditions are enemy activities that are not 
deemed as a part of the normal expected evolution of systems. The results of dynamic 
learning or refinement shall also be used to enhance L2 and L3 data fusion. This adaptive 
process may be considered as process refinement (Level 4) data fusion. 
 
In this paper, we mainly describe the modification of an existing spatial-temporal point-
model, the fusion of dynamic game feature selection technique and dynamic cohesiveness 



feature selection technique, the ontology about selected/unselected features, and building 
of the probability predictions.   
 
2.2 Technical Approaches 
 
A typical scenario (Fig. 2), an  urban warfare situation, is a good base on which we can 
illustrate our dynamic adaptive hierarchical game theoretic approach for modeling and 
prediction of asymmetric threat learning processes. Satellite pictures and available 
topographic information provide corresponding data. 

 
Fig. 1: A typical scenario of urban warfare 

The blue force’s mission is to try their best to secure the entire  area, including the urban 
districts, bridges, mains roads and blocks, as shown in Fig. 1. The blue ground force 
consists of several teams of soldiers each with small arms. The red force (terrorist and/or 
insurgent forces) includes several armed fighters and some asymmetric adversaries hiding 
in and acting like the white objects (the civilians and vehicles). The red forces are 
equipped with small arms, mortar, or improved explosive devices (IEDs). We assume 
there is an asymmetry in total forces between blue side and red side. Blue side has more 
soldiers than red side. Moreover, the objectives of blue side and red side are asymmetric: 
the objectives of red side are to kill blue forces, destroy public properties, and cause 
terror without considering the loss of themselves and the consideration of collateral 
damage. Usually, they will attack weakly defended or undefended targets and retreat 
before blue side can concentrate for a counterstrike. However, in this situation, red force 
may impose some “surprise” attacks that might be chosen deliberately by adversaries to 
“violate” the predictions based solely on probability theory. In other words, these red 
forces may change their attack pattern and modify their behavior modes purposefully. 
Based on this scenario, we estimate the changes in enemy strategies even before such 
changes have been fully implemented. We give out a primitive estimation of ECOAs by 
following the pattern/feature recognition model. Based on such prediction, some 
associated best response strategies of blue side actions can be recommended.  
 
If the primitive prediction is almost correct, there are two possible response strategies for 
the blue force, according to different goals. If at this time the blue force’s purpose is to 
stop the red forces’ actions, the recommended COA of blue force can publicly send out a 

Deleted: 2

Deleted: Fig. 2



message (for example, to focus more soldiers/policemen/ambulance on the suspected 
areas, to put a news on a newspaper that the red commander will read for sure, and/or 
some other approaches) to intelligent red forces telling that their actions are in the control 
of blue side. As a consequence, probably the red forces will refrain from the actions. 
However, if the purpose of blue force is to set up a trap and catch the insurgents so that in 
the long run, the total number of attacks will go down; the blue force can only do soldier 
maneuvers secretly. In other words, in such cases not only the red might do deceptions, 
the blue might also perform deception actions. If the first guess is not correct (for 
example, the attack pattern is new and unknown), our game theoretic data fusion module 
and dynamic learning module will dynamically refine the primitive estimation and update 
the feature/pattern records.    
 
To fuse possible features/patterns into prediction techniques and game feature prediction 
and selection, we must first identify different types of surprise attacks and prepare 
possibly related features. Only after knowing which type of attacks will happen at some 
next stage with an associated probability, a better resource allocation algorithm is 
possible. In this scenario, considering information from different resources (such as 
papers, newspapers, reports from Department of Defense/Navy/Marine/Army/Air Force), 
the most typical surprise attacks are stated in Table 1.  
 

Table 1 Types of typical attacks 
 

Index Description 
1 Gun Fighter/Mortar/Small Arms 
2 IED (Improvised Explosive Device) 
3 Kidnap/Hijack 
4 Robbery/Stealing 
5 “Dirty” bomber/Bio-attacks 

 
Table 1 is based on common sense and numerous reports about the on-going anti-
terrorism wars. Such classification is typical and will serve as the initial classification and 
will not necessarily be fixed. When the war progresses, new types of actions might be 
added and out-of-date types might be dropped (here out-of-date means for a long  time 
period there is little or no attacks are observed). This is actually a kind of 
learning/adaptation and will be implemented dynamically via aggregation/clustering 
partitioning techniques, which combine our hierarchical aggregation technique [1-6] and 
the work of Milligan, Cooper, Mojena, etc [7-8]. According to different requirements, 
predictions about the overall probability that an “event” will occur, predictions about the 
specific probability that an specific attack (such as IED) will occur, and predictions about 
the relative probabilities that which kind of attack it will be if there will come an attack, 
can be produced.   
 
In a broad sense, any possible attribute (or feature) might be related to another attribute, 
which means any attribute can serve as a potential feature or pattern. However, due to 
real world limits such as computation requirements, usually we can only choose some 
measurable, available, and “probably” related attributes/hypotheses and put them in a 



pool of “raw attributes.” In such raw attribute pool, there might still exist hundreds or 
even thousands of attributes, which would greatly exceed the computation capability of 
existing computer systems since each attribute will serve as a dimension and when the 
number of attributes increases the computation will be daunting. As a result, before 
ingesting features into the system, a much smaller key feature set should be dynamically 
selected from the raw attribute pool. A subset of a typical raw attribute pool is stated in 
Table 2. 
 

Table 2 The attributes 
 

Index Description 
1 Population density per square mile 
2 Religion hotness 
3 Male people population density per square mile 
4 Average family size 
5 Young people (from 11 to 29) population density per square mile 
6 Average salary per year 
7 Average income per person per year 
8 Average price of houses 
9 Ratio of Children in school 
10 Percentage of people who are once involved in drugs 
11 Percentage of people who are once involved in crimes 
12 Percentage of people who are in debt 
13 Average debt per person 
14 Average percentage of people who have children 
15 Average age 
16 Distance to nearest soldier/policemen station  
17 Distance to nearest hospital  
18 Distance to nearest fire department 
19 Distance to nearest highway 
20 Distance to nearest church/school/library 
21 Distance to nearest park 
22 The time difference from last time’s attack 
23 Distance to nearest occurred attacks 
24 Morale of insurgents 
25 Average of wellness of public utilities 
26 Distance to nearest lake/river/sea 
27 Distance to nearest desert/wood 
28 Average expenditure on alcohol beverages, tobacco, and smoking  
…… …… 

 
Note that the 24th feature “morale of insurgents” is not like other features and not easy to 
measure and quantify, although it is very important in almost every battle. Here 
according to theories [22-23] about sequential game and social networks by which trust 



and social organization can be developed, we choose to adapt the “anger formula” in [9-
10] and model morale as follows 
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Where 0m  is the initial value assigned by the experienced human commanders, ( )N t  is 
the total number of attacks occurred since the beginning of battle period until time t , ih  
is the decay factor which is different for different types of attacks, and it  is the average 
of starting time and ending time of the i th attack. iA  is calculated as 
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Where ia  is a coefficient pre-assigned by experienced commanders for different types of 
attacks. B

iL  is the loss of Blue for  i th attack. B
iR  is the resources applied by Blue for  

i th attack. Since the superscript R  is for Red, B
iL  and B

iR  can be explained accordingly. 

iT is the time spent for i th attack. When the time goes on, an occurred attack will have 
less and less influence on the morale. As a result, and to save the computation resources, 
when its influence decays to a considerable sufficiently small, we will not calculate it any 
more in later time stages.  
  
Similarly, Table 2 only serves as the initial raw attribute pool and the raw attribute pool 
will be dynamically updated, for no one knows exactly what would happen next stage. 
An abnormal insurgent might even choose to kill only the driver who drives a car with a 
even number on the plate, while such attribute is usually considered as “minor” and 
“irrelevant” to terrorism. When the war procedure progresses and when time is allowed, 
abnormal situations will be identified and studied so that new attributes can be added to 
the raw attribute pool.    
 
 The feature selection procedure is shown in Fig 3, which will automatically selects 
features/preferences/attributes for future event probability prediction. To avoid 
temporarily removing some known important features from the key feature set, the key 
feature set consists of two parts: Reserved Feature Subset and Selective Feature Subset. 
Reserved feature subset is composed of the  important features that should not be ignored 
at any time. Selective feature subset consists of the features automatically selected by the 
feature search algorithm stated in the “Feature selection” dashed block.  



 
Fig. 3. Feature Selection 

 
The feature selection game module will model the learning/rationalizing procedure of 
players and produce the probabilities that different features will be selected by players in 
next stage. For k th feature, its output is denoted as ( , )mP k t , which means the predicted 
probability that the k th feature is applied for attacks by Red at the time mt . Details of 
feature selection game can be found in [21]. The SSR (Regression Sum of Squares) 
module will produce the importance describing a feature’s capability to predict the whole 
existing data set if the prediction is solely based on this feature. The result of SSR 
calculation will be fused with the result of cohesiveness and EWMA adaptation and 
produce the probabilities as if the battle data is absolutely non-organizational (or 
random). Fusing the probabilities for rational situations produced by feature selection 
game and the non-organizational probabilities produced by SSR, cohesiveness, and 
EWMA (Exponentially Weighted Moving Average technique) learning/adaptation, the 
selected features can be prioritized.  
 
For feature selection game module,  see [21], of which  we will not repeat the details 
here. In addition, SSR’s definition and calculation can be found in every textbook about 
statistics theory. In the following  paragraphs, we will focus on some technical details of 
our strategies about cohesiveness, EWMA, and fusion techniques. 
 
For cohesiveness calculation, we modified the traditional algorithm so that it is more 
suitable for feature selection than the traditional approach [11]. Denote the distance 



between two events i  and j  in the feature/attribute space as ijd . The corresponding 
similarity is calculated as 1/(1 )ij ija dα= + , where α  is the reciprocal of the average inter-
event distance. The term used to measure feature cohesiveness is defined as  
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Where ijb  can be defined as 4 (1 )ij ij ijb a a= − . n  is the number of occurred events. 
Usually smaller values of 

gV  implies better capability of the feature set for defining the 
point pattern. Considering the prior distribution usually deviates from uniform 
distribution, the adjusted value of 

gV , denoted as ( ) ( ) / ( )k
g g k g kV V E V P= , where ( )g kV E  and 

( )g kV P  are the 
gV  scores for the event feature data set 

kE  and the prior feature data set kP  
respectively, is a more realistic measurement of capability.  
 
Note:  we do not simply discard features as Liu and Brown [11] do for “some features 
that do not exhibit enough variation in the event feature data set“. In [11], Liu and Brown 
calculate  
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and discard features which has sufficiently small kr . This is because from the view of 
linear prediction or a traditional point-model, this feature might not be easy to apply. 
However, if about one feature, for a long time almost all events are fallen in a very 
narrow interval, it should be said that this feature has prediction capability since if the 
feature value is in that interval, the related event-occurring probability will be high 
otherwise is low. Actually in some sense, such features might be the most useful 
attributes since event data exhibit strong concentrations about it, which would produce 
predictions with high confidence.  
 
Our approach is the combination of the game theory approach and the spatial-temporal 
prediction approach. As a result, it is applicable to apply such kinds of features. For this 
reason and to save calculation time, we choose to select features according to the overall 
result of the feature selection block in Fig. 3, thus will not discard a feature/attribute 
simply according to this kr  rule.  
 
After calculating the 

gV  values, Exponentially Weighted Moving Average technique 
(EWMA) can effectively identify the on-going features and learn future trends. Before 
each step that will calculate the transition density functions, an additional step which will 
choose the key feature set specifically for this step is added and will produce 

gI  values 
for all features in the space corresponding to this time point. Denote the adjusted 

gV  value 
calculated at time point mt  for feature index k  as  ( ) ( )k

g mV t . Define  
( ) ( )

0
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where λ  is the exponentially weighting factor. When ( ) ( )k
mz t  goes out-of-control lines 

calculated via probability theory, it implies that there might be a pattern change or feature 
variation. Via simulations, a set of feasible λ  can be determined according to different 
priorities such as fast detection of trend/variation, reducing false alarms, or optimal 
balancing. At the start-up stage,  ( )

1( )kz t  is set as ( )
1( )k

gV t . The reason why we choose 
EWMA is that EWMA is very insensitive to the common assumption “normality” which 
is abused by many researchers. A second reason is that EWMA is notably good at 
supervising small trends and variations under situations with dynamics. 
 
To fuse the results from cohesiveness (adjusted via EWMA) module and the SSR 
module, we apply the following formula 

2 ( )( , ) ( , ) / ( )k
m m mP k t SSR k t Z t=                                                 (6) 

The higher the 2 ( , )mP k t  is, the better the k th feature is for prediction at the time mt . The 
character “D” in the fusion cross (right side in Fig. 2) means “division”.  
 
For the fusion between the fused output 2 ( , )mP k t  and the feature selection game output 

1( , )mP k t , we apply the following formula (Eq 6?). The higher ( , )mP k t  is, the higher the 
probability that this feature will be selected by Red in next stage. 

1 2( , ) ( , ) (1 ) ( , )m m mP k t r P k t r P k t= + −                                         (7) 
Where r  is the organizational factor, which can be determined as 
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Where 1p and 2p  are the p-values (calculation of p-values can be found in any statistics 
textbook) of the following two hypothesis tests (HT), respectively 
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:   In records past features are not selected by Red solely according to game 
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H
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 are selected by Red absolutely randomly 
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In other words, r  is a coefficient reflecting the extent of the Red players’ abiding by the 
results of games. This is because when Red consists of many non-organizational agents, 
there might not be significant planning and coordination between them, which makes the 
occurrences look like random results. In addition, when the number of agents and events 
increase, the results will be more and more like a random distribution. This is also the 
basis of existing traditional probability prediction approaches. However, if Red agents do 
have strict organization and do have perfect coordination and planning, no matter how 
large their number is, their attacks will not show enough randomness since each of their 
attacks is a result of a purposeful selection, not a result of random assignment. In 
addition, r  is also a sign of how closely related the future pattern and existing pattern 
are. It somewhat likes a derivative factor (which has the capability of “predicting”) in 
PID (Proportional-Integral-Derivative) controllers, although not exactly the same.  
 



Selected features will be put into the inner core of the ontology which stores the features 
and the corresponding structures/relationships among them. A brief language-
independent diagram about the dynamical feature ontology maintenance is illustrated in 
Fig. 4.  

 
Fig. 4. Language-independent feature ontology illustration 

 
Generally when inspecting a feature and checking whether it should be chosen or 
dropped, an inner-layer feature will have priority. This is because for most cases inner-
layer features are more “important” and there are also some hardships when transferring 
from one feature set to another feature set, which results in some “adhesiveness” between 
different stages. For outer-layer features, they will be inspected in following situations: 

(1) Orders from human commander (if any) [ Level 5 fusion – User refeinement]. 
(2) The system has enough leisure time after computing inner-layer features . 
(3) Existing inner features can not model the behaviors accurately enough.    

Note that although the system can run without human participation once initialized, a 
human commander always holds the highest authority for every step. If a human 
commander wishes to inspect a feature that is at the very outer layer, that feature would 
be checked before any inner-layer features. When there is no human guide, the system 
will dynamically update the outer-layer features in the later two cases.   
 
Based on the dynamic feature ontology, spatial-temporal models can be built up. Kernel 
density fusion and estimation techniques [12-17] are applied with an important 
correction. To illustrate this correction, we first briefly state several typical examples of 
kernel density fusion. Some research work [19, 14-15] choose to estimate the spatial-
temporal density via 
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Where ( ; )j jf x θ  is the kernel function and is assumed to be standard Gaussian density 
function which has the decaying factor as follows when dealing with a difference in 
feature “distance from the nearest soldier station” 
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Where subscript g  stands for the map grid index, n  is the index of past event, D  is the 
feature value, i  is the index of feature, and iσ  is the corresponding bandwidth. There are 
some reasons for choosing this. The first reason is that people assume that for each 
feature, there is some values at which an event is “most likely to happen,” thus such 
values can serve as the center-points. Since an event occurred at a value, this value can be 
seen as a “mostly-likely-to-happen value” thus should be one center-point. A second 
reason is that this assumption  is simple and easy to handle. For some cases, this is a good 
approximation. However, Gaussian distribution is for double-sided infinity intervals. For 
most features, the possible values are one sided, and some times are even finite and the 
corresponding interval for such values is narrow. In addition, in such finite intervals, the 
event distribution might be severely asymmetric. In such cases, the Gaussian assumption 
might not be a good approximation. 
     
Some other research work [11-12] prefers exponential decreasing factor when dealing 
with differences in feature space (for example, the feature “distance from last attack’s 
location“), which is stated as follows  

i ig inD De λ− −                                                              (11) 
Where g , n , D  and i ’s explanation is similar to the Gaussian kernel situation. The 
reason why such exponential decay factor is chosen is that people believe some 
assumptions such as “event initiators are in favor of the geographically closer location to 
start the next event” and “event initiator tend not to wait long before they act again”. This 
is reasonable in a rough sense, especially when the geographical grids and time grids are 
rough. However, when number of such grids tends to be larger and larger, the following 
problems might come: Will an event initiator prefer exactly the same location/time to 
start the next event? According to common sense, just after an attack occurred at some 
location, the location might be temporarily “safer” for people because everybody would 
automatically pay more attention to that site. To ensure safety and the success ratio, event 
initiators will (at least temporarily) intuitively avoid initiating a new event at exactly the 
same site. As a result, although a location might be the favorite of insurgents, after an 
event occurred, some close locations (but not the location at which an event just 
occurred) might be the most likely locations for events due to the similarity (for example, 
bad utilities or less policemen, which are part of the reasons why insurgents prefer such 
districts) between such locations. Locations too close to or too far away from the last 
event location will both have lower probability that a next event will occur. However, an 
exponential decay factor will simply discard such consideration. 
 



On the basis of such research work, we choose to model the following double-sided 
asymmetric exponential kernel functions when facing the considerations discussed above 
(when not, we still use the traditional two approaches to save computation) 
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Where iw , 2w , 1
iλ , 2

iλ  are subject to the following restriction: 

1
UpperLimit

ig ig
LowerLimit

f dD =∫                                                     (13) 

il  is the most likely distance between the location at which an event just occurred and the 
location at which a next location would happen. The initial value of  il  is assigned by 
experienced commander and later il  can be automatically updated according to statistical 
event data obtained in the process of long-time battle. When the feasible feature interval 
is wide enough and  il  is not close to the ending points of the interval, to save calculation 
resources, the UpperLimit and LowerLimit can be set as +∞  and −∞ , respectively. 
 
On the basis of the kernel functions, spatial-temporal prediction model can be built and 
probability predictions can be produced. The predictions the prediction results of Markov 
game will be fused according to the following formula 

1 2( , , , ) ( , , , ) (1 ) ( , , , )e m e m e mP c t x y r P c t x y r P c t x y= + −                          (14) 
Where 1( , , , )e mP c t x y  is the prediction result from Markov game, 2 ( , , , )e mP c t x y  is the 
prediction result from spatial-temporal model, c  is the even type index, mt  is the time, x  
and y  are the coordinates, r  is determined similarly as the feature selection 
organizational factor. For the Markov gaming details, see [18]. 
 
3.    Simulations and Experiments 
 
The final comprehensive probability prediction results (probability maps) in a long 
duration  battle (which can be divided to three time-continuous stages) can be 
demonstrated in following figures (Fig. 5, Fig. 6, Fig. 7), which are based on the scenario 
described in Fig. 1. Indices of these three probability prediction maps are arranged in 
time sequence. In this simulation run, the corresponding results of dynamic feature 
selection is listed in the following Table 3. The feature indices are defined in Table 2. 
Note that the number of selected features might change according to time thus might not 
be the same. 
 

Table 3  Feature selection results for different time stages 
 

Fig. 5 Fig. 6 Fig. 7 
Feature 1 Feature 1 Feature 1 
Feature 7 Feature 7 Feature 7 
Feature 16 Feature 16 Feature 23 



Feature 23 Feature 24 Feature 24 
Feature 24   

 
In this simulation, we assume feature 1 and feature 2 are in the reserved feature set thus 
they are always selected. At the second stage feature 23 is temporarily removed thus 
feature 16 (distance from soldier stations) has a stronger influences on the probability 
map. This is reflected in Fig. 6 in which soldier stations have larger and clearer “safe 
boundaries” compared to Fig. 5. Note that feature 24 (the morale of Red) is always 
selected. Since the Blue Force successfully assigns the soldier/policemen/weapon 
resources, in Fig. 7 the Red insurgents have lower morale, which is reflected as a general 
lower probability to have a event for most location. The general scope of the river, which 
is generally not a favorite site for attacks for various of reasons, is also reflected in all 
three maps. However, it is still possible to have an attack on the river, which means it 
might occur on a bridge, a boat, etc. 
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Fig. 5 Probability Map for stage 1 
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Fig. 6 Probability Map for stage 2 
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Fig. 7 Probability Map for stage 3 

 
A simulation about event-occurring is shown in Fig. 8. We took the time scope of the last 
stage. The five kinds of marks in Fig. 8 correspond to different types of attacks, which is 
stated in the following Table 4. 
 

Table 4 Symbols for attack types 
 

Index Description Symbol 
1 Gun Fighter/Mortar/Small Arms Blue star 
2 IED (Improvised Explosive Device) Green circle 
3 Kidnap/Hijack Red Plus 
4 Robbery/Stealing Cyan square 
5 “Dirty” bomber/Bio-attacks Yellow triangle (down) 

 



 
Fig. 8 The event occurrences illustration 

 
 
4.    Conclusions 
 
In this paper, we refined existing spatial-temporal point-model prediction techniques, 
combine them with dynamic feature selection game model, and produce dynamic 
probability predictions. The features are stored in a language-independent ontology. We 
modeled and studied the learning/adaptation of behavior features and changing emotional 
factors in hostile environments. The advantages of our proposed algorithm and 
architecture are demonstrated in  a typical asymmetric urban warfare scenario. 
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