
12th ICCRTS

“Adapting C2 to the 21st Century”

Paper: I-032

Title: Executable Architecture of Net Enabled Operations: State Machine of

Federated Nodes

Topics: Modeling and Simulation
 C2 Metrics and Assessment
 Network-Centric Experimentation and Applications

Authors: Mark Ball
 Joint Staff Operational Research Team

Centre for Operational Research and Analysis
 Ottawa, Ontario, Canada

Ronald Funk
 Joint Staff Operational Research Team

Centre for Operational Research and Analysis
 Ottawa, Ontario, Canada

 Richard Sorensen

Principal Systems Engineer
Vitech Corporation
Vienna, Virginia, USA

Point of Contact:

Mark Ball
Centre for Operational Research and Analysis
National Defence Headquarters
101 Colonel By Drive
K1A 0K2
Office: (613) 992-4539
Fax: (613) 992-3342
Email: ball.mg@forces.gc.ca

1 of 17

Executable Architecture of Net Enabled Operations:
State Machine of Federated Nodes

By

Mark Ball, Ronald Funk and Richard Sorensen

The Defence Research and Development Canada (DRDC) Centre for Operational
Research and Analysis (CORA) is developing capability-engineering analysis tools to
support the building, demonstration, and analysis of executable architectures. Our paper
to 11th ICCTS [1] described how to model workflows within an Operations Centre
(OPCEN) employing a Net-Centric architecture. It used a State Machine (SM) model to
simulate how multiple jobs can proceed in parallel when operators use Task, Post,
Process, Use (TPPU) cycle to organize their work.

This paper extends the OPCEN SM model to track the interaction of work between
OPCENs. The State Machine of Federated Nodes (SMOFN) model is organized around
networked nodes that produce and consume products held in a virtual Repository. The
data-driven simulation uses files to build customized job workflows and configure any
combination of nodes without affecting the business logic. SMOFN also accounts for the
following overhead activities:
 (1) Tracking consumer perception of product utility as it accrues and decays;
 (2) Consolidation of products into higher-level aggregated products; and
 (3) Triggering new jobs where needed whenever relevant products become available.

Customization of SMOFN is underway to account for the data and product flows between
OPCENs in new Canadian Forces Command structure.

2 of 17

Introduction

Background

The Defence Research and Development Canada (DRDC) Centre for Operational
Research and Analysis (CORA) is developing capability-engineering analysis tools to
support the building, demonstration, and analysis of executable architectures. Our paper
to 11th ICCTS [1] described how to model workflows within an Operations Centre
(OPCEN) employing an executable Net-Centric architecture. It used a State Machine
(SM) model to simulate how multiple jobs proceed in parallel when operators use a Task,
Post, Process, Use (TPPU) cycle to organize their work.

The OPCEN SM has been extended to account for Net-Enabled interactions between
several OPCENs. In essence, the OPCEN SM accounted for the work done by a single
OPCEN to produce several products based on data analysis. In the State Machine of
Federated Nodes (SMOFN), not only are such production jobs tracked within several
OPCENs, but the products they create are uploaded to a common, networked, Repository
so that all products can be accessed and used by any OPCEN. The SMOFN is an attempt
to capture the essential logic that governs the way work is conducted anywhere, but with
particular emphasis on ensuring that it can be fully applied to networked OPCENs.

Primer on TPED vs. TPPU

Task, Process, Exploit, Disseminate (TPED) logic implies that each job is a serial
process: jobs are worked on from start to finish without being interrupted. Flowchart
diagrams (ie. in CORE) can simulate TPED by putting the job processes in a loop and
repeating for each job. TPPU, on the other hand, allows jobs to be interrupted by higher
priority jobs. As illustrated in Figure 1, updates of jobs processed through TPPU are
posted at regular intervals and the utility of the job increases as more posts are made.
This accrued utility is saved even if the job is interrupted. TPPU leads to concurrent
behaviour (several partially processed jobs at a time) that is too complex to model using
classical flowchart diagrams. The SM overcomes this by stopping time and executing the
logic to assign operators to jobs in order of priority. It then steps forward in time and
repeats the process. Progress within each job is tracked by recording the job’s state and
updating it at each time step.

3 of 17

Figure 1: TPPU

Conceptual Basis for SMOFN

Figure 2 illustrates a conceptual Department of Defense Architecture Framework
(DoDAF) OV-1 (high-level operational concept graphic). It is scale-free in the sense that
it can represent interactions between nodes, or within a node, or even within a single
operator’s various responsibilities. The dashed lines show the net transfer of Products,
Questions, Queries, Results, and Responses, but the solid lines serve as a reminder that
all of these are actually transferred through the Repository, the interface to which is
controlled by the Portal. This conceptual diagram was used as the basis for the logic
controlling the interactions between the various nodes in the SMOFN. More specifically,
it was used to define the interactions between each node and the Repository.

4 of 17

Figure 2: Scale-free OV-1

Producer-Repository-Consumer model logic

Figure 3 illustrates the ways in which Producer and Consumer nodes can communicate
with each other and interact with the Repository. The most direct way for content to be
transferred is for the Producer to push products directly to the Consumer. Note that in
actual execution this transfer will likely take place over a network, and so the Repository
still acts as a medium. Alternately, the Producer may post content to the Repository
where it waits to be pulled by interested Consumers. In this case the Producer may notify
the Consumer that the content is available, the Repository may have business rules to
decide what content the Consumer should be notified of, or the Consumer may have their
own way of searching for new information.

Figure 3: Producer-Repository-Consumer

5 of 17

Operational Decision Making Logic

Extensions of OPCEN SM to SMOFN

In terms of the Producer node, very little has changed in the SMOFN from the OPCEN
SM described in [1]. However some work has been done to allow users to create more
customized job threads. The OPCEN SM assumed every job involved 10 steps, although
fewer steps could be handled by assigning zero time to some steps. SMOFN builds its job
threads dynamically for any number of steps by assigning each step a unique name and
linking them together until it reaches a final step called “COMPLETE”.

Producer logic

Coding the logic controlling Producer threads was the focus of the OPCEN SM. During
each time step, the SMOFN checks for the arrival of new jobs to be worked on at each
OPCEN. Each OPCEN then uses the same rules to assign operators to jobs. First the jobs
are examined in order of priority and assigned to available operators with the skills
necessary to perform the job. Some jobs that are in progress from the previous time step
can be interrupted if a higher priority job requires the same operator, or a job step
considered to be generic can be interrupted to free a skilled operator so they can move to
a job requiring their skill, leaving the generic job for someone else. Although the utility
of any job is determined by Consumers, Producers have their own estimate of what the
utility will be and they will abandon jobs that are getting out of date by their utility
decaying faster than the operators can increase it due to progressing on the job. Jobs will
also be abandoned if they cannot be completed by their drop dead time, which is usually
a set amount of time (different for each job type) after the job was added to the queue.

Consumer logic

In terms of SMOFN execution, the Consumer node’s job is very straightforward. Each
time a product is received by the Consumer, there is a chance, based on the type of
product received, that a question will be generated. Of course, a Consumer will not ask a
question as soon as they receive a product, they require some time to review the product
first. Because of this, each product type is associated with a certain delay time after
which questions may be generated. If a question is generated, and once the delay time has
passed, the question is sent to the Repository to be passed on to the Discover node.

Discover logic

The Discover node is responsible for answering questions generated by the Consumer. In
real life terms, this tends to be done through a search for existing data. In modelling
terms, it is handled through job threads similar to those used by the Producer. In fact,
most of the logical scripting used by the Producer threads is shared with the Discover
threads. There are a few important differences that should be mentioned though. First, the
Discover logic has no accounting for Utility because when asked to find missing data, the
Discoverers do not concern themselves with how useful they expect that data to be to the

6 of 17

7 of 17

Consumer. Similarly, there is no chance of a Discover thread returning “Nothing
Significant to Report”. On the other hand, the data may not exist and External Sources
can be tasked to collect it.

External Sources logic

The External Sources node receives Requests for Information (RFIs), or Queries, from
the Discover node. Exactly how the requested information is found is beyond the scope
of the SMOFN, but what is important to the model is how much information is found (in
terms of file size) and how long it takes to find it. The found information will typically be
in the form of raw data which is sent to the Producer, triggering a new data analysis job.

Repository logic

The repository is the medium between all of the other nodes. Its job is to transfer
products from Producers to Consumers, questions from Consumers to Discoverers, RFI’s
from Discoverers to External Sources, results from Discoverers to Producers, and
responses from External Sources to Producers. The scripts to handle the logic of these
data transfers are all similar, with nuances to account for differences between types of
data or nodes, but more particularly for what type of information is relevant for the
receiving node to execute its logic appropriately.

Implementation in COREsim

SMOFN top level

Figure 4 is the top-level diagram that controls SMOFN execution, colour-coded so each
activity can be cross-referenced with the appropriate node in Figure 2. Unlike most
diagrams in CORE, time does not increase as CORE steps through the process beginning
at the left and moving to the right. In this case, time is actually stopped and the left-to-
right process is the decision making process that takes place at any instant in time. The
SMOFN then increments time and the process is repeated for the next time step. Another
difference between Figure 4 and typical CORE diagrams is that the logic is not
completely defined simply by the diagram itself. As mentioned earlier, the non-serial
behaviour of TPPU logic is not scalable when modelled in classical flowchart diagrams,
so scripting embedded within each activity in the diagram is responsible for tracking the
state of each job.

8 of 17

Figure 4: SMOFN Top-level

Logic within branches

The SMOFN logic in Figure 4 outside of the individual nodes is shown as white boxes in
the simulation control and simulation output phases. When the simulation starts, the setup
activity runs, reading data from input files and setting up global variables used to track
data throughout the simulation. The SMOFN then enters a loop which repeats for each
time step. First the Run-to-End Check executes to see if the end of the simulation has
been reached (this will occur at a pre-set time or when there are no jobs left to do). If the
end of the simulation is reached then the loop exits and the SMOFN skips ahead to the
End-of-Run Reporting which outputs the data that was tracked through the simulation. If
the end is not reached, the clock increments by one time step and each node’s logic is
executed for that time step, after which the current state of every task and every operator
is saved to the global variables that will be the basis of the simulation output.

The simulation of the operational nodes is divided into three phases. Each node’s activity
is triggered by input received from the Repository, and that activity leads to an output
that is sent back to the Repository.

Consumer activity in Figure 4 is represented by the yellow boxes. Each time step, the
Consumer node begins by receiving products sent by the Repository. The Generate
Questions activity then goes through all the products that have just been received and
may generate questions based on those products. If any questions are generated, the delay
before they are actually sent is determined and the time to send them is added to a
schedule.

Producer and Discoverer logic elements are displayed by the blue boxes in Figure 4. The
activity within both of these nodes is based on job threads so much of the scripting is the
same. First a list of OPCENs is built and a loop is entered that is repeated for each
OPCEN. The loop begins by choosing an OPCEN which has not been dealt with yet for
this time step. The Schedule Processing activity then looks at the job arrival schedule and
adds to the queue any job that arrives during this time step. Utility Decay then goes
through all the jobs and checks to see how old their original data is. If the age of the data
is such that the utility should decrease this time step, that is handled here. Thread &
Queue Processing then goes through all jobs and assigns available operators to jobs in
order of job priority. It is also here that the utility of jobs can increase as work progresses,
or jobs can be abandoned if they cannot be completed on time. It is important to note that
Produce and Discover jobs are allowed to draw from the same pool of operators so when
the SMOFN sorts jobs in order of priority, it ignores whether the job is related to
Production or Discovery. After these activities have executed, Capture Localized Status
saves to memory any data that must be tracked into the next time step for the given
OPCEN. After the loop has executed for each OPCEN, OPCEN Processing Complete
signals to the Repository that it can now execute its logic for receiving products and
RFIs.

9 of 17

The pink boxes represent the work done by the Repository during each time step. First of
all, the global variable tracking the bandwidth between the Repository and each OPCEN
must be reset as it is decremented whenever bandwidth is used to send or receive data.
Bandwidth is tracked in terms of how much data can be transferred each time step. Next,
the Repository checks for the arrival of new raw data. This check is based only on
parameters read into the model during setup; raw data received from External Sources in
response to RFIs is handled separately. Send From Repository contains the logic used to
send products to the Consumer, jobs to the Producer, questions to the Discoverer, and
RFIs to External Sources. This activity takes place before each of these other nodes
executes during the time step so they can incorporate data as they receive it. Similarly,
Receive At Repository waits until each node has completed their execution for the time
step so it can receive data as soon as it is ready. This activity receives questions from
Consumers, products from Producers, RFIs from Discoverers, and RFI responses from
External Sources.

Finally, External Sources are simulated with the red boxes. They receive RFIs from the
Repository, respond to those RFIs, and send the responses back to the Repository. As
with the Consumer, the process required to respond to RFIs is not tracked in detail, only
the amount of time required and the type of raw data returned are currently handled
within the simulation. It is possible to model External Sources in more detail but it must
be done in a way that does not detract from the OPCEN processes.

During each time step, sending items from the Repository must occur before any of the
other nodes can execute their logic. Only after those nodes have executed can the Receive
at Repository activity run. It should be noted that the Receive and Send activities of the
Consumer and External Sources have no embedded logic scripts. Their logic is instead
handled within the Send and Receive activities of the Repository, respectively. They are
shown in the diagram to illustrate the Consumers’ and External Sources’ perspectives
into what is taking place.

Input Data Files

One advantage of the SMOFN is that the model itself is only concerned with the
execution logic. All operating parameters, such as the number of operators at an OPCEN
and their skill sets, or the number of jobs to be done, are read from data files during the
setup stage of the simulation.

Simulation Setup

The first data file read into the SMOFN is identified by the user and points to the data
path where the rest of the files will be found. The next files read include a list of
OPCENs and the data paths containing their setup information, a time at which the
simulation will stop, and a switchboard allowing certain business rules to be specified.

OPCEN Inputs

10 of 17

Each OPCEN is defined by five different files read into the SMOFN model:

1. An events list;
2. A summary of thread types;
3. A matrix of operator skills;
4. A set of utility decay curves; and
5. The step-by-step definitions of each thread.

Events list

The purpose of the events list is to define what jobs will be added to the OPCEN job
queue, and when. The main entries for each job are the thread name, priority, and the
time at which the job will be added to the queue. In the OPCEN SM, this list would
include all jobs that the OPCEN would process over the course of the simulation,
however in the case of the SMOFN, it should only include jobs that are based on OPCEN
operating procedures. Other jobs, based on the arrival of new data are more appropriately
listed in the schedule of new jobs that the Repository will send to each OPCEN
(described in the next section). For this reason, the utility of the job will typically begin to
decay the moment the job is added to the queue. However it is possible to specify that
data was collected at some earlier time, which will form the basis for utility decay.
Finally, each job can have a specified deadline, though this can be set to zero and a
standard slack time for the particular job type will be used.

Thread types

The thread types file defines the overall characteristics of each job type that is processed
at the particular OPCEN. The details specified here reflect the job as a whole, whereas
the characteristics of each step within the job thread are specified in a separate file. Each
entry is identified by thread name and priority (entries in the events list will have their
priority rounded to those identified here if necessary). The data that is used to describe a
thread includes the percent chance that a job will return NSTR, the default slack time for
the job, how many steps an operator can look ahead to estimate the expected utility
gained over time spent on the job, whether the job is redundant with other jobs of its type
(jobs that are redundant will be ignored if another job of the same type is in progress
when a new one arrives in the queue), the utility of a job that returns NSTR, and the
details of aggregating other jobs into this one. All of this data is used by the SMOFN to
tailor its business rules to each job thread as appropriate.

For the SMOFN to properly account for the aggregation of several completed products
into one new job, the following details need to be specified for the aggregating job
thread: the name of the job step where aggregation will take place, the types of completed
jobs to aggregate, the amount of time added to the aggregation step for each job
aggregated, and the percentage of utility that carries over from the aggregated job to the
aggregating job. The time added and utility carried over can be different for each job type
that is aggregated.

11 of 17

Operator skills

The SMOFN refers to the operator skills matrix to assign operators in an OPCEN to
queued jobs. Once assigned, this matrix also identifies how effectively each operator does
their work. The operator skills matrix identifies each operator in an OPCEN by a “name”
that is a string containing only letters and numbers. The information specified for each
operator includes their speed and quality of work (both expressed as percentages where
100% speed means jobs are done in the standard required time, and 100% quality means
the operator adds the expected utility to jobs they work on), the order in which they are
assigned to generic work, the percent chance they are able to take on generic work when
they are not already assigned any specific job, and a list of their skills, beginning with
their primary skill and allowing up to ten entries. When a queued job requires a particular
skill, the SMOFN will look to each operator’s first skill, then each operator’s second
skill, and so on until an available operator with the required skill is found.

Utility decay curves

The utility decay curves are used by the SMOFN to describe how the utility of products
decreases as those products age. Each line begins with a thread name and priority (the
combination of which must match those in the thread types file) and a time expressed in
units of the simulation’s time steps (so far, we have used minutes for our simulations).
Each line then ends with three numbers representing the lower bound, peak value, and
upper bound of a triangular distribution. The logic of the utility decay is that after the
product of a particular thread type has aged by the specified amount of time (age is
counted from the moment the raw data was taken), its potential utility can be calculated
by the specified triangular distribution. The SMOFN logic will ensure that potential
utility will never go up as products age, even if the distributions allow it. Actual utility is
the product of the utility accrued by work done on the job and the potential utility based
on product age.

Thread definitions

The last file is used to describe the threads, in terms of how the SMOFN should handle
each step within each job. This file uses one line of data for each step of each thread type
(thread types must be the same, by name and priority, as those in the thread types file).
The data for each line includes the thread type, the name of the step, the time and skill
required to complete it, the number of posts (utility updates) during the step, whether or
not it can be interrupted, the lower bound, peak, and upper bound defining a triangular
distribution used to calculate the utility achieved by the end of the step, the file size of the
resulting product (used to track uploading to the Repository and subsequent distribution
to Consumers), the type of step (in terms of which logical script to execute within the
SMOFN) and the name of the next step to move to after the current one.

Seven types of steps are currently defined in the SMOFN, the first three of which already
existed in the OPCEN SM. Step type 1 involves no decision logic as to the following
step, once the current step is complete the job will simply move on to the next. Step type

12 of 17

2 is the NSTR decision: if the job is to be marked NSTR, that will happen at the
beginning of a step type 2 and it, along with any subsequent steps will be skipped. Step
type 3 is the final step of any Production job, after which the job is marked complete and
removed from the queue.

The remaining four steps are unique to Discovery jobs. Step type 4 is the decision as to
the results of the Discovery process and has three possible exits. The first possible result
is that no product exists, the second is that the desired product is found, and the final
possibility is that some data is found but it is insufficient. In the case that no product
exists, the Discovery job will move on to Step type 5, which is to create a request for new
data that will be sent to External Sources. If the product is found, it must be analysed and
put in the context of the originating question, so a new Production job is added to the
appropriate OPCEN’s schedule. The logic to do this is handled by step type 6. If
insufficient data is found, then the Discovery will proceed to step type 7, which is a
combination of the previous two. That is to say that a request will be sent to External
Sources for more data, but in the mean time, a new Production job will be added to the
OPCEN schedule to analyse whatever data was found.

Repository Inputs

While each OPCEN’s initialization data is read into the SMOFN, a separate set of data
files is used to describe the operating parameters of the Repository. These files are:

1. A schedule for the arrival of new data;
2. A schedule for the arrival of new products created outside the simulation;
3. A matrix organizing the delivery of products to the appropriate Consumers;
4. A list of each OPCEN’s bandwidth; and
5. A list controlling the generation of questions.

Data arrival schedule

The data arrival schedule is similar to the events list for each OPCEN. Each line specifies
the time that the new data was created, the time at which it will arrive at the Repository to
be delivered to the Producer, the source of the data (such as a reconnaissance unit), the
type and priority of the job thread that will be generated, the deadline for the data
analysis job, the Producer OPCEN to which the data will be sent for analysis, the delivery
method (i.e. push or pull), and the size of the file that must be delivered. This file is used
to simulate the fact that many jobs within an OPCEN are triggered by the arrival of new
data in the Repository, rather than by the OPCEN’s own operating procedures.

New product arrival schedule

The schedule of outside products defines the arrival of products from Producers that are
not tracked by the model. These products can then be forwarded to Consumer OPCENs
as though they were created within the simulation. The required data includes the name
of the producing OPCEN, the type of job (including the priority rounded to the nearest

13 of 17

appropriate thread type), the specific priority, the file size to be transferred, the time at
which the original data was collected, the time at which the product will arrive at the
Repository, the status of the job producing the product (i.e. complete, or the end of a
specific job step, in which case the product corresponds to the most recent update), the
utility achieved due to work on the producing job, and the decayed utility due to the
data’s age. This product arrival is an important consideration for the SMOFN so we can
simulate how one OPCEN (or several) reacts to products created by other OPCENs,
without having to model those other OPCENs and their own product creation processes
in detail.

Delivery matrix

The SMOFN uses the delivery matrix to identify what products are sent from what
Producers to what Consumers. This applies equally to products created within the
SMOFN simulation as well as to products identified in the new product arrival schedule.
A line of data contains the product type, the name of the Producer and Consumer
OPCENs (one of each, products sent from one Producer to multiple Consumers must
have one line for each Consumer), the percent probability that a product of the given type
will be sent to the specified Consumer when created by the specified Producer, and the
method of delivery (push or pull). This file is the main source of information for the
SMOFN to account for data sharing between OPCENs.

Bandwidth

The bandwidth file is very simple, containing only a list of OPCENs that connect to the
repository along with their bandwidth. This identifies to the SMOFN the amount of data
that can be transferred between each OPCEN and the Repository during a single time
step. Aside from the Producer and Consumer OPCENs, the Discover and External
Sources nodes should also be included here. Units are at the discretion of the analyst, but
must be consistent with the file sizes for products identified in the thread definitions and
the new product arrival schedule, as well as raw data in the data arrival schedule.

Question generation

The questions file draws from the combinations of product types and Consumers that
come out of the delivery matrix. For each such combination, the questions file identifies
to the SMOFN the percent chance that a question will be generated by the Consumer, the
file size required to contain that question, and the amount of time that the Consumer will
take between receiving the product and sending out the question. This information is
referred to whenever a product is sent to a Consumer so that questions are generated as
appropriate.

Way Ahead

Work on the SMOFN model itself is nearing completion. The major issue now is to
collect the data required to populate all of the initialization files described above. This

14 of 17

15 of 17

data must be representative of the operating parameters of Canadian Forces OPCENs, as
the goal is to accurately simulate data flow between these. Particular emphasis is being
placed on describing job threads that involve multiple OPCENs, such as the process to
report and respond to events in theatre or the preparation of high-level daily briefs.
Another major component is the composition of various OPCENs, as far as the number of
operators on shift and the skills they are trained in. Although much of this data will be
classified, the model itself will remain unclassified as it only reads the data upon
execution.

The planned process for creating an operational architecture of the Canadian Forces (CF)
command structure is illustrated in Figure 5. We begin by examining current C2 practices
to capture them as executable threads, in light of the capabilities definition knowledge
gained through previous work with the SMOFN model. These threads can then be
converted into input to the SMOFN model. This, along with any developments of the
SMOFN execution capability, leads to a more complete version of the SMOFN. The first
payoff from the operator’s perspective is that the processes captured as threads are now
documented and can be used to create standard operating procedures. The second is that
the inclusion of these threads into the SMOFN allows them to be analysed and potentially
improved. The payoff from the modeller’s perspective is the creation of a more complete
definition of a CF C2 operational architecture.

16 of 17

Figure 5: Planned Operational Architecture Creation Process

Reference

[1] Funk, R.W., M.G. Ball, and R. Sorensen, “Building Executable Architectures of Net
Enabled Operations Using State Machines to Simulate Concurrent Activities”, presented
to 11th ICCRTS, Cambridge, UK, September 28, 2006.

17 of 17

	Introduction
	Background
	Primer on TPED vs. TPPU

	Conceptual Basis for SMOFN
	Producer-Repository-Consumer model logic

	Operational Decision Making Logic
	Extensions of OPCEN SM to SMOFN
	Producer logic
	Consumer logic
	Discover logic
	External Sources logic
	Repository logic

	Implementation in COREsim
	SMOFN top level
	Logic within branches

	Input Data Files
	Simulation Setup
	OPCEN Inputs
	Events list
	Thread types
	Operator skills
	Utility decay curves
	Thread definitions

	Repository Inputs
	Data arrival schedule
	New product arrival schedule
	Delivery matrix
	Bandwidth
	Question generation

	Way Ahead
	
	Reference

