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Abstract 
 
One of the C2 paradigm shifts in the Information Age is Power to the Edge1. 
Unmanned vehicle operations are increasingly based on this new paradigm, i.e. from 
tele-operation to full autonomy, such that there is shared awareness, effective 
collaboration and actions synchronization. 
 
Traditionally, the control logic for unmanned vehicle operations is handcrafted using 
Modelling and Simulation (M&S) tools. However, as the nature of operations 
becomes more complex and diversified this manual approach of logic programming 
becomes extremely difficult and tedious. To attain full autonomy, a more efficient 
method to programming the control logic is required. 
 
In this paper, we describe how M&S can be leveraged to provide a learning 
environment to evolve control logic for an unmanned vehicle team. Our approach 
coupled a rule learning system based on Genetic Algorithm and Reinforcement 
Learning to an M&S system. We call this Simulation-based Rules Mining (SRM). 
Our idea is that control rules can be learned from an M&S environment (i.e. simulated 
robots and simulated environment), and then transferred onto real robots in a real 
environment. We successfully applied SRM to evolve the control logic for a robotic 
team to carry out search and destroy mission in an urban room environment. 

                                                           
1Alberts and Hayes, 2003, CCRP Publications 



1. Introduction 
 As we move into the 21st century, the role that unmanned vehicles play in 

civilian and military operations is becoming more prominent. For example, in urban 
operations, unmanned vehicles can augment the sensing capability and firepower of 
the human soldier. At the same time, the C2 paradigm for unmanned vehicles is also 
shifting from tele-operation to full autonomy. To achieve full autonomy, we need to 
tackle the problem of programming the logic to control and coordinate the unmanned 
vehicle team to achieve the given task. Traditionally, the logic is hand crafted with the 
aid of M&S tools (e.g. see [1]). However, as the nature of the operations undertaken 
by unmanned vehicles becomes more complex and diverse, this approach of control 
logic programming becomes extremely difficult and tedious. Thus more efficient 
methods need to be found. In this paper, we describe how we can use M&S to provide 
a learning environment to evolve the control logic for the unmanned vehicle team.  
Our approach coupled a rule learning system based on Genetic Algorithm (GA) and 
Reinforcement Learning (RL) to a M&S system. We call this approach Simulation 
Based Rule Mining (SRM) (see Fig. 1). Our idea is that control rules learned from the 
M&S environment (simulated robots and simulated environment) can then be 
transferred onto real robots in real environment. Compared to learning straight on the 
physical robots, learning on a simulator has the advantages of ease of repeating trials 
and mitigates the risk of damage to hardware. 

 
 

 
Fig. 1 Outline of SRM process. 

In the SRM approach, the control logic for a robotic platform is encoded in the form 
of IF-THEN rules. Such rules are easy for humans to understand. In addition, using 
rules as the knowledge representation makes it easy for us to incorporate a priori 
knowledge into the system to bootstrap the learning process. A combined learning 
approach of RL and GA is proposed as the individual algorithms complement each 
other by tackling different aspects of the learning problem. GA can perform a 
distributed search through the rule space for sets of ‘good’ rules. However, the 
rulebases generated by GA usually contain non-mutually exclusive rules. In this 
situation, the rule priority is one metric to differentiate the ‘good’ rules from the ‘bad’ 
ones. RL can incrementally tune the rule priority of individual rules according to their 



performance so that better-than-average rules have higher priorities than others in the 
long run.  

We have tested the SRM approach to evolve the logic for controlling a robotic team to 
carry out search and destroy mission in an urban room environment. In this test, each 
robot needs only be equipped with sensors for navigation and target detection. There 
is no need for the robot to know its own position or to have the means to 
communicate with other robots. The learned control rules were shown to generalize 
well across similar room layouts and demonstrate similar performance in simulation 
and in the real environment. 

2. Types of Multi-robot Systems 
There are many ways to classify multi-robot systems. Three of the more 

commonly used criteria are 

•  Composition: Whether the individuals in the team are homogenous or 
heterogeneous in terms of roles, capabilities etc. 

•  Communication: Whether communication is enabled between robots in the team. 

•  Control logic design: Deliberative vs reactive 

In this project, we will be designing the logic for a reactive homogenous team with no 
communication between individuals.  

3. Task Description 
The task is for the robot team to find and clear targets in an unknown urban 

environment. This is a generic task, encompassing practical applications like bomb 
disposal, waste clearance and search and rescue. To reduce the computation load on 
each robot, the robots do not have localization capabilities, nor do they communicate 
with each other explicitly. The operational requirement specifies that at least 70% of 
the targets must be found within the limited time given. This requirement balances the 
completeness of the solution with the time constraint. To design the control logic by 
hand for such a task will be very time consuming. Thus this problem is well-suited for 
testing our proposed approach of multi-robot auto-programming. 

4. Evolving Control Logic for a Robot Team 
This section describes the SRM system that we use to automatically generate the 

control logic for a homogenous robot team to cooperatively accomplish the given 
task. 

4.1 System Architecture 
The system architecture is illustrated in Fig. 2. There are 3 major components in 

the system: 
•  The rule engine on each robot that makes decision on what action to take given 

the current local perception of the environment 
•  The Evaluator that monitors the performance of the robot team towards achieving 

the given task and provides feedback in the form of a reward signal. 
•  The learning system, based on the hybrid approach of Genetic Algorithm (GA) [2, 

3] and Reinforcement Learning (RL) [4, 5], that incrementally improves the 



performance the of robot team using the reward signal and the pooled experience 
of the robots.  

 
Note that in the simulation, each robot is driven by its own rule engine. This means 
that the control of the robot team is distributed. To create a homogenous robot team, a 
common rulebase is used to drive all the robots.  
 
The components are described in greater detail in the sections that follow. 
 

 
Fig. 2 The SRM system architecture. 

 

4.2 Control Logic Representation and Inference 
In the SRM system, the control logic is represented as a set of IF-THEN rules. The 

advantage of using such a representation is that knowledge of the human expert can 
be easily incorporated into the learning process as such knowledge is naturally 
expressed as IF-THEN rules. Example of a rule in our system is given below. 
 
RULE AvdFrontRobot (strength = 0.85) 
IF  ( Stall = false  AND 
  No_of_tracks > 0) AND 
EXIST ( Range < 2.5  AND 
   Bearing = [-15, 15] AND 
   Identity = Robot) 
THEN   Action = TurnLeft (Speed = 0, Turn_rate = 30) 
  
This rule is interpreted as: If (a) I’m not stalled and (b) I sensed an object and (c) this 
object is a robot in my front sector very near to me, then my reaction will be to turn 
left on the spot and at the maximum turn rate to avoid the other robot. 
 



The strength of a rule, a value between 0 and 1, is related to its priority. Its role will 
become apparent when we explain how the rule engine works below. 
 
Given a rulebase and the current perceived state of the environment, the rule engine 
decides what action should be taken. The inference process of the rule engine can be 
summarised as follows: 
1) Given the current state s, create the active set A(s), which is the set of rules with 

conditions matching the current state 
2) If |A(s)| > 1 (because the rules are not mutually exclusive), select the rule with the 

highest strength to fire. If there is more than 1 rule with the highest strength, then 
randomly pick one among them. 

3) Execute the action of the selected rule and transit to the new state. Go to step 1). 

4.3 Learning Algorithm 
Our learning approach combines GA and RL. The reason behind adopting a 

combined approach is there are actually two aspects of the solution to learn, and the 
individual approaches tackle different aspects. The first aspect is to learn the set of 
rules that make up the solution. This will involve searching through the rule space for 
good rules. GA is suitable for tackling this aspect. However, during the search 
process, GA does not guarantee that the rules in the solution are mutually exclusive. 
In this situation, the strength of the rule can be used to distinguish the ‘good’ rules 
from the ‘bad’ ones. The strength of a newly created rule may be set to a default 
value, but this should be modified according to its performance, which in turn is 
measured by the reward from the Evaluator. RL is suitable for strength learning as it 
can incrementally tune the strength of the rule in relation to the series of rewards it 
received. A rule that receives a reward higher than its current strength will have its 
strength increased and vice versa. It is now apparent that the individual approaches 
that in our proposed algorithm complement each other to form an elegant overall 
solution. The skeleton of the algorithm is given below 
 
Algorithm LearnRules 
1 Generation t := 0, Experience pool e:=NULL, done:=false 
2 Initialize population p(t) 
3 WHILE (!done)  DO 
4   FOR each rulebase r in population p(t) 
5   e := Evaluate(r) 
6   r := CreateAndDeleteRules(r, e) 
7   FOR i: 1 to MAX_EPISODES    
8    e := Evaluate(r) 
9    r := DistributeReward(r, e) 
10  END FOR 
11  Evaluate(r) 
12 END FOR 
13 done := CheckStoppingCondition(p(t)) 
14 IF (!done) 
15  p(t+1) := Select(p(t)) 
16  p(t+1) := Crossover(p(t+1)) 
17  t := t + 1 
18 END IF 
19 END WHILE   
 

RL loop 

GA loop 



 
 
Algorithm Experience pool e := Evaluate(Rulebase r) 
20 e :=NULL 
21 Duplicate r across all simulated robots 
22 FOR t= 1 to MAX_STEPS 
23 Make Decision for all simulated robots 
24  Record experience for each robot i as <s, A>i,t (s is current state, A is the set of active 
   rules) 
25 END FOR 
26 e := ∑i,t<s, A>i,t (Pool experience from all robots across all time steps) 
27 e := e + Get team reward from Evaluator 
 
In the algorithm there is an outer GA loop and an inner RL loop. We shall first 
describe the GA loop. The GA maintains a population of rulebases. Each rulebase is a 
potential solution to the problem and has a fitness value associated with it. The fitness 
value measures the performance of the rulebase at solving the problem. For every 
iteration of the GA loop (also called a generation), the population undergoes 3 GA 
operations: 
1) Each rulebase in the population is modified by the rule creation and delete 

operations (line 6). A new rule is derived from the parent rule by modifying the 
condition and/or action part of the parent, and the process is driven by the pool of 
experience collected from a previous evaluation episode (line 5). The delete 
operation prevents the rulebase from getting too large by periodically removing 
low strength rules or subsumed rules with similar strengths from the rulebase. 

2) The fitness value of each rulebase is computed after all modifications to the 
rulebase are completed (line 11). A new population is then created from the old 
population (line 15) by selecting rulebases from the old population according to 
their fitness values. The higher the fitness value, the higher the probability of a 
rulebase being selected for the new population. 

3) Every pair of rulebases in the new population exchange unique high strength rules 
through crossover (line 16).  

 
Next we describe the RL loop. First, the rulebase undergoes an evaluation episode 
(line 8). RL is then used to distribute the reward received at the end of the episode 
among the rules that were active, thereby updating the strength of these rules 
incrementally (line 9). The update rule is 

)],([),(),( acSracSacS iii −+← η   (1) 
 
Here η is the learning rate, r is the payoff, Si is the strength of an active rule i, c is the 
rule condition and a is the rule action. The list of active rules is extracted from the 
common experience pool. 

Lastly, we shall briefly describe the Evaluate() function which is used in both the GA 
and RL loops. It takes in a candidate rulebase as input, simulates the robot team 
executing the task (lines 22 to 25), gathers the individual robot’s experiences into the 
common pool (line 26) and requests the reward from the Evaluator module (line 27). 
Recall from earlier that the common experience pool is used in the GA rule 
creation/delete functions and the RL strength update function. The use of the common 
experience pool can be viewed as allowing some form of experience sharing among 



the robots. This can help to accelerate the learning process as each robot now has a 
richer set of experiences (its own and others’) to learn from. 
 

4.4 Evaluator 
This module computes a team reward r after each evaluation. Apparently, the 

reward is computed differently for different tasks. For the target search and clearance 
task, we design the reward function to be 
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where nc is the number of targets cleared, nd is the number of targets detected (but not 
cleared), t is the actual time taken, ntotal is the total number of targets, tmax is the 
maximum time allowed. This formulation considers both the completeness (in terms 
of proportion of targets found) and efficiency (in terms of time taken) of the solution. 
 
 

5. Experiment Setup 
Experiments are conducted both in simulation and in hardware. We simulated the 

Pioneer 3AT equipped with a laser range finder (maximum range 4 m, 180° field-of-
view) and a fiducial sensor (maximum range 2 m). The processed sensor information 
available to the robot are: 1) Whether a target is in its gripper, 2) Whether it has 
stalled, 3) The number of tracks detected, 4) For each track, the range, bearing, 
orientation and identity. The list of robot actions are: 1) Consume target, 2) Avoid 
obstacle, 3) Approach target, 4) Approach opening, 5) Turn and 6) Move straight.  
 
The actual Pioneer 3AT robots that we used are equipped with SICK200 LMS lasers. 
To enable the robots to recognise each other and the targets, reflective strips are 
attached to both sides of the robots and the targets. Each robot is controlled by a 
laptop running the rule engine (Fig. 3). This means that the control of the physical 
robot team, similar to that in the simulation, is distributed. 
 

 
 

Fig. 3 The Pioneer 3AT robot used for hardware testing. 
 
Table 1 summarizes the various setups that are used for the experiments. A scenario is 
defined by a fixed layout, number of robots and targets, and their positions. We 
generate multiple scenarios by varying the target positions for each setup. For each 
setup (except 1), several trials were conducted using different random seeds. The 
average team payoff over all trials is used as the performance metric. 
 

SICK200 
LMS laser 

Laptop with  
rule engine 

Reflective 
beacon 



Table 1: The different setups used in the experiment. 
Setup Purpose Layout (Area) No. of 

robots 
No. of 
targets 

Max time 
steps 

No. of 
scenarios 

1 Learning 8 room (252 m2) 10 10 1000 6 
2 Generalization test 

(different target 
positions) 

 
 
8 room (252 m2) 10 10 1000 6 

3 Generalization test 
(different no. of 
robots only) 

 
 
8 room (252 m2) 15- 35 10 1000 6 each 

4a  
6 room (209 m2) 10 10 1000 6 

4b 8 room with 
narrower doors 
(252 m2) 10 10 1000 6 

4c 

 
Generalization test 
(different layout 
only) 

 
10 room (382 m2) 10 12 1000 6 

5a  
12 room (408 m2) 20 15 1000 6 

5b  
16 room (441 m2) 20 15 1000 6 

5c 

 
Generalization test 
(different no. of 
robots and layout) 

 
30 room (910 m2) 35 30 1000 2 

6 Hardware transfer 
test 

 
5 room (106 m2) 5 4 ~1000 5 

 
Learning is conducted using setup 1 (see Fig. 4a), using a mix of random and a priori 
rules as the starting point. Each learning experiment ran for 15 generations. The best 
performing learned rulebase in these 15 generations is selected as the final rulebase. 
The generalization and transfer properties of the final rulebase are then investigated 
using setups 2 to 6.  

 

 
Fig. 4a Plan view of the 8-room learning layout. 

 
Generalization refers to the performance change when the final rulebase is tested in a 
different setup. In practice, learning is usually conducted using a small number of 
robots (e.g. 10) or a subset of the full range of environment layouts as it quickly 
becomes computationally intractable otherwise. Thus the generalization value will 
indicate how well the learned rules can adapt to different operating conditions. For 
this test, we varied the target positions (setup 2), the number of robots for a fixed 
layout (setup 3), the layout for a fixed number of robots (setups 4 e.g. see Fig. 4b) and 
both the robot number and layout (setups 5 e.g. see Figs. 4c and 4d).  
 
Transfer refers to the performance change when the final rulebase is tested in 
simulation and in hardware using the same setup. This aspect is tested using setup 6 

Simulated 
robots 

Target 

Wall 



(see Fig. 5). Because we are using a low fidelity noiseless simulator, the transfer value 
will be a good gauge of the sensitivity of the learned rules to noise in the actual 
operating environment. 
 

 
Fig. 4b Plan view of the 10-room testing layout. 

 
Fig. 4c Plan view of the 16-room testing layout. 

 

 
Fig. 4d Plan view of the 30-room testing layout. 

 

 
Fig. 5 Plan view of the hardware transfer testing layout. 



 
The baseline is set based on the operational requirement. Using equation (2), it 
translates to a metric value of 0.35. The final rulebase should perform better than 0.35 
on the learning set. Also, it is considered to have good generalization or transfer if its 
metric value is better than 0.35 on the test sets. 
 

6. Results and Discussion 

6.1 Generalization across Different Target Positions 
Based on Fig. 6, the learned rules performed better than the baseline on both the 

learning set and test set. This means that the learned rules meet the operational 
requirement and are robust to changes in target positions. This robustness suggests 
that varying target positions during learning helps to improve generalization in this 
case. 
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Fig. 6 Results with different target positions (Vertical lines represent standard 
deviation. The baseline is indicated by the red line. 
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Fig. 7 Results with increasing robot numbers. (Vertical lines represent standard 
deviation). The baseline is indicated by the red line. 
 

6.2 Scalability across Different Robot Numbers 
The trend obtained (Fig. 7) is typical of general scalability experiments: more 

significant increase in performance with initial increase in robot numbers (15, 25) 
followed by saturation for larger number of robots (30 and above). Given a fixed 
environment, apart from the possibility that increasing robot number may increase 
inter-robot interferences [1], another reason for this trend could be due to the varying 
contribution of the control logic and the robot numbers towards improving the 



performance of the multi-robot system. For small number of robots, the control logic 
plays a major role in determining the overall performance. But as the number of 
robots increases, the contribution from the control logic is subsumed by that from the 
robot numbers. Following this trend for more robots, it is possible that there exist a 
critical number of robots beyond which the performance is largely determined by the 
number of robots. It will not be affected much by improving the control logic. 
 

6.3 Generalization across Different Layouts 
The complexity of a layout is determined by its structure e.g. the number of rooms 

and the average accessibility of the rooms. From Fig. 8, it is observed that 
generalization decreases with increasing layout complexity. Such a trend is expected, 
as generalization is dependent on the similarity of the test layout relative to the 
learning layout. That is why good generalization is obtained for the 6-room and 8-
room (with narrower openings) but not the 10-room. In fact, we have identified the 
main bottleneck in the 10-room case to be the single doorway leading to the rooms 
(see Fig. 5b), which is not present in the other 2 cases. Theoretically, it is possible to 
improve generalization by using a learning set that covers a wider range of non-
conflicting layouts. By non-conflicting, we mean that the complexity of the layouts 
should not be drastically different (e.g. a 8-room versus a 20-room) so that the 
assumption of the existence of a common solution to all the layouts in the learning set 
is still valid. For example, in our case it is possible improve generalization by adding 
layouts having similar prominent features as the 10-room case into our learning set. 
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Fig. 8 Results with different room layouts. The x-axis labels are in the form [a, b], 
where a is the number of rooms, b is the number of robots.  (Vertical lines represent 
standard deviation). The baseline is indicated by the red line. 

6.4 Generalization across Different Layouts and Robot 
Numbers 

The trend observed (Fig. 9) suggests that given sufficient number of robots, say 
more than the number of rooms, the expected performance on a complex problem is 
correlated to a scaled down version of the problem. In other words, the performance 
of the scaled down problem is a reasonably good prediction of the performance on a 
more complex problem. This result is encouraging as it suggests that it is not 
necessary to tackle a rather complex problem head on. Instead the better alternative is 
to formulate a smaller scale problem by identifying the salient features in the complex 
problem, and then learning on this simplified problem, which is faster and easier. The 
learned rules can then be applied on the original complex problem, given sufficient 



number of robots. In our case the identification process is straightforward, since the 
layouts are simply aggregations of basic units (12 room≈2×(6 room), 16 room≈2×(8 
room) (see Fig. 4c), 30 room≈3×(10 room) (see Fig. 4d)). However, for an arbitrary 
layout, it will not be so simple. To develop a more generic identification approach 
will be an area of further research for us.  
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Fig. 9 Results with different room layouts and robot number. The x-axis labels are in 
the form [a, b], where a is the number of rooms, b is the number of robots.  (Vertical 
lines represent standard deviation). The baseline is indicated by the red line. 

6.5 Hardware transfer testing 
From Fig.10, it is observed that the performance of the learned rules on physical 

robots is comparable with that in simulation. This implies good transfer i.e. it is quite 
robust to noise in the actual environment. Although the result is based on limited 
number of trials, it demonstrates the potential of our proposed approach of auto-
programming the robot team using simulation, as the learned rules worked well on the 
physical robots.  
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Fig 10 Performance of best learned rules in simulation and hardware. The baseline is 
indicated by the red line. 
 

7 Conclusion and Future Work 
In this paper, we present a learning approach combining GA and RL, which 

exploits the complementary strengths of both approaches, to learn the control logic for 
individuals in a multi-robot system. We successfully applied this approach to learn the 
control rules for individual robots in a team tasked to locate targets in a realistic urban 



environment. The results showed that the learned rules generalize well to different 
target positions and to different layouts of similar or lower complexity to the learning 
layout.  As the layout become more complex and different, generalization naturally 
decreases. But this effect may be reduced by using a learning set with more layouts. 
The performance of the learned rules improved with increasing robot numbers, but 
with diminishing returns as inter-robot interference unavoidably sets in with larger 
number of robots. Furthermore, the results also demonstrated that it is possible to 
overcome the difficulty of learning straight on a complex problem by formulating a 
simpler problem based on the salient features of the more complex problem, and 
learning on the simpler problem. Lastly, the performance on physical robots is shown 
to be similar to that in simulation, illustrating the potential of our approach of auto-
programming the robot team using simulation. 

Our future work will mainly focus on improving the learning performance of the 
system, particularly on the design of distributed individual payoff schemes for multi-
robot systems. We will also examine more systematic approaches to “scale down” a 
complex problem so that learning becomes more tractable. 
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