
Paper Submission

12th ICCRTS
“Adapting C2 to the 21st Century”

Paper title: Evolving Control Logic Through Modeling and Simulation

Topic : Modeling and Simulation, C2 Technologies and System

Name of Authors: How Khee Yin, Victor Tay, DSTA, Singapore
 Yeo Ye Chuan, Sui Qing, Cheng Chee Kong, DSO, Singapore

Point of Contact: Victor Tay

Organisation: Defence Science Technology Agency (DSTA)

Complete Address: Directorate of Research and Development
 71 Science Park Drive, #02-05
 Singapore 118523

Phone: 065-68795215

Email: tsuhan@dsta.gov.sg

Abstract

One of the C2 paradigm shifts in the Information Age is Power to the Edge1.
Unmanned vehicle operations are increasingly based on this new paradigm, i.e. from
tele-operation to full autonomy, such that there is shared awareness, effective
collaboration and actions synchronization.

Traditionally, the control logic for unmanned vehicle operations is handcrafted using
Modelling and Simulation (M&S) tools. However, as the nature of operations
becomes more complex and diversified this manual approach of logic programming
becomes extremely difficult and tedious. To attain full autonomy, a more efficient
method to programming the control logic is required.

In this paper, we describe how M&S can be leveraged to provide a learning
environment to evolve control logic for an unmanned vehicle team. Our approach
coupled a rule learning system based on Genetic Algorithm and Reinforcement
Learning to an M&S system. We call this Simulation-based Rules Mining (SRM).
Our idea is that control rules can be learned from an M&S environment (i.e. simulated
robots and simulated environment), and then transferred onto real robots in a real
environment. We successfully applied SRM to evolve the control logic for a robotic
team to carry out search and destroy mission in an urban room environment.

1Alberts and Hayes, 2003, CCRP Publications

1. Introduction
 As we move into the 21st century, the role that unmanned vehicles play in

civilian and military operations is becoming more prominent. For example, in urban
operations, unmanned vehicles can augment the sensing capability and firepower of
the human soldier. At the same time, the C2 paradigm for unmanned vehicles is also
shifting from tele-operation to full autonomy. To achieve full autonomy, we need to
tackle the problem of programming the logic to control and coordinate the unmanned
vehicle team to achieve the given task. Traditionally, the logic is hand crafted with the
aid of M&S tools (e.g. see [1]). However, as the nature of the operations undertaken
by unmanned vehicles becomes more complex and diverse, this approach of control
logic programming becomes extremely difficult and tedious. Thus more efficient
methods need to be found. In this paper, we describe how we can use M&S to provide
a learning environment to evolve the control logic for the unmanned vehicle team.
Our approach coupled a rule learning system based on Genetic Algorithm (GA) and
Reinforcement Learning (RL) to a M&S system. We call this approach Simulation
Based Rule Mining (SRM) (see Fig. 1). Our idea is that control rules learned from the
M&S environment (simulated robots and simulated environment) can then be
transferred onto real robots in real environment. Compared to learning straight on the
physical robots, learning on a simulator has the advantages of ease of repeating trials
and mitigates the risk of damage to hardware.

Fig. 1 Outline of SRM process.

In the SRM approach, the control logic for a robotic platform is encoded in the form
of IF-THEN rules. Such rules are easy for humans to understand. In addition, using
rules as the knowledge representation makes it easy for us to incorporate a priori
knowledge into the system to bootstrap the learning process. A combined learning
approach of RL and GA is proposed as the individual algorithms complement each
other by tackling different aspects of the learning problem. GA can perform a
distributed search through the rule space for sets of ‘good’ rules. However, the
rulebases generated by GA usually contain non-mutually exclusive rules. In this
situation, the rule priority is one metric to differentiate the ‘good’ rules from the ‘bad’
ones. RL can incrementally tune the rule priority of individual rules according to their

performance so that better-than-average rules have higher priorities than others in the
long run.

We have tested the SRM approach to evolve the logic for controlling a robotic team to
carry out search and destroy mission in an urban room environment. In this test, each
robot needs only be equipped with sensors for navigation and target detection. There
is no need for the robot to know its own position or to have the means to
communicate with other robots. The learned control rules were shown to generalize
well across similar room layouts and demonstrate similar performance in simulation
and in the real environment.

2. Types of Multi-robot Systems
There are many ways to classify multi-robot systems. Three of the more

commonly used criteria are

• Composition: Whether the individuals in the team are homogenous or
heterogeneous in terms of roles, capabilities etc.

• Communication: Whether communication is enabled between robots in the team.

• Control logic design: Deliberative vs reactive

In this project, we will be designing the logic for a reactive homogenous team with no
communication between individuals.

3. Task Description
The task is for the robot team to find and clear targets in an unknown urban

environment. This is a generic task, encompassing practical applications like bomb
disposal, waste clearance and search and rescue. To reduce the computation load on
each robot, the robots do not have localization capabilities, nor do they communicate
with each other explicitly. The operational requirement specifies that at least 70% of
the targets must be found within the limited time given. This requirement balances the
completeness of the solution with the time constraint. To design the control logic by
hand for such a task will be very time consuming. Thus this problem is well-suited for
testing our proposed approach of multi-robot auto-programming.

4. Evolving Control Logic for a Robot Team
This section describes the SRM system that we use to automatically generate the

control logic for a homogenous robot team to cooperatively accomplish the given
task.

4.1 System Architecture
The system architecture is illustrated in Fig. 2. There are 3 major components in

the system:
• The rule engine on each robot that makes decision on what action to take given

the current local perception of the environment
• The Evaluator that monitors the performance of the robot team towards achieving

the given task and provides feedback in the form of a reward signal.
• The learning system, based on the hybrid approach of Genetic Algorithm (GA) [2,

3] and Reinforcement Learning (RL) [4, 5], that incrementally improves the

performance the of robot team using the reward signal and the pooled experience
of the robots.

Note that in the simulation, each robot is driven by its own rule engine. This means
that the control of the robot team is distributed. To create a homogenous robot team, a
common rulebase is used to drive all the robots.

The components are described in greater detail in the sections that follow.

Fig. 2 The SRM system architecture.

4.2 Control Logic Representation and Inference
In the SRM system, the control logic is represented as a set of IF-THEN rules. The

advantage of using such a representation is that knowledge of the human expert can
be easily incorporated into the learning process as such knowledge is naturally
expressed as IF-THEN rules. Example of a rule in our system is given below.

RULE AvdFrontRobot (strength = 0.85)
IF (Stall = false AND
 No_of_tracks > 0) AND
EXIST (Range < 2.5 AND
 Bearing = [-15, 15] AND
 Identity = Robot)
THEN Action = TurnLeft (Speed = 0, Turn_rate = 30)

This rule is interpreted as: If (a) I’m not stalled and (b) I sensed an object and (c) this
object is a robot in my front sector very near to me, then my reaction will be to turn
left on the spot and at the maximum turn rate to avoid the other robot.

The strength of a rule, a value between 0 and 1, is related to its priority. Its role will
become apparent when we explain how the rule engine works below.

Given a rulebase and the current perceived state of the environment, the rule engine
decides what action should be taken. The inference process of the rule engine can be
summarised as follows:
1) Given the current state s, create the active set A(s), which is the set of rules with

conditions matching the current state
2) If |A(s)| > 1 (because the rules are not mutually exclusive), select the rule with the

highest strength to fire. If there is more than 1 rule with the highest strength, then
randomly pick one among them.

3) Execute the action of the selected rule and transit to the new state. Go to step 1).

4.3 Learning Algorithm
Our learning approach combines GA and RL. The reason behind adopting a

combined approach is there are actually two aspects of the solution to learn, and the
individual approaches tackle different aspects. The first aspect is to learn the set of
rules that make up the solution. This will involve searching through the rule space for
good rules. GA is suitable for tackling this aspect. However, during the search
process, GA does not guarantee that the rules in the solution are mutually exclusive.
In this situation, the strength of the rule can be used to distinguish the ‘good’ rules
from the ‘bad’ ones. The strength of a newly created rule may be set to a default
value, but this should be modified according to its performance, which in turn is
measured by the reward from the Evaluator. RL is suitable for strength learning as it
can incrementally tune the strength of the rule in relation to the series of rewards it
received. A rule that receives a reward higher than its current strength will have its
strength increased and vice versa. It is now apparent that the individual approaches
that in our proposed algorithm complement each other to form an elegant overall
solution. The skeleton of the algorithm is given below

Algorithm LearnRules
1 Generation t := 0, Experience pool e:=NULL, done:=false
2 Initialize population p(t)
3 WHILE (!done) DO
4 FOR each rulebase r in population p(t)
5 e := Evaluate(r)
6 r := CreateAndDeleteRules(r, e)
7 FOR i: 1 to MAX_EPISODES
8 e := Evaluate(r)
9 r := DistributeReward(r, e)
10 END FOR
11 Evaluate(r)
12 END FOR
13 done := CheckStoppingCondition(p(t))
14 IF (!done)
15 p(t+1) := Select(p(t))
16 p(t+1) := Crossover(p(t+1))
17 t := t + 1
18 END IF
19 END WHILE

RL loop

GA loop

Algorithm Experience pool e := Evaluate(Rulebase r)
20 e :=NULL
21 Duplicate r across all simulated robots
22 FOR t= 1 to MAX_STEPS
23 Make Decision for all simulated robots
24 Record experience for each robot i as <s, A>i,t (s is current state, A is the set of active
 rules)
25 END FOR
26 e := ∑i,t<s, A>i,t (Pool experience from all robots across all time steps)
27 e := e + Get team reward from Evaluator

In the algorithm there is an outer GA loop and an inner RL loop. We shall first
describe the GA loop. The GA maintains a population of rulebases. Each rulebase is a
potential solution to the problem and has a fitness value associated with it. The fitness
value measures the performance of the rulebase at solving the problem. For every
iteration of the GA loop (also called a generation), the population undergoes 3 GA
operations:
1) Each rulebase in the population is modified by the rule creation and delete

operations (line 6). A new rule is derived from the parent rule by modifying the
condition and/or action part of the parent, and the process is driven by the pool of
experience collected from a previous evaluation episode (line 5). The delete
operation prevents the rulebase from getting too large by periodically removing
low strength rules or subsumed rules with similar strengths from the rulebase.

2) The fitness value of each rulebase is computed after all modifications to the
rulebase are completed (line 11). A new population is then created from the old
population (line 15) by selecting rulebases from the old population according to
their fitness values. The higher the fitness value, the higher the probability of a
rulebase being selected for the new population.

3) Every pair of rulebases in the new population exchange unique high strength rules
through crossover (line 16).

Next we describe the RL loop. First, the rulebase undergoes an evaluation episode
(line 8). RL is then used to distribute the reward received at the end of the episode
among the rules that were active, thereby updating the strength of these rules
incrementally (line 9). The update rule is

)],([),(),(acSracSacS iii −+← η (1)

Here η is the learning rate, r is the payoff, Si is the strength of an active rule i, c is the
rule condition and a is the rule action. The list of active rules is extracted from the
common experience pool.

Lastly, we shall briefly describe the Evaluate() function which is used in both the GA
and RL loops. It takes in a candidate rulebase as input, simulates the robot team
executing the task (lines 22 to 25), gathers the individual robot’s experiences into the
common pool (line 26) and requests the reward from the Evaluator module (line 27).
Recall from earlier that the common experience pool is used in the GA rule
creation/delete functions and the RL strength update function. The use of the common
experience pool can be viewed as allowing some form of experience sharing among

the robots. This can help to accelerate the learning process as each robot now has a
richer set of experiences (its own and others’) to learn from.

4.4 Evaluator
This module computes a team reward r after each evaluation. Apparently, the

reward is computed differently for different tasks. For the target search and clearance
task, we design the reward function to be

]
*5.0

),*5.0max(/[]*5.0[
max

max

t
tt

n
nnr

total

dc += (2)

where nc is the number of targets cleared, nd is the number of targets detected (but not
cleared), t is the actual time taken, ntotal is the total number of targets, tmax is the
maximum time allowed. This formulation considers both the completeness (in terms
of proportion of targets found) and efficiency (in terms of time taken) of the solution.

5. Experiment Setup
Experiments are conducted both in simulation and in hardware. We simulated the

Pioneer 3AT equipped with a laser range finder (maximum range 4 m, 180° field-of-
view) and a fiducial sensor (maximum range 2 m). The processed sensor information
available to the robot are: 1) Whether a target is in its gripper, 2) Whether it has
stalled, 3) The number of tracks detected, 4) For each track, the range, bearing,
orientation and identity. The list of robot actions are: 1) Consume target, 2) Avoid
obstacle, 3) Approach target, 4) Approach opening, 5) Turn and 6) Move straight.

The actual Pioneer 3AT robots that we used are equipped with SICK200 LMS lasers.
To enable the robots to recognise each other and the targets, reflective strips are
attached to both sides of the robots and the targets. Each robot is controlled by a
laptop running the rule engine (Fig. 3). This means that the control of the physical
robot team, similar to that in the simulation, is distributed.

Fig. 3 The Pioneer 3AT robot used for hardware testing.

Table 1 summarizes the various setups that are used for the experiments. A scenario is
defined by a fixed layout, number of robots and targets, and their positions. We
generate multiple scenarios by varying the target positions for each setup. For each
setup (except 1), several trials were conducted using different random seeds. The
average team payoff over all trials is used as the performance metric.

SICK200
LMS laser

Laptop with
rule engine

Reflective
beacon

Table 1: The different setups used in the experiment.
Setup Purpose Layout (Area) No. of

robots
No. of
targets

Max time
steps

No. of
scenarios

1 Learning 8 room (252 m2) 10 10 1000 6
2 Generalization test

(different target
positions)

8 room (252 m2) 10 10 1000 6

3 Generalization test
(different no. of
robots only)

8 room (252 m2) 15- 35 10 1000 6 each

4a
6 room (209 m2) 10 10 1000 6

4b 8 room with
narrower doors
(252 m2) 10 10 1000 6

4c

Generalization test
(different layout
only)

10 room (382 m2) 10 12 1000 6

5a
12 room (408 m2) 20 15 1000 6

5b
16 room (441 m2) 20 15 1000 6

5c

Generalization test
(different no. of
robots and layout)

30 room (910 m2) 35 30 1000 2

6 Hardware transfer
test

5 room (106 m2) 5 4 ~1000 5

Learning is conducted using setup 1 (see Fig. 4a), using a mix of random and a priori
rules as the starting point. Each learning experiment ran for 15 generations. The best
performing learned rulebase in these 15 generations is selected as the final rulebase.
The generalization and transfer properties of the final rulebase are then investigated
using setups 2 to 6.

Fig. 4a Plan view of the 8-room learning layout.

Generalization refers to the performance change when the final rulebase is tested in a
different setup. In practice, learning is usually conducted using a small number of
robots (e.g. 10) or a subset of the full range of environment layouts as it quickly
becomes computationally intractable otherwise. Thus the generalization value will
indicate how well the learned rules can adapt to different operating conditions. For
this test, we varied the target positions (setup 2), the number of robots for a fixed
layout (setup 3), the layout for a fixed number of robots (setups 4 e.g. see Fig. 4b) and
both the robot number and layout (setups 5 e.g. see Figs. 4c and 4d).

Transfer refers to the performance change when the final rulebase is tested in
simulation and in hardware using the same setup. This aspect is tested using setup 6

Simulated
robots

Target

Wall

(see Fig. 5). Because we are using a low fidelity noiseless simulator, the transfer value
will be a good gauge of the sensitivity of the learned rules to noise in the actual
operating environment.

Fig. 4b Plan view of the 10-room testing layout.

Fig. 4c Plan view of the 16-room testing layout.

Fig. 4d Plan view of the 30-room testing layout.

Fig. 5 Plan view of the hardware transfer testing layout.

The baseline is set based on the operational requirement. Using equation (2), it
translates to a metric value of 0.35. The final rulebase should perform better than 0.35
on the learning set. Also, it is considered to have good generalization or transfer if its
metric value is better than 0.35 on the test sets.

6. Results and Discussion

6.1 Generalization across Different Target Positions
Based on Fig. 6, the learned rules performed better than the baseline on both the

learning set and test set. This means that the learned rules meet the operational
requirement and are robust to changes in target positions. This robustness suggests
that varying target positions during learning helps to improve generalization in this
case.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Learn Test
target positions

pa
yo

ff

Fig. 6 Results with different target positions (Vertical lines represent standard
deviation. The baseline is indicated by the red line.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

10 (Learn) 15 20 25 30 35

No. of robots

pa
yo

ff

Fig. 7 Results with increasing robot numbers. (Vertical lines represent standard
deviation). The baseline is indicated by the red line.

6.2 Scalability across Different Robot Numbers
The trend obtained (Fig. 7) is typical of general scalability experiments: more

significant increase in performance with initial increase in robot numbers (15, 25)
followed by saturation for larger number of robots (30 and above). Given a fixed
environment, apart from the possibility that increasing robot number may increase
inter-robot interferences [1], another reason for this trend could be due to the varying
contribution of the control logic and the robot numbers towards improving the

performance of the multi-robot system. For small number of robots, the control logic
plays a major role in determining the overall performance. But as the number of
robots increases, the contribution from the control logic is subsumed by that from the
robot numbers. Following this trend for more robots, it is possible that there exist a
critical number of robots beyond which the performance is largely determined by the
number of robots. It will not be affected much by improving the control logic.

6.3 Generalization across Different Layouts
The complexity of a layout is determined by its structure e.g. the number of rooms

and the average accessibility of the rooms. From Fig. 8, it is observed that
generalization decreases with increasing layout complexity. Such a trend is expected,
as generalization is dependent on the similarity of the test layout relative to the
learning layout. That is why good generalization is obtained for the 6-room and 8-
room (with narrower openings) but not the 10-room. In fact, we have identified the
main bottleneck in the 10-room case to be the single doorway leading to the rooms
(see Fig. 5b), which is not present in the other 2 cases. Theoretically, it is possible to
improve generalization by using a learning set that covers a wider range of non-
conflicting layouts. By non-conflicting, we mean that the complexity of the layouts
should not be drastically different (e.g. a 8-room versus a 20-room) so that the
assumption of the existence of a common solution to all the layouts in the learning set
is still valid. For example, in our case it is possible improve generalization by adding
layouts having similar prominent features as the 10-room case into our learning set.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

[8,10]
(Learn)

[6,10] [8,10]
(narrow)

[10,10]

Layout,no. of robots

pa
yo

ff

Fig. 8 Results with different room layouts. The x-axis labels are in the form [a, b],
where a is the number of rooms, b is the number of robots. (Vertical lines represent
standard deviation). The baseline is indicated by the red line.

6.4 Generalization across Different Layouts and Robot
Numbers

The trend observed (Fig. 9) suggests that given sufficient number of robots, say
more than the number of rooms, the expected performance on a complex problem is
correlated to a scaled down version of the problem. In other words, the performance
of the scaled down problem is a reasonably good prediction of the performance on a
more complex problem. This result is encouraging as it suggests that it is not
necessary to tackle a rather complex problem head on. Instead the better alternative is
to formulate a smaller scale problem by identifying the salient features in the complex
problem, and then learning on this simplified problem, which is faster and easier. The
learned rules can then be applied on the original complex problem, given sufficient

number of robots. In our case the identification process is straightforward, since the
layouts are simply aggregations of basic units (12 room≈2×(6 room), 16 room≈2×(8
room) (see Fig. 4c), 30 room≈3×(10 room) (see Fig. 4d)). However, for an arbitrary
layout, it will not be so simple. To develop a more generic identification approach
will be an area of further research for us.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

[8,10] [16,20] [6,10] [12,20] [10,10] [30,35]

Layout,no. of robots

pa
yo

ff

Fig. 9 Results with different room layouts and robot number. The x-axis labels are in
the form [a, b], where a is the number of rooms, b is the number of robots. (Vertical
lines represent standard deviation). The baseline is indicated by the red line.

6.5 Hardware transfer testing
From Fig.10, it is observed that the performance of the learned rules on physical

robots is comparable with that in simulation. This implies good transfer i.e. it is quite
robust to noise in the actual environment. Although the result is based on limited
number of trials, it demonstrates the potential of our proposed approach of auto-
programming the robot team using simulation, as the learned rules worked well on the
physical robots.

0.00

0.20

0.40

0.60

0.80

1.00

Simulation Hardware

Experiment

pa
yo

ff

Fig 10 Performance of best learned rules in simulation and hardware. The baseline is
indicated by the red line.

7 Conclusion and Future Work
In this paper, we present a learning approach combining GA and RL, which

exploits the complementary strengths of both approaches, to learn the control logic for
individuals in a multi-robot system. We successfully applied this approach to learn the
control rules for individual robots in a team tasked to locate targets in a realistic urban

environment. The results showed that the learned rules generalize well to different
target positions and to different layouts of similar or lower complexity to the learning
layout. As the layout become more complex and different, generalization naturally
decreases. But this effect may be reduced by using a learning set with more layouts.
The performance of the learned rules improved with increasing robot numbers, but
with diminishing returns as inter-robot interference unavoidably sets in with larger
number of robots. Furthermore, the results also demonstrated that it is possible to
overcome the difficulty of learning straight on a complex problem by formulating a
simpler problem based on the salient features of the more complex problem, and
learning on the simpler problem. Lastly, the performance on physical robots is shown
to be similar to that in simulation, illustrating the potential of our approach of auto-
programming the robot team using simulation.

Our future work will mainly focus on improving the learning performance of the
system, particularly on the design of distributed individual payoff schemes for multi-
robot systems. We will also examine more systematic approaches to “scale down” a
complex problem so that learning becomes more tractable.

References
[1] C. K. Cheng, G. Leng, “Cooperative search algorithm for distributed autonomous

robots”, in Proceedings of IEEE International Conference on Intelligent Robotics
and Systems, 2004.

[2] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine
Learning, ed. 1989, Addison-Wesley.

[3] K. A. De Jong, “Using Genetic Algorithms for Concept Learning”, Machine
Learning, vol 13, pp 161-188, 1993.

[4] L. P. Kaelbling and M. L. Littman, “Reinforcement Learning: A survey”, Journal
of Artificial Intelligence Research, vol 4, pp 237-285, 1996.

[5] C. J. C. H. Watkins, “Learning from delayed rewards”, Ph.D. diss., King’s
College, Cambridge, 1989.

