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Abstract: A commonly believed axiom in signal detection theory is that "more information is 
good" [1]. That is, when attempting to determine the state of a partially observable system the 
addition of correct information monotonically improves the correctness of the state assessment. 
When diagnosing static systems the assertion that "the effect of information is to increase the 
likelihood of getting correct diagnosis, while reducing the likelihood of incorrect diagnosis" 
holds. However, when diagnosing a dynamic system, the improvement in diagnosis is offset by 
increases in uncertainty that is generated by the dynamic forces within the system being observed.  
A similar effect occurs when controlling dynamic, stochastic systems. The act of exercising 
control requires a finite amount of time, during which uncertainty enters into the system reducing 
the efficacy of the control policy. The impact of these information processing delays increases in 
relevance as the complexity, and pace of both the system and control apparatus increase. This 
paper defines a mathematical framework describing the effect of information and information 
processing on the diagnosis of dynamical systems. 
 
Note to Reviewers: We apologize for the incomplete state of this paper. This paper is a formal 
documentation of research conducted at during 2006. Prior to the final paper deadline in April 
this paper will undergo several substantial modifications, notably: (1) incorporation of a series of 
brief, easily understood examples that explain the principles described; (2) incorporation of a 
section on information entropy and control; (3) incorporation of the section on entropy and 
channel communications that is included as an appendix; incorporation of graphs with more 
accurate curves [Fig 1-7]; references and associated bibliography. If requested, a more 
intermediate version of the paper can be provided for comprehensive review on March 1st. 
 
[1] Heeger, D., Signal Detection Theory, http://www.cns.nyu.edu/~david/sdt/sdt.html, New York 
University. 
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Information and Entropy 
 
An understanding of the information 
required to represent a system begins with a 
formal definition of the system. We refer to 
the system being diagnosed and/or 
controlled as the world (W). A world is 
composed of a finite set of elements 
W={e1,e2,..en}from the set of possible 
elements E e∈E. Elements, in turn, are 
described by a tuple of n attributes 
xe=(x1,x2,..xn) which are in turn each 
members of their own defining set 
∀xi∈Xi={ai,1, ai,2,...,ai,n} Attributes provide 
descriptions of elements such as location 
and orientation. Attributes are finite, 
constrained values which collectively define 
the scope of the world.  The state of an 
element (xe) is a unique set of values for all 
attributes. Transitions between states are 
made by events (E). Laws that govern state 
transitions are mapped through a transition 
function 
  (1) XEXf →×:
The state space (Pe) of an element is the 
Cartesian product of the attribute sets which 
is the number of unique, states within Xe.  
  (2) neeee XXXP ×××= ...

21

The state space of the world is the power set 
of the elemental state space for all elements:  
  (3) eeeew PPPPP

n
∀×××= };...

21

A world's state space may be divided into 
states which are feasible (Pf) and infeasible 
(Pi). Pf and Pi are mutually exclusive and 
comprehensive s.t. 

  (4) {}=if PP I

   (5) ifw PPP U=
The information content (I) of a message is 
the amount of information required to 
uniquely identify a state. At this point we 
only consider messages whose information 
content is ideally coded for the set of 
possible values that could be stored in the 
message. That is, the representation scheme 
uses the minimum number of bits to 
completely represent the set of possible 

values. Information content is defined by 
Brillion as: 

 PKI ln=  (6) 
In which K is a constant associated with the 
size of the language used to represent a 
world state. In modern computers and 
communications this language is binary 
allowing us to define the information 
content is defined as: 

 PI 2log=  (7) 
Again through Brillion we can see that the 
amount of feasible states (Pf) that exist for a 
world after a message (m) describing that 
world has been received is: 

 mI
wf PP 2−=  (8) 

The feasible space represents disorder, lack 
of knowledge, or information entropy (H). 
Using (6) we define the post-message 
entropy of a world as: 

 mwf IPPH −== 22 loglog  (9) 

Information entropy is a useful construct 
that we will extend to collections of 
information and information exchanges. 
 
Information entropy is similar to uncertainty 
(U) in that they both measure the disorder in 
a system. They differ in the units of 
measurement. Information entropy is 
measured in bits while uncertainty is 
measured in natural units for the system 
being described (e.g. meters). 
 
Equation (9) shows how new information 
can be used to reduce entropy within the 
representation of a world. In static worlds 
the information content of a message that 
contains positive information (Im>0) 
decreases information entropy. For ideally 
coded messages, providing information 
about a previously unknown world (worlds 
in which H = log2Pw) the decrease in 
information entropy is equal to the size of 
the message.  
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If a priori knowledge of the world exists 
prior to receipt of the message some portion 
of the message may be redundant, reducing 
the message's information content. The 
information content of a message about a 
world for which a priori information is 
expressed as: 

 [ ] mmf IIpPH −=Δ )(log 2 I    (11) 
Where p(Im) is a decoding function that 
produces a set of feasible states from a 
message Im.  
 
Uncertainty Due to Fidelity 
 
In practical terms worlds are represented in 
terms of abstractions. In modern 
communications semantics for encoding 
attributes are defined (elements and 
attributes in this paper) and encoded in bits. 
Some real-world information is naturally 
discrete. Other phenomenon is naturally 
continuous and can only be approximated 
with binary representation. The amount of 
uncertainty associated with discrete 
representation of continuous attributes (εr) is 
limited by the number of bits used to encode 
the data and the dimensionality of the data. 
For example, when communicating 
attributes describing positions in Cartesian 
space our message must be transmitted 
digitally at some point limiting the fidelity 
by the least precise representation1 used in 
the communications path which is the unit 
distance  of the representation. The unit 
distance defines the minimum uncertainty of 
our knowledge such that the minimum 
amount of error is: 

)ˆ(r

 
n

r Zrrn
∈= ;ˆ

2
ε   (12) 

where r is the unit size of representation and 
n is the dimensionality of the space.  
 
 

                                                 
1 In this discussion we focus on integer 
representation. Other representations, such as 
floating point, can provide higher fidelity for 
portions of their range but do not provide higher 
fidelity on average.   

Entropic Drag 
 
So far we have limited our discussion to 
static worlds. When observing static worlds 
information entropy is decreased by each 
successive message that describes the world. 
In dynamic worlds the decrease in entropy 
achieved from a message is offset by an 
increase in entropy due to the world's 
dynamic forces. We call this increase in 
information entropic drag (Γ) as it is a drag 
on an observer's ability to understand the 
world. Entropic drag is derived from the rate 
at which the dynamic forces in the world 
create unpredictable change. To define these 
dynamic forces recall that a world's state 
space Pw is divided into feasible and 
infeasible states and that the transition 
between these states is Markovian, defined 
by the transition function.  For any set of 
infeasible states there exists a boundary 
layer between feasible and infeasible states. 
The rate at which infeasible states transition 
to feasible states is the driving force behind 
entropic drag. We formally define entropic 
drag as the log of the rate at which 
previously infeasible world states become 
feasible: 

 dt
dxxP

dt
diiHt fww )(log)()( 2==Γ

 (13) 
The impact of entropic drag on information 
is shown as a decrease in the information 
content on a world after an observation s.t. 
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m dttIII

0

10  (14) 

where tm is the time required to process the 
message, I0 is the information content on the 
world prior to processing the message and Im 
is the information content of the message. 
An important feature of this equation is that, 
if the time required to process a message is 
sufficiently long, the loss of information 
associated with entropic drag will exceed the 
information content of the message and the 
net result of processing the message will be 
an information loss! 
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Obtaining and using information takes some 
finite amount of time. The process of 
obtaining and using information was 
described by Boyd as the Observe, Orient, 
Decide and Act (OODA) loop. The first part 
of this loop consists of a sensor observing 
the environment, transmitting a message to 
an information sink where it is fused with 
additional information to create a consistent 
model of the world. The delay between an 
observation (to) and the incorporation (t') of 
the observation's data is the sum of the 
sensor processing (δs), communications (δc) 
and data fusion (δf) delays. 
 fcsttt δδδδ +++=+= 00'  (15) 
The sensor processing and communications 
channels are assumed to be able to process 
information at a fixed rate measured in bits 
per second. The data processing profile for 
data fusion varies by technique, with some 
techniques such as nearest-time replacement 
operating at a fixed rate and others, such as 
search-based techniques, incurring 
exponential increases in latency as the 
number of observations increase. For the 
purpose of this paper we will assume that 
each element in the observe-orient chain 
operates at a fixed rate in bits per second.   

 δ
β mI
=  (16) 

By applying this definition to (14) we 
express information content in terms of 
message size and bandwidth. 
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and 

( ) dttIIII
mI

mm ∫ Γ+−=Δ β
0

0 )(  (18)

  
From (18) we can see that information is 
only gained from a single message if the rate 
of information entropy is less than the 
bandwidth. 
  iff 0>ΔI Γ>β  (19) 
Information entropy progresses along a 
frontier between the feasible state space and 

the infeasible state space. The frontier (S) is 
set of piecewise smooth surfaces (si∈S) 
within Pw that are defined as the boundaries 
between infeasible states xi∈Pi that are 
reachable from a feasible state xf∈Pf through 
an event in accordance to the transition 
function. Each piecewise smooth surface is 
either a member of a set of surface that  
form a closed n-dimensional surface that 
encapsulates positive or negative 
information or a member of a semi-closed 
surface whose edges abut limits of Pw space.  
S changes at a rate that is defined by the 
entropic drag with the boundary perpetually 
growing the amount of feasible space and 
shrinking the infeasible space.  
 
The entropic drag for a surface si is 

dt
dxvs

dt
dhsHs iii

r
⋅==Γ 2log)()(  (20) 

where v
r is the n-dimensional vector of 

unpredictable  change normalized to si. The 
entropic drag for the entire world is the sum 
of the entropic drag for each surface: 

 ∑
∀

=Γ
is

iiw dt
dhsHs )()(  (21) 

Positive and Negative Information  
 
Positive information (P+) are assertions that 
one or more states are true.  

  (22) },..,,{ 21 nxxxP =+

For example, a message stating that an ant 
was observed at time t0 is positive 
information. Negative information (P-) are 
assertions that a set of states are false.  

  (23) },..,,{ 21 nxxxP ¬¬¬=−

For example, a message stating that an 
observation at time t0 at a specific location 
found an element did not exist is negative 
information. World states can be expressed 
either through positive information or 
negative information and in fact 
observations frequently produce a mix of 
positive and negative information. Positive 
and negative information both create 
infeasible regions in the state space and the 
information gain from a message is equal to 
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the reduction in feasible states. If the 
message encodes negative information the 
information gain is equal to: 

 
−− = PIm 2log  (24) 

whereas the information gained from 
positive information is equal to the size of 
the space outside of the positive information 
set: 

 
++ −= PPI wm 22 loglog  (25) 

As positive information entropies 
information is increasingly lost at a rate that 
increases in proportion to the dimensionality 
of the original message [Fig. 1]. 
  
This can be envisioned as the feasibility 
frontier growing outward from a clustered 
set of feasible states.  
 
As negative information entropies 
information is decreasingly lost in 
proportion to the dimensionality of the 
world [Fig. 2]. This can be envisioned as the 
feasibility frontier growing inward, 
removing a diminishing set of clustered 
infeasible states. 

 
Figure 1 

Each closed surface si either grows (for I+) 
or shrinks (I-) due to entropic drag until 
terminates in a singularity, terminates 
against other surfaces, or terminates against 
the boundaries of the state space. The 
information loss for the world is a piecewise 
regular continuous function that is the sum 
of the information loss for each surface. 

 

 
Figure 2 

 
Message Streams 
 
Information acquisition is typically 
bandwidth limited, where bandwidth is 
defined as the rate at which information can 
be obtained as shown in (15). In bandwidth 
limited environments a decision-maker has 
the ability to accept information at a 
continuous rate of β. In ideal conditions, 
information in static world increases linearly 
until the information capacity of the world is 
reached [Fig. 3]. 

  
Figure 3 

Concurrently with the increase in 
information content through the arrival of 
new messages information is lost through 
information entropy. The amount of 
information available on the world provided 
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a constant stream of information is: 

( )∫ +Γ−+= β
mI

mm dtIIIII
0

00 )(  (26) 

As mentioned briefly above, edge effects 
can play an important role in the rate of 
entropic drag. We highlight two basic cases 
here. In the first case the information 
gathering bandwidth is sufficient to 
exhaustively describe the world before the 
information content of the first message has 
vanished in a singularity or against an edge. 
In this case the information bandwidth 
exceeds entropic drag. In this case the 
information content will become maximized 
when the information space has been 
transmitted. 

 
β

)(log2
max

wP
t ≥  (27) 

Information will monotonically increase 
until time tmax after which further messages 
can only maintain the current amount of 
information as the information gained by a 
successive message cannot exceed the 
combination of information lost due to 
entropic drag and the information loss 
through redundancy with prior information 
[Fig. 4]. 

 
Figure 4 

In the second case the bandwidth is less than 
the entropic drag. In this case the 
information content will reach a stable point 
of maximum information when the entropic 
drag equals the bandwidth [Fig. 5]. 
 
Note that in both cases the maximum 
information reached is less than the 

information space of the world. This gap is 
the minimum information loss associated 
with describing a dynamic world. 
 

 
Figure 5 

 
Uncertainty Redux  
 
One of the design decisions involved in 
constructing a C2 system is selecting the 
fidelity of information being communicated. 
The fidelity is adjustable as the designer can 
arbitrarily decide the unit measure for each 
dimension in the world. For example, should 
the lowest bit of information about an entity 
be equivalent to a millimeter, meter or 
kilometer? Earlier we showed how a 
minimum amount of uncertainty (ε) is 
associated with the choice of representation. 
The minimum uncertainty of a system at 
some time t is the aggregation of the 
representational uncertainty of a system and 
the feasible state space translated from bits 
to real world units. 

  (28) 
H

r rUU 2ˆ ⋅+=
The representational uncertainty is the 
product of the information frontier and the 
informational error: 

 rtr SU ε⋅=  (29) 
By substitution uncertainty becomes: 

  (30) ∫ Γ⋅+⋅= dtrSU rt 2ˆε
Both portions of the uncertainty equation 
(30) associated vary as a function of size 
unit vector. However, the rate at which they 
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vary differs, with the uncertainty due to 
representational error becoming 
predominant as the unit representation 
grows and the uncertainty due to entropy 
becoming predominant as the unit 
representation shrinks. This duality allows 
us to identify the optimal unit representation 
for maximizing uncertainty. 
 
Observation Inefficiencies 
 
So far we have assumed that messages have 
been ideal, with each bit of an observation 
translating to a message bit that provides a 
single bit of information. In practice this is 
only the case when regular homogeneous 
worlds are being observed and no a priori 
about the world. When a priori knowledge 
exists, the efficiency of an observation is 
reduced by the number of bits that are 
redundant with the a priori information. 
When observations are controllable, as in 
the case of vehicle borne sensors, the order 
of observation may be controlled to observe 

 
Figure 6 

the portions of the world with the biggest 
potential payoff (least amount of a priori 
redundancy) first. This loss in efficiency is 
highly dependent upon the situation. In 
order to explore entropic relationship 
inefficient systems we notionally we 
describe this efficiency loss of as a decay 
function [Fig 6]. We replace the constant 
information value in equations (17) with a 
function g(i,t) → i to show the relationships 
between information variant messages and 
information entropy.  

  (32) ( )∫ Γ−=
t

mm dttIgtIgI
0

)),((),(

When deploying a sensor motion strategy 
that exhaustively searches the world the 
entropic drag can become so large that it 
overcomes information gain. This effect is 
shown in [Fig 7] which shows the effect of a 
linear entropic drag on the observation 
environment shown in the previous figure. 
As shown in the figure shows that the 
maximum amount of information is found 
after an ideal number of observations have 
taken occurred. If the goal of a command 
and control system is to enable a decision 
maker to make decisions based upon the 
most complete information possible, 
immediately after this observation would be 
the time to make decisions. 

 
Figure 7 

While we are use a linear function in our 
example, we recognize that the information 
function may be highly non-linear. 
However, non-linearity does not negate the 
principle shown here.  
 
Entropic Drag and Network Topologies 
 
Simulation experiments were conducted to 
examine the effect of entropic drag on a 
simple command and control network 
infrastructure. These experiments examined 
the flow and relevance of information 
throughout the network. The bulk of the 
simulation’s requirements lie in the terms 
“C2 network infrastructure” and 
“information”. 
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A command and control network 
infrastructure consists of a set of 
communicating entities (or nodes) whose 
communications topology forms an acyclic 
tree. The lines of communication between 
nodes (edges) also correspond to the chain 
of command. Thus, a node’s authority in the 
network is inversely proportional to its depth 
in the communications tree (i.e. the root 
node of the tree has the highest authority and 
leaf nodes have the least authority). An 
additional property of the 
communications/command tree is that all 
nodes at the same depth in the tree have the 
same number of directly reporting 
subordinates (child nodes). This mapping of 
rank to number of immediate subordinates is 
the property that distinguishes alternate C2 
infrastructures in the simulator.  
 
Within the simulator, information consists of 
data gathered from the environment by leaf 
nodes in the C2 infrastructure. Each piece of 
information is an abstract quantity that is 
independent of other pieces of information 
(e.g. information does not overlap or 
correspond to multiple measurements of a 
known target in the environment as might be 
the case in a filtering problem). Information 
can be generated by leaf nodes periodically 
or stochastically, depending on the simulator 
configuration. The value of each piece of 
information as a number in the interval 
[0,1], where 1 corresponds to maximum 
value and 0 corresponds to no value.  
 
Another property of information is that it 
only becomes useful to an entity after the 
information has been fused into the local 
world model. Thus, information is subject to 
two primary sources of latency before it can 
increase the knowledge of a network entity: 
latency due to network communications and 
latency due to the local information fusion 
algorithm.  
 
Simulation Structure  

The C2 network information simulation is a 
modular, discrete timestep simulation whose 

primary components are: network entities, 
communications links and information 
processing algorithms. Figure 1 depicts the 
actions that occur each timestep. In addition, 
the simulation tracks a number of metrics 
for each piece of information. Two key 
metrics include the information area (the 
number of nodes that finished fusing the 
information in the current timestep) and the 
information volume (the number of nodes 
that have fused the information at or before 
the current timestep). These information 
area and volume are metrics are taken from 
the literature on the performance of real-
world networks. The overall value of a piece 
of information is derived by multiplying the 
information volume by the associated 
entropic drag. Since these area and volume 
metrics are affected by the number of nodes 
in the network, when comparing different 
C2

 
topologies we typically consider 

topologies with the same number of leaf 
nodes and then restrict the results to leaf 
node areas and volumes.  

The simulation has a number of input 
parameters that can be varied. Primary 
simulation parameters include: Simulation 
duration (timesteps), C2

 
topology, entropic 

drag (value lost/timestep), Latency along a 
network communications link 
(timesteps/observation) and Latency due to 
fusion. Unlike other simulation parameters 
which are constant, fusion latency can 
optionally be a function of the number of 
prior fusion operations (allowing for 
nonlinear fusion complexity).  

Simulation Outputs  

Figure 8 shows a sample information 
volume plot for a single simulation run. 
These plots generally contain three pieces of 
information: the ideal information volume 
(red line), the information volume without 
accounting for entropic drag (blue line) and 
the information volume with entropic drag 
(green line). The ideal information volume 
depicts the spread of information throughout 
the network assuming no latency due to 
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communications or fusion and hence no 
entropic drag. Thus, it provides an 
(admittedly unrealistic) upper bound on the 
amount of information in the network. 
Nonetheless, it provides a strong indication 
that an upper bound exists. The undecayed 
information volume depicts the network 
information volume that would result when 
considering latency but not entropic drag. 
The decayed information volume takes into 
account both the effects of latency and 
entropic drag, and represents the main result 
of interest. One expects both the ideal and 
undecayed information volumes to 
monotonically increase, with the entropic 
drag volume trailing behind the ideal 
volume. The entropic drag volume shows 
that there exists a maximum information 
volume (time=175) for the system. Further, 
it shows that this peak occurs prior to the 
complete distribution of information across 
the network across the network (time=240). 
 

 
Figure 8 

A key feature of the simulation output is the 
ability to compare one or more simulation 
runs. Figure 9 is a plot comparing multiple 
runs of the simulation where the information 
decay rate (δ) was varied while the other 
simulation properties were held constant. In 
the plot the upper lines in the plot have 
progressively lower decays. Figure 10 shows 
the same data plotted in three dimensions 
with the information decay rate plotted 
along the y axis. The appropriate plot type 
can be selected based on the parameters 

being varied.  

 
Figure 9 

 
In figure 9 one can again see the existence 
of maximum information volume prior to 
full dissemination of information across the 
network. We can also see that the time at 
which the information maximum occurs 
varies with respect to the entropic drag as he 
information maximum occurs at time step 
230 for the runs with lower information drag 
(purple lines at the top of the graph), at time 
step 175 for the runs with higher entropic 
drag (lines at the bottom) and equally across 
time step 230 and 175 for the cyan 
line.

 
Figure 10 
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Future Efforts 

This paper is a first step in the application of 
information theoretic entropy to command 
and control. Large bodies of work in 
information management, particularly data 
fusion, networking and the pantheon of 
group control strategies needs to be looked 
at though the lens of entropic drag. Our 
forward looking hypothesis is that an 
understanding of the entropic effects of 
information will allow C2 designers and in-
the-field decision makers to employ 
command and control strategies that are 
optimized for any given situation. Further 
work will also be required to improve the 
metrics that are used to measure the 
dynamicism within an environment. 
Environmental dynamics are driven by 
complexity and the pace of environmental 
change; however, is not well understood 
how complexity and pace should be 
measured in real-world environments. These 
further advancements should enable the 
pursuit of our long-range objective, the 
construction of an adaptive command and 
control system that autonomously observes 
the environment and changes the network 
topology and information and decision-
making strategies to optimize C2 
performance. Finally, while we have 
theoretical and simulated evidence that 
indicates the importance of entropic drag to 
C2, to date we have only investigated 
theoretical environments and have not 
attempted to apply these principles to real 
world problems. 
 
Conclusion 
 
We have shown that the loss of information 
due to dynamic forces within an 
environment can have a substantial impact 
upon the information content of one or more 
messages about the environment.  This 
effect, called entropic drag, fundamentally 
impacts the effectiveness of command and 
control systems. The principles outlined in 
this paper can be used provide a better 
understanding of the utility of existing 

command and control systems and to 
improve the design of future command and 
control systems.  
 
Entropic drag impacts C2 systems in several 
important ways. First, entropic drag enforces 
a fundamental limit to the amount of 
information that can be known about a 
dynamic system. This limit can be used by 
C2 designers to identify the maximum 
useful fidelity of C2 semantics. Second, by 
expressing the relationship between 
information and time entropic drag allows a 
decision maker to identify when the optimal 
amount of information has been acquired. 
Third, entropic drag provides a framework 
for understanding the flow of information 
across a networked community, providing 
insight into the utility (or lack thereof) of 
sharing information with each member of 
the community as well as providing insight 
into the utility of alternative network 
topologies. Fourth, entropic drag provides 
tools to better understand the tradeoff 
between information and latency in control, 
allowing decision-makers to select the 
optimal amount of information to use for 
performing a specific task or set of tasks. 
Fifth, entropic drag provides tools to 
understand the utility of collaboration in 
shared decision making, allowing decision 
makers to correctly scope the degree of 
collaboration for optimal performance of a 
task. Finally, entropic drag provides a 
framework for the development of a next 
generation adaptive command and control 
infrastructures, infrastructures that 
autonomously adapt information and 
decision sharing strategies and the 
networking topology at run time in response 
to an environment's changing dynamic 
forces.  
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Appendix - Channel Communications 
 
0. Abstract
 
We use information theory to discuss the technical problem of accuracy of transference of signals from 
sender to receiver.  The development follows closely that of Kolmogorov.  The basic concept is the 
quantity of information in one random object relative to another random object.  The entropy of a random 
object is specialization of this quantity.  From these concepts, one establishes conditions under which 
messages can be reproduced with arbitrarily small probability of error. 
 
1. Introduction
 
The Observation, Orientation, Decision and Action (OODA) loop is a description of the ability to militarily 
act and react more rapidly than an opponent.  Modern warfare is characterized by the sharing of 
information among teams.  Wide-band, high-speed communication networks can rapidly disseminate large 
quantities of information.  However, team performance can be affected by information overload, processing 
delay, complexity of information and complexity of decision.  To address these issues, we go back to the 
basics of information modeling. 
 
To model the flow of information from one node to another within the OODA loop, one cannot overlook 
the seminal contributions of C. E. Shannon (Reference j).  The development of information theory was 
prompted by practical problems in the fields of electrical and radio communications.  In this paper, we use 
information theory, or the Shannon theory of optimal coding of information, to calculate information rate.  
Specifically, we follow the approach developed by Kolmogorov (References g, i) and his students 
Dobrushin (References b, c, d), Gel’fand and Yaglom (Reference e) and Pinsker (Reference h).  
Kolmogorov develops a general definition of information for a relatively broad class of random objects, 
from which one derives the entropy of a random object.  This approach maximizes the practical 
applicability of the concepts. 
 
We begin with two practical examples for motivational purposes.  Then, we describe the physical portion 
of the problem that leads us to probability values.  The transmission problem is, then, described 
probabilistically, whereby the joint distribution of various random variables is developed.  The joint 
distribution is then used to construct the quantity of information of one random object with respect to 
another.  Finally, we discuss the fidelity criterion used in determining the optimal encoding and decoding 
schemes.  We confine ourselves to the simple case of discrete random variables ranging over finite sets, to 
discrete memoryless sources and to discrete memoryless channels. 
 
 
2. Motivation
 
A communications system consists of a message source, a decoder that converts the input message into a 
signal suitable for transmission, a channel through which the input signal propagates and becomes 
corrupted with noise, a decoder that takes the channel’s output signal and converts it into an output 
message suitable for the user.  Figure 1 contains a diagram of the elements of a communications system. 
 
2.1 Telegraphy Example 
 
A message consists of a sequence of letters and spaces from the English alphabet.  The transmitter 
(including the telegraph key) encodes the sequence into mechanical dots and dashes, converts the 
mechanical dots and dashes into time-varying currents and injects these into the channel.  The channel 
introduces noise that corrupts time-varying currents that propagate along the channel.  The time-varying 
currents arrive at the receiver.  The receiver (including the telegraph key) converts the time-varying 
currents into mechanical dots and dashes.  The mechanical dots and dashes are decoded into a sequence of 
letters and spaces from the English alphabet.  This sequence is an approximation of the message which the 
source originally sent. 
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2.2 Image Transmission Example 
 
An optical device projects an image of the real world onto a focal plane array.  The focal plane array is a 
matrix of pixels that encodes the optical image into a mosaic.  Because each pixel ejects a number of 
electrons, depending upon the magnitude of the incident light, the system converts the mosaic into time-
varying currents.  Fluctuations make the potential deviate from the normal value dictated by the magnitude 
of the light.  The encoded image is already a noise-bearing variant of the original optical image.  The 
system scans the mosaic.  The transmitter injects the encoded signal into the channel.  Noise corrupts the 
input signal as propagation takes place.  The channel outputs the corrupted signal that now enters the 
receiver.  The receiver decodes the channel output signal into a mosaic that is an approximation of the 
original optical image.  
 
3. The Physical Portion of the Communications Problem
 
A radar system or an optical imaging system converts a real-world scene into a mosaic.  This conversion 
occurs because of the inherent limitations of the measuring device.  If the system scans the mosaic in search 
of an object of interest within the scene, one may ask: What is the probability that the object resides within 
an element of the mosaic? 
 
If the total area of the image is the number Atot and that of an individual element of the mosaic is Apix (let’s 
say the mosaic is comprised of pixels), then one can, heuristically, define the probability that the object is 
within pixel Ei by 
 

{ }( )
tot

pix
i A

A
Ep =      (1) 

 
Suppose a typical image consists of a 256 × 256 pixel array.  We may define the set of pixels as  
 

{ }25625621 ,,, ×=Ω EEE L .    (2) 
 
We define the probability space as the triple ( )pS ,, ΩΩ , where [ ]1,0: →ΩSp  and  is a σ-algebra 
of subsets of Ω, i.e., a non-empty set of subsets of Ω closed under the formation of complements and 
countable unions.  For our needs, we let  be the power set of Ω, i.e., the set of all subsets of Ω. 

ΩS

ΩS
 
In the information-theoretic context, Ω represents the information source, the elements of which are 
mapped into the set X of input messages by the random variable ξ.  The probability space,  and 

the mapping  induce the probability space 

( )pS ,, ΩΩ
X→Ωξ : ( )ξpSX ,, X , such that,  

 
( ) ( ){ } Ω

− ∈∈ωξΩ∈ω=ξ∈∀ SAASA X : , 1 ,  (3) 
 

that is, for any ,(SXSA∈ X is a σ-algebra of subsets of X) the inverse image of A is a collection of 
elements of Ω the image of each of which, under ξ, is an element of A, and this collection is an element of 

.  From the point of view of Measure Theory (Reference h), the random variable  is a measurable 

function.  The nomenclature varies among mathematicians.  Typically, if X = ℝ, the set of real numbers, 
then  is called a random variable.  Some authors use measurable function and random variable 
interchangeably.  Figure 2 shows a diagram of this situation. 

ΩS ξ

ξ

 
 The induced probability function, , is defined as ξp
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( ) ( ) ( ){ }( )ApApApSA X ∈ωξΩ∈ω=ξ=∈∀ −

ξ :, 1o .  (4) 
 

Since the set  belongs to , it is mapped to the unit interval; its probability is an 

actual number, and, therefore, so is 

( ){ A∈ωξΩ∈ω : } ΩS
( )Apξ . 

 
4. Fundamental Shannon Problem
 
Kolmogorov (Reference g) addresses the Shannon problem as follows.  Given sets X, Y, Y′, X′ of possible 
values of input message, ξ, input signal, η, output signal, η′, and output message, ξ′, respectively; given the 
characteristics of the channel described by the conditional probability distribution, , and a class V of 

input signal distributions, ; given the input message distribution 
ηη′|p

η′ηp
 

( ) ( ) ( ){ }( )ApApAp ∈ωξΩ∈ω=∈ξ=ξ :    (5) 
 

and the fidelity criterion, , where W is a certain class of joint distributions Wp ∈ξ′ξ

 
( ) ( )( ) ( ) ( ){ }( )XXXXXX CCpCC,pCCp ′′′ξ′ξ ×∈ωξ′∧∈ωξΩ∈ω=×∈ξ′ξ=× :   (6) 

 
where  and .  Is it possible, and if so, how, to find encoding and decoding rules (i.e. 

conditional distributions  and ), such that by calculating  in terms of , under 

the assumption that the sequence of random variables 

XCX ⊂ XCX ′⊂′
ξη|p η′ξ′|p ξ′ξp ηη′ξηξ || ppp  , ,

ξ′η′ηξ  , , ,  is Markovian, one will obtain Wp ∈ξ′ξ  
? 

 
Shannon tells us that if transmission is possible then ( ) C,HW ≤ξ′ξ ; that is, if the entropy of one random 
variable with respect to the other is greater than the channel capacity then transmission, with arbitrarily 
small error, is not possible.  As Berger (Reference a) explains, if the system designer is required to fulfill 
the fidelity criterion and has been provided with a channel of capacity C, he need merely compare 

 with C to determine whether or not he has any chance of succeeding.  Only if ( ξ′ξ,HW ) ( )ξ′ξ≥ ,HC W  

can he possibly succeed.  Hence, knowledge of ( )ξ′ξ,HW  can prevent him from expending time and 
resources in a futile attempt to accomplish an impossible task. 
 
The physical portion of the problem provides a probability space ( )pS ,, ΩΩ  and measurable mappings 

(i.e. random variables)  from Ω to X, Y, Y′, X′, respectively.  Let us construct  in terms of 

. 

ξ′η′ηξ  , , , ξ′ξp

ηη′ξηξ || ppp  , ,
 

( ) ( )
( ) ( ) ( iij|ijk|

ijkl|lkji

xpx|ypxy|yp

xyy|xpxyyxp

=ξ⋅=ξ=η⋅=ξ=η′=η′

⋅=ξ

)
=η′=η′′=ξ′=′=ξ′′=η′=η=ξ

ξξηηξη′

ηξη′ξ′ξ′η′ξη

,                         

,,,,,
    (7) 

 
where , , ,Xxi ∈ Yx j ∈ Yyk ′∈′ Xxl ′∈′ .  Using the fact that the sequence of random variables 

 is Markovian, the joint distribution for the pair ξ′η′ηξ  , , , ( )ξ′ξ  ,  is 
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( )
( ) ( ) ( ) (∑ =ξ⋅=ξ=η⋅=η′=η′⋅′=η′′=ξ′

=′=ξ′=ξ

ξξηηη′η′ξ′

ξ′ξ

kj
iij|jk|kl|

li

xpx|ypy|ypy|xp

xxp

,

,

) . (8) 

 
Similarly, the joint distribution for the pair ( )η′η  ,  is 
 

( )
( ) ( ) ( ) (∑ =ξ⋅=ξ=η⋅=η′=η′⋅′=η′′=ξ′

=′=η′=η

ξξηηη′η′ξ′

η′η

li
iij|jk|kl|

kj

xpx|ypy|ypy|xp

yyp

,

,

) . (9) 

 
Dobrushin (Reference d) explains that the conditional probability distribution ( )ij| x|yp =ξ=ηξη  is 
the distribution of the signal transmitted, into which the message xi is transformed as a result of the 
operation of encoding.  Similarly, ( )kl| y|xp ′=η′′=ξ′η′ξ′  is interpreted as the probability distribution of 

the message received, which arises from the signal ky′  as a result of the operation of decoding. 
 
The Markovian requirement means that for a fixed input signal, the probability distribution of the channel 
output signal does not depend on what message was encoded into the input signal.  For a fixed output 
signal of the channel, the probability distribution for the message into which this signal is decoded does not 
depend upon what the transmitted signal and the coded message actually were. 
 
We are now in a position to calculate the quantity of information of one random object with respect to 
another.  We have  
 

( ) ( ) ( )
( ) ( )∑ ′=ξ′=ξ

′=ξ′=ξ
′=ξ′=ξ=ξ′ξ

ξ′ξ

ξ′ξ
ξ′ξ

li li

li
li xpxp

xxp
logxxpI

,
2

,
,,   (10) 

and 
 

( ) ( ) ( )
( ) ( )∑ ′=η′=η

′=η′=η
′=η′=η=η′η

η′η

η′η
η′η

kj kj

kj
kj ypyp

yyp
logyypI

,
2

,
,,  (11) 

 
where  are the marginal distributions based on . η′ηξ′ξ pppp  , , , η′ηξ′ξ pp  and 
 

Following Shannon, we define the channel capacity as 
 

( )η′η=
∈η′η

,IsupC
Vp

.    (12) 

 
The maximum is taken with respect to all possible choices of distributions .  The quantity that 
Shannon calls the “rate of creating information relative to a fidelity criterion” per unit time is defined as 

η′ηp

 
( ) ( )ξ′ξ=ξ′ξ

∈ξ′ξ

,, IinfH
Wp

W .    (13) 

 
The minimum is taken with respect to all possible choices of distributions .  The necessary condition of 
the possibility of transmission is 

ξ′ξp

 
( ) CHW ≤ξ′ξ, .     (14) 
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If  then  is the entropy of the random object ξ′=ξ ( ) ( )ξ′ξ=ξ ,WW HH ξ  for the accuracy of reproduction 
W.  In this case,  
 

( ) ( ) ( )∑ =ξ=ξ−=ξξ ξξ
i

ii xplogxpI 2,     (15) 

 
as to be expected. 
 
The set W consists of distributions  of the pair of random variables ξ′ξp ( )ξ′ξ  ,  such that the M-
dimensional vector of mathematical expectations 
 

( ) ( ) ( )( ) W∈ξ′ξρξ′ξρξ′ξρ  ,M, , ,M , ,M M21 L .  (16) 
 
W  is an M-dimensional vector of numbers and the s'iρ  (i = 1, …,M) are real-valued measurable 

functions with respect to .  The XX SS ′× s'iρ  behave like distance functions.  The distributions 
 satisfy the condition of accuracy of reproduction. Wp ∈ξ′ξ

 
 In the set  we are given N real-valued measurable functions, YY ′× ( ) ( )N , ,1  ,, L=′π iyyi .  

We also have an N-dimensional vector, V , of real numbers.  The set V consists of all those distributions 
 of the pair of random variables η′ηp ( )η′η  ,  such that the N-dimensional vector of mathematical 

expectations 
 

( ) ( ) ( )( ) V∈η′ηπη′ηπη′ηπ  ,M, , ,M , ,M M21 L .   (17) 
 
The distributions  satisfy the restriction on the distribution of the signal.  For example, the 
transmitting power has a specified upper bound. 

Vp ∈η′η

 
 It would be wonderful to find that random variable that would map the original message from the 
source directly to the user without any distortion.  Unfortunately, one must take the indirect route, that is, 
by considering the encoding, channel and decoding portions of the problem.  The mathematical formulation 
must include all these steps.  The correct random variable, ξ′ , is the one that permits the fulfillment of the 
condition of accuracy of reproduction and of the restriction on the distribution of the signal. 
 
Summary 
 
We have used Shannon’s theory of optimal coding of information to address the issue of relaying 
information from a source to a user, in the context of the OODA loop.  The approach taken was that of 
Kolmogorov, which maximizes the practical applicability of the concepts.  The salient feature is to find 
optimal encoding and decoding schemes that result in the fulfillment of the fidelity criterion and of the 
restriction of the distribution of the signal.  We have restricted ourselves to the case of discrete random 
variables ranging over finite sets, to discrete memoryless sources and to discrete memoryless channels.  
Future reports will address the issues of rate distortion functions, continuous information, continuous 
channels and continuous sources. 
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Figure 1. Diagram of a Communications System. 
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Figure 2.  Measurable Function Diagram 
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