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Estimating Opponent Troop Levels and Position

e Increasing numbers of (semi-)autonomous vehicles are
increasing pace of decision-making.

Would like a semi-automated means for estimating the
opponent’s ground forces levels and positions.

Automated estimators (filters) have proven indispensable in

tracking/targeting aircraft, missiles, etc...

Troop movements are much slower, but much more complex.
— Aircraft state is type, position, velocity, possibly attitude.

— Opponent ground-force state consists of fire-teams (or
individuals), their locations, equipment, health, and more.

— May be many fire-teams.
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Complexity
Kalman filter for air-vehicle state estimation.

Must propagate observation-conditioned probability
distribution over state space.

In order to make this practical, we assume linear dynamics,

and then only need to propagate the mean and covariance.

Simplified ground-force estimator: Assume homogeneous
fire-teams with associated strengths.

Strengths will subsume health and equipment.
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Complexity (Model Issues)
Each fire-team has location and strength.

Positions are modeled as discrete locations on a graph (the

movement graph).

Fire-teams move can from one node to another adjacent node

on this graph.
Each fire-team has an associated (discrete) strength.

Assume fire-teams do not re-combine (although may occupy

identical locations).
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ASSOCIATED MOVEMENT GRAPH




Complexity

If used a probabilistic filter, we would need to propagate an
observation-conditioned probabilty distribution over the set of

possible opponent-states.
Assume L = 1000 locations (very small, unrealistic).
Assume up to N = 30 enemy fire-teams.

Then the number of possible laydowns (location possibilities,
neglecting strength!) is

Even neglecting strength, one would be working with

probability distributions over a set of size roughly 10°°.

Propagating such a distribution is completely unrealistic.
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Strength Distribution Form
Let N be the maximum total enemy troop strength.

Let the graph be denoted by (£, E) where L is the set of nodes,
and £ is the set of edges (pairs of nodes that are connected).

The Strength Distribution, at any given time, maps locations
on the graph to strength levels, S; : £ — [0, N].

Let [St]; denote the estimated strength at node [ at time t.
Let [H|; be the (unknown) true strength at node [ at time t.

Note S; is a set of L = # L values; much, much smaller than a
probability distribution over the set of possible true strengths,
P:{H;} — [0,1].
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Further dynamics flow/diffusion




Dynamics

A filter has two components: Dynamics propagation and
observation updates.

Let time be discretized, with time-step indexed by
te€{0,1,2,...}.

Suppose have estimate S; at time ¢, and need to propagate

forward in time (without observations).
We let S;1 = FLS;, where F is referred to as the flow matrix.

Proportion of strength flows from node ¢ to node j in one step
by amount F; ; € [0, 1]

Conservation of mass implies » .. F; ; = 1.
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Dynamics (continued)

F; j represents average proportion of strength we expect to flow
from 2 to 5 in one step.

If half the time, we’d expect a force to move from node 177 to
node 214 and half the time to node 35 instead, one would have
f177’214 = f177,35 — 0.5 and f177,j — 0 otherwise.

In deterministic-model case, F consists only of 1’s and 0’s.

To allow for unanticipated opposing-commander input, we
allow for dynamics according to S;11 = []: Ty ul ] S¢, where
F + U, is the commander-augmented flow matrix.

U; is presumed unknown, with no associated probability
distribution (as in robust control methodology).
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An Initial Strength Mass







Further dynamics flow/diffusion




Observation Processing

e Without observations, the strength distribution would typically
tend toward a rather flat distribution over many, many nodes

(not knowing virtually anything about the opponent position).

e Observations must conserve strength mass (i.e., keep
Zleﬁ[st]l = N).

e Let the strength distribution before observation at time ¢ be
S, and after the observation(s), S;.
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Observation Processing
We choose an estimator form, using Bayes rule as a guide.

Suppose we had a proabilitiy distribution over £, with p;
representing the probability that the one (and only one) object
is at [.

After observing the object at [, the a posteriori distribution
would be

_ B/a .
1+ (B/a—1)p

where « is probability of a false positive, and 1 — 3 is

P VA #I

probability of a false negative.
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Observation Processing

e Suppose we observe strength y € {0,1,2... N} at node [ are

time t.
e Suppose the a priori strength at node [ at time ¢ is [S¢]; = 5.

e The a posteriori strength distribution is defined to be

I e
St

St = Gy, 51)[St)i

— —3
14 k52

B 1
- —S
14 k2=

[St]a 1SeIx = F(y, S)[Se]y - VA#L
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Observation Processing

o Note that >, ,[Silx = s, [Sia = N.

e Further, it can be shown that, given repeated observation of y
at node [, with no intervening dynamics, one has [S]; — y; this
observation-processing form leads the estimator to converge to

the observed strength.
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* Observation, strength=4 at indicated node

Observation Occurs




Pre-observation strength mass distribution

Observed mass indicated in yellow

-l

Post-observation strength mass distribution




Post-Observation Strength Distribution




Robustness

The above implies, roughly speaking, that this strength
estimator functions as an “observer”.

We would also like the strength estimator to have some
predictable behavior limits as a function of noise in the
observations and dynamics.

Define the norm ||S¢|| = >y, [[St]al-

For the dynamics component, we prove that
51l

IS; — E{H}| < [|So — E{Ho}|| + N Y _||UT|
r=0

where the || - || in the last term is the induced norm on the

matrix.
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Robustness

The effects of the dynamics noise are cumulative, and need to
be offset by the observations in order to have good

performance.

Let yf = y7(si, H;) be the observation value that would cause
[S¢]; = [H¢]y, i-e., that would cause the filter to end up with
exactly the correct strength estimate at node [ after the

observation (of y7).

After much work, one obtains (in the case [H;|; > [S¢];)

r _
|H — S|l — N=£H; — S|
+2 [G(ya Sl) _ Hl] if y > yca
|H =S| = (1= F(y, S)Hi =S| ify=y=5,

[ H — S|| + 2k|y — H| if y < 5.

5] <




Robustness

e In particular, when y = Hj,
[H — S| <|[[H—=5[ = 1-F(y,5))|H - 5.

e Repeating,

r _
|H — S|l — N=51H; — S|
+2|G(y, S1) — Hij if y > y°,
|H =S| = (1= F(y, S)Hi =S| ify=y=5,

|[|[H — S| + 2k|y — H|| if y < S;.

5] <

e Note that the first two cases, the previously built-up errors are
attenuated, and in the last case, the current observation errors

are attenuated.

e These are error bounds, one typically obtains attenuation of
both.




Main Convergence and Robustness Results

e If one repeatedly observes y at node [ without intervening

dynamics, the estimator converges to [S:|; = y (sanity check).

e (Given noise in the dynamics and in the observation, there is a
bound on the expected estimator error in terms of the size of

the non-stochastic noise input norm.

15 = E{H:}|| < [|So — E{Ho}|

+50 S 1071+ 3 Jds - 1800

€O,

where 0, is the set of locations that were observed at time 7.
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Computational Issues
One does not use an entire F matrix, as it is almost all 0’s.

Even with this tremendous complexity reduction, the
computations may still burden a real-time system running
tasking controllers on top of the estimator.

For further reduction, developed an approximator where the
strength distribution was € and 0 for most of £, and only those
locations where the value is above e are explicitly propagated.

For other points with non-zero strength, one only needs to

migrate in and out of the e-value set.

Strength estimator is embedded into a large-scale
commander-support system, which is currently being studied.
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