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Estimating Opponent Troop Levels and Position

• Increasing numbers of (semi-)autonomous vehicles are

increasing pace of decision-making.

• Would like a semi-automated means for estimating the

opponent’s ground forces levels and positions.

• Automated estimators (filters) have proven indispensable in

tracking/targeting aircraft, missiles, etc...

• Troop movements are much slower, but much more complex.

– Aircraft state is type, position, velocity, possibly attitude.

– Opponent ground-force state consists of fire-teams (or

individuals), their locations, equipment, health, and more.

– May be many fire-teams.
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Complexity

• Kalman filter for air-vehicle state estimation.

• Must propagate observation-conditioned probability

distribution over state space.

• In order to make this practical, we assume linear dynamics,

and then only need to propagate the mean and covariance.

• Simplified ground-force estimator: Assume homogeneous

fire-teams with associated strengths.

• Strengths will subsume health and equipment.
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Complexity (Model Issues)

• Each fire-team has location and strength.

• Positions are modeled as discrete locations on a graph (the

movement graph).

• Fire-teams move can from one node to another adjacent node

on this graph.

• Each fire-team has an associated (discrete) strength.

• Assume fire-teams do not re-combine (although may occupy

identical locations).
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Complexity

• If used a probabilistic filter, we would need to propagate an

observation-conditioned probabilty distribution over the set of

possible opponent-states.

• Assume L = 1000 locations (very small, unrealistic).

• Assume up to N = 30 enemy fire-teams.

• Then the number of possible laydowns (location possibilities,

neglecting strength!) is
(

L + N − 1

N

)
≃ 1060.

• Even neglecting strength, one would be working with

probability distributions over a set of size roughly 1060.

• Propagating such a distribution is completely unrealistic.
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Strength Distribution Form

• Let N be the maximum total enemy troop strength.

• Let the graph be denoted by (L, E) where L is the set of nodes,

and E is the set of edges (pairs of nodes that are connected).

• The Strength Distribution, at any given time, maps locations

on the graph to strength levels, St : L → [0, N ].

• Let [St]l denote the estimated strength at node l at time t.

• Let [Ht]l be the (unknown) true strength at node l at time t.

• Note St is a set of L = #L values; much, much smaller than a

probability distribution over the set of possible true strengths,

P : {Ht} → [0, 1].
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Dynamics

• A filter has two components: Dynamics propagation and

observation updates.

• Let time be discretized, with time-step indexed by

t ∈ {0, 1, 2, . . . }.

• Suppose have estimate St at time t, and need to propagate

forward in time (without observations).

• We let St+1 = FT St, where F is referred to as the flow matrix.

• Proportion of strength flows from node i to node j in one step

by amount Fi,j ∈ [0, 1]

• Conservation of mass implies
∑

j∈L
Fi,j = 1.
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Dynamics (continued)

• Fi,j represents average proportion of strength we expect to flow

from i to j in one step.

• If half the time, we’d expect a force to move from node 177 to

node 214 and half the time to node 35 instead, one would have

F177,214 = F177,35 = 0.5 and F177,j = 0 otherwise.

• In deterministic-model case, F consists only of 1’s and 0’s.

• To allow for unanticipated opposing-commander input, we

allow for dynamics according to St+1 =
[
FT + UT

t

]
St, where

F + Ut is the commander-augmented flow matrix.

• Ut is presumed unknown, with no associated probability

distribution (as in robust control methodology).
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Observation Processing

• Without observations, the strength distribution would typically

tend toward a rather flat distribution over many, many nodes

(not knowing virtually anything about the opponent position).

• Observations must conserve strength mass (i.e., keep∑
l∈L

[St]l = N).

• Let the strength distribution before observation at time t be

St, and after the observation(s), Ŝt.
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Observation Processing

• We choose an estimator form, using Bayes rule as a guide.

• Suppose we had a proabilitiy distribution over L, with pl

representing the probability that the one (and only one) object

is at l.

• After observing the object at l, the a posteriori distribution

would be

p̂l =
β/α

1 + (β/α − 1)pl

pl, p̂λ =
β/α

1 + (β/α − 1)pl

pλ ∀λ 6= l

where α is probability of a false positive, and 1 − β is

probability of a false negative.
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Observation Processing

• Suppose we observe strength y ∈ {0, 1, 2 . . .N} at node l are

time t.

• Suppose the a priori strength at node l at time t is [St]l = Sl.

• The a posteriori strength distribution is defined to be

[Ŝt]l =
1 + k y−Sl

Sl

1 + k y−Sl

N

[St]l
.
= G(y, Sl)[St]l

[Ŝt]λ =
1

1 + k y−Sl

N

[St]λ
.
= F (y, Sl)[St]λ ∀λ 6= l.
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Observation Processing

• Note that
∑

λ∈L
[Ŝt]λ =

∑
λ∈L

[St]λ = N .

• Further, it can be shown that, given repeated observation of y

at node l, with no intervening dynamics, one has [Ŝt]l → y; this

observation-processing form leads the estimator to converge to

the observed strength.
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Robustness

• The above implies, roughly speaking, that this strength

estimator functions as an “observer”.

• We would also like the strength estimator to have some

predictable behavior limits as a function of noise in the

observations and dynamics.

• Define the norm ‖St‖
.
=

∑
λ∈L

|[St]λ|.

• For the dynamics component, we prove that

‖St − E{Ht}‖ ≤ ‖S0 − E{H0}‖ + N
t−1∑

r=0

∥∥UT
r

∥∥

where the ‖ · ‖ in the last term is the induced norm on the

matrix.
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Robustness

• The effects of the dynamics noise are cumulative, and need to

be offset by the observations in order to have good

performance.

• Let yc
l = yc

l (sl, Hl) be the observation value that would cause

[Ŝt]l = [Ht]l, i.e., that would cause the filter to end up with

exactly the correct strength estimate at node l after the

observation (of yc
l ).

• After much work, one obtains (in the case [Ht]l ≥ [St]l)

∥∥∥H − Ŝ
∥∥∥ ≤






‖H − S‖ − Hl−Sl

N−Sl

|Hl − Sl|

+2 [G(y, Sl) − Hl] if y > yc,

‖H − S‖ − (1 − F (y, Sl))|Hl − Sl| if yc ≥ y ≥ Sl,

‖H − S‖ + 2k|y − Hl| if y < Sl.
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Robustness

• In particular, when y = Hl,

|H − Ŝ| ≤ ‖H − S‖ − (1 − F (y, Sl))|Hl − Sl|.

• Repeating,

∥∥∥H − Ŝ
∥∥∥ ≤






‖H − S‖ − Hl−Sl

N−Sl

|Hl − Sl|

+2 [G(y, Sl) − Hl] if y > yc,

‖H − S‖ − (1 − F (y, Sl))|Hl − Sl| if yc ≥ y ≥ Sl,

‖H − S‖ + 2k|y − Hl| if y < Sl.

• Note that the first two cases, the previously built-up errors are

attenuated, and in the last case, the current observation errors

are attenuated.

• These are error bounds, one typically obtains attenuation of

both.
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Main Convergence and Robustness Results

• If one repeatedly observes y at node l without intervening

dynamics, the estimator converges to [St]l = y (sanity check).

• Given noise in the dynamics and in the observation, there is a

bound on the expected estimator error in terms of the size of

the non-stochastic noise input norm.

‖St − E{Ht}‖ ≤ ‖S0 − E{H0}‖

+K1

t−1∑

r=0

[
‖UT

r ‖ +
∑

λ∈Or

|[yr]λ − [Sr]λ|

]

where Or is the set of locations that were observed at time r.
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Computational Issues

• One does not use an entire F matrix, as it is almost all 0’s.

• Even with this tremendous complexity reduction, the

computations may still burden a real-time system running

tasking controllers on top of the estimator.

• For further reduction, developed an approximator where the

strength distribution was ǫ and 0 for most of L, and only those

locations where the value is above ǫ are explicitly propagated.

• For other points with non-zero strength, one only needs to

migrate in and out of the ǫ-value set.

• Strength estimator is embedded into a large-scale

commander-support system, which is currently being studied.
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