

www.aptima.com Woburn, MA • Washington, DC

Identifying the Enemy – Part I: Automated Network Identification Model

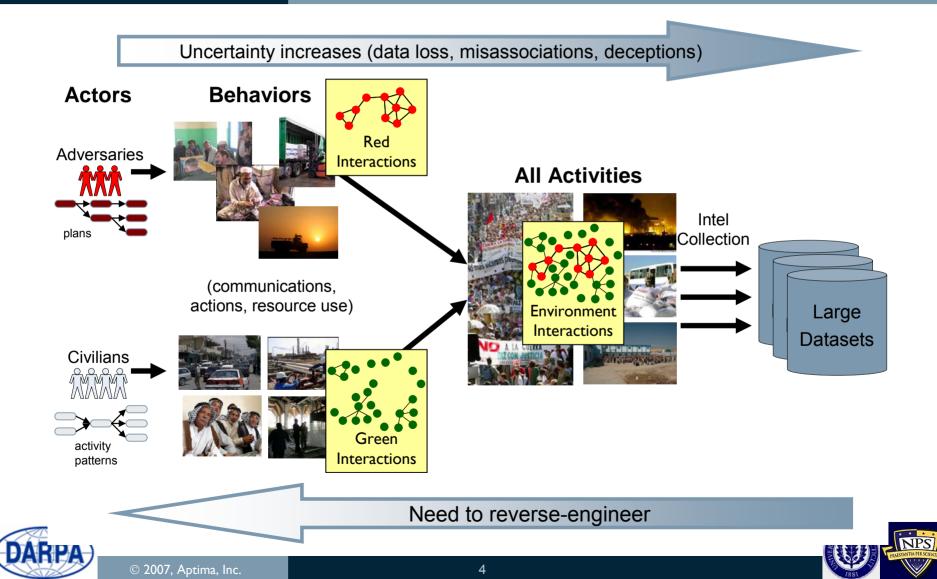
Georgiy Levchuk, Yuri Levchuk, Elliot Entin Aptima Inc.

Feili Yu, Haiying Tu, Krishna Pattipati University of Connecticut

Presented at CCRTS-2007 Date: 6/19/2007

Outline

- The problem
- DARPA seedling project
- Proposed solution: NetSTAR
- NetSTAR model
- NetSTAR performance analysis


The Problem

Organization Identification as Part of Larger Problem

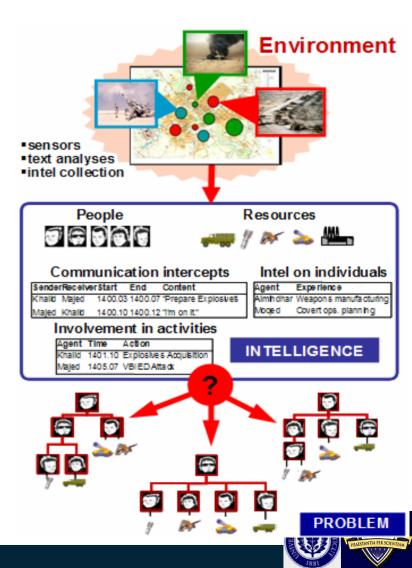
Challenge of Threat Analysis

DARPA Seedling Project Focus

Find:

- Enemy STRUCTURE
- Enemy INTENT
- Enemy ACTIVITIES

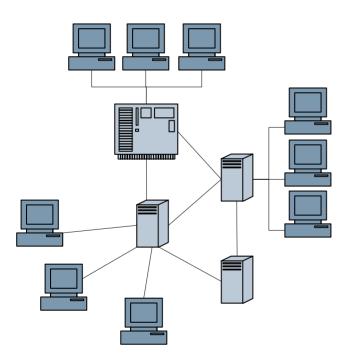
This will enable you to:


- Find correct RED high-value targets
- Develop effective BLUE COAs/counteractions
- Avoid unintended consequences of BLUE actions

Challenges of manual threat identification

- Enemy adapting cannot rely on experience only
- Data explosion high manpower needs, manual approaches would not scale
- Large info gaps & complexity
- Biases in human decisions

NetSTAR in a Nutshell

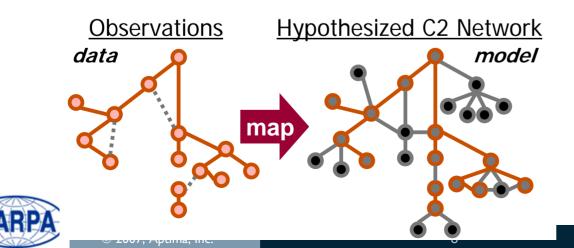

- What is NetSTAR?
 - Semi-automated technology to discover transaction patterns and organization network structures from massively noisy data
- What data does NetSTAR need?
 - Communication transactions, activities, and actors + Pattern library
- What makes NetSTAR unique?
 - Combines organizational science and probabilistic computational models with intelligence analysts' experience
- What are NetSTAR key benefits for the intelligence analyst?
 - Reduce the "size of haystack" in search for the needle
 - Allow more time for the analyst to explore relevant information

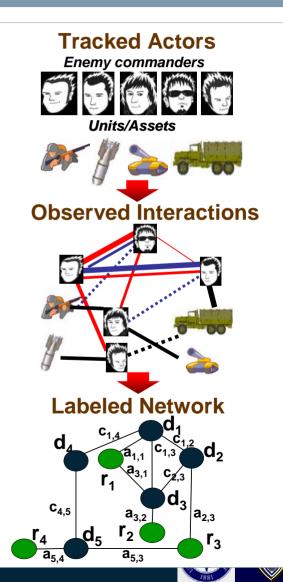
NetSTAR Idea-1

- Organization = infrastructure
- Interaction pattern = use of infrastructure

Difference because of what is needed to be done

NPS

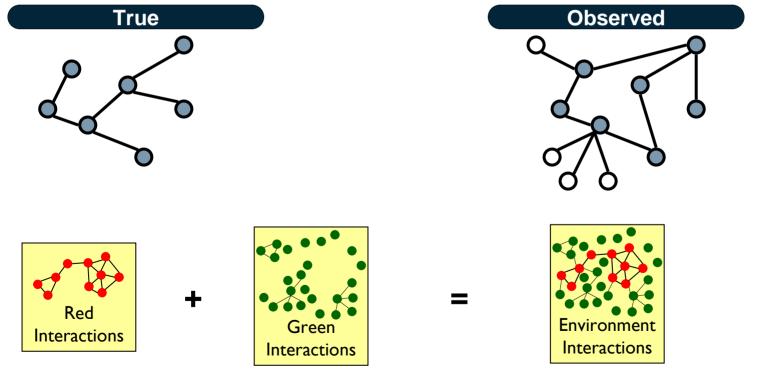

NetSTAR Idea-2


Representation

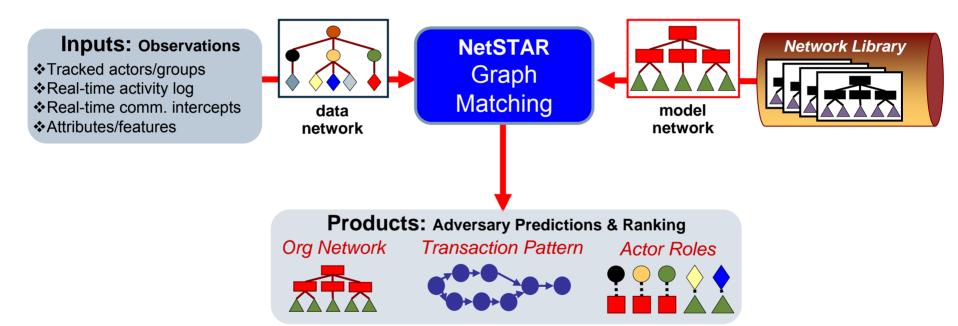
- C2 organizations can be represented as graphs with labels
 - Node labels = actor profiles
 - Link labels = type & frequency of interactions

Formalization

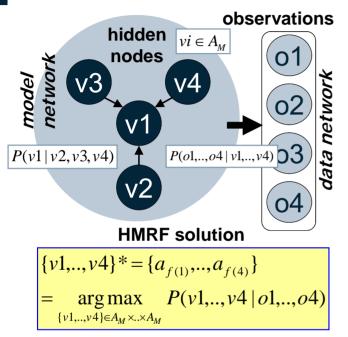
- Find best node-to-node mapping between data & model nets
- Select C2 structure with best map score

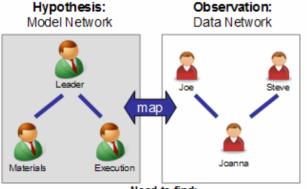


The Challenge: Uncertainty observing interactions


- False negatives (Missing data): unobserved transactions (modeled with miss probability)
- False positives (Noisy data): wrongly observed transactions or irrelevant transactions (modeled with false alarm probability)

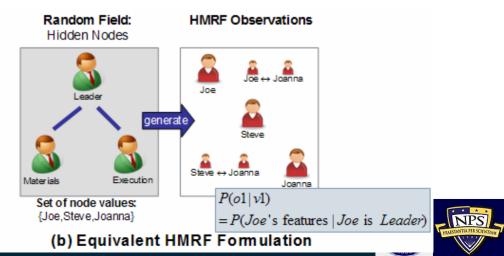
NetSTAR Solution




Problem difficulty: For 50-node network, probability of correctly identifying ≥10 (20%) nodes by chance is 1:1,000,000

NetSTAR Model: Hidden Random Fields

Need to find: f: {Leader,Materials,Execution}→{Joe,Steve,Joanna}

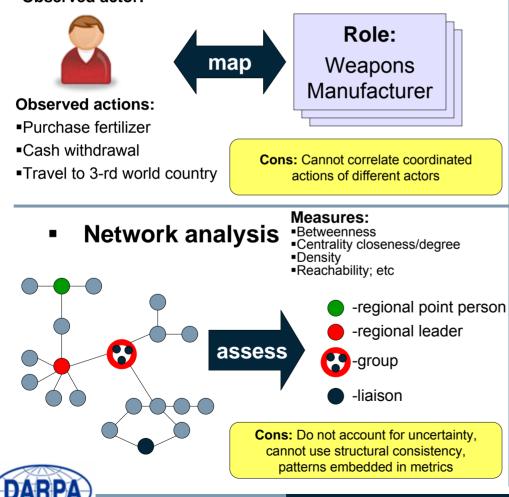

(a) Network Mapping Problem

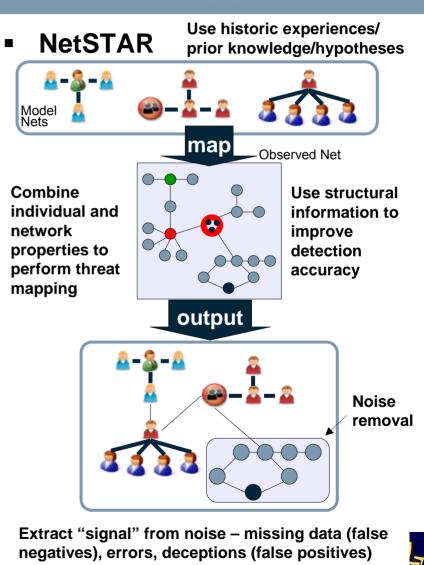
Solution

- Mapping to maximize posterior $f^* = \arg \max_{f} P(f | G_D, G_M)$
- Approximate posterior via energy functions due to HMRF theory

 $P(f \mid G_D, G_M) \approx \frac{1}{Z} \exp(-U(f) - U(G_D, G_M \mid f))$

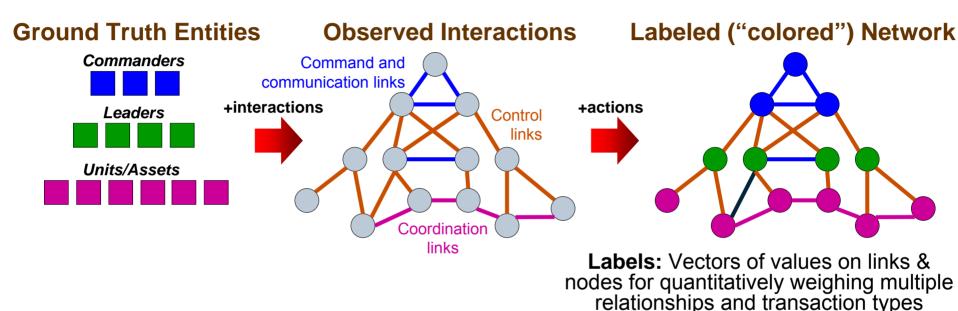
- Solve using simulated annealing
- Satisfy structural and attribute consistency





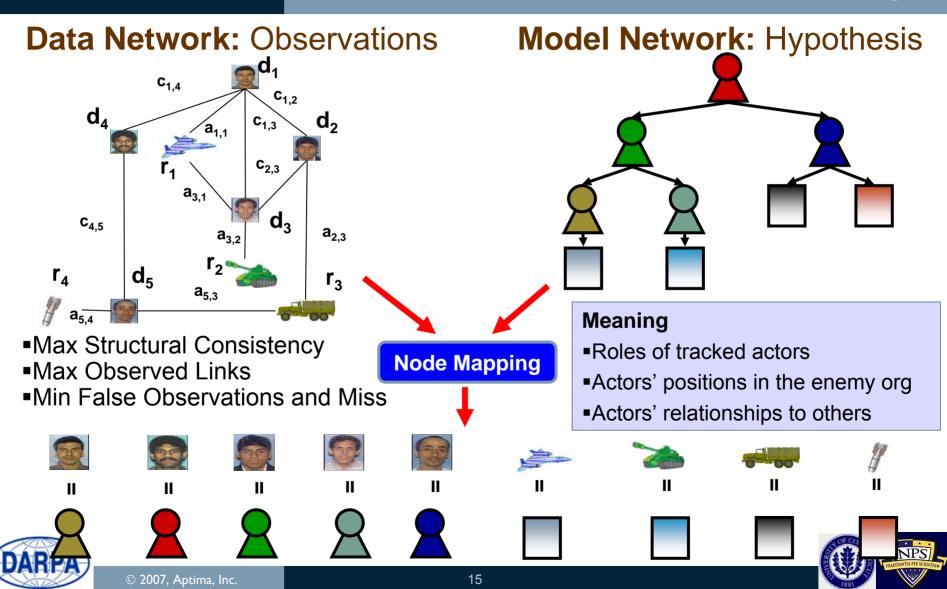
NetSTAR Advantages over Traditional Threat ID Approaches

Individual actor mapping

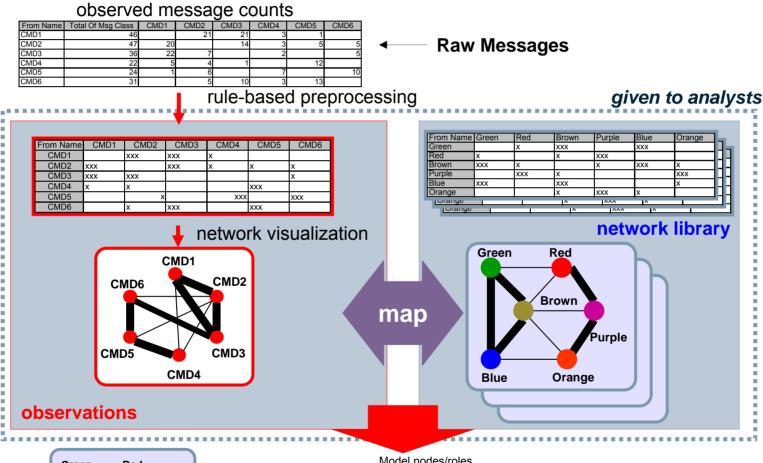

Observed actor:

Experiment Test Networks: Key leaders and network interactions

Object **Attributes Observations (real world equivalent)** Meaning **Communication** Who talks to whom Message between actors and message Classes of messages class/category (e.g., from text classification) Link about what **Control Link** Types of commands issued Commands sent from CMDR to asset: from Who controls/ commands whom leader to asset Coordination Who works with Classes of tasks or engagements Joint actions by multiple assets/units Link whom Geographic areas of Task execution by actor or asset (attacks, Nodes Cmdrs, Leaders, & Assets responsibility; actions performed recon)


NetSTAR Product 1: True Transaction Network

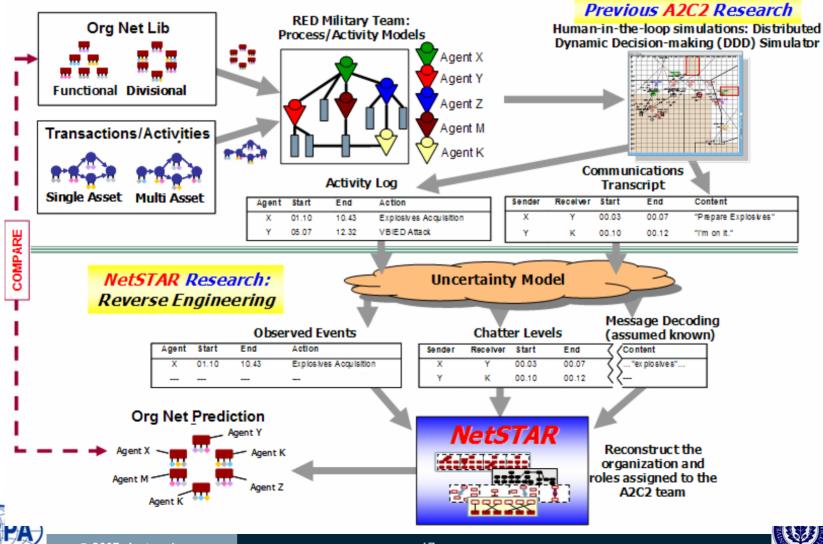
- Decide which hypothesized /model organization is active
 - From the list of alternative model org networks



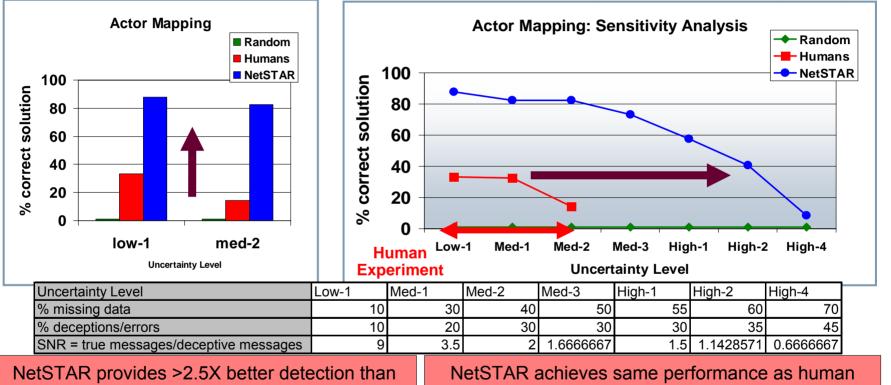
NetSTAR Product 2: Roles of Actors via Node Mapping

NetSTAR Experiment data flow example

Green	Red Brown
Blue	Purple


	Model nodes/roles											
		Green	Red	Brown	Purple	Blue	Orange					
Ś	CMD1	Х										
	CMD2			Х								
	CMD3					Х						
	CMD4		Х									
	CMD5				Х							
	CMD6						Х					

NetSTAR Validation


NPS

Project Findings-1: NetSTAR Can Handle High Noise

Conducted Human Table-top Exercise and NetSTAR Algorithm Sensitivity Analyses

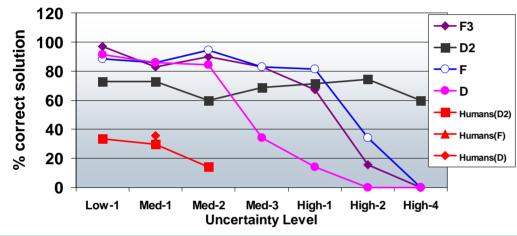
human analysts under same uncertainty level

Innovation:

 C2 organizations can be distinguished by structural interaction patterns

 Algorithm solves the problem faster and more accurately than humans NetSTAR achieves same performance as human analysts under 3X uncertainty level

Conclusions:


- Actor node mapping: >70% correct under 50% missing data and 30% deceptions/errors
- **Break point:** performance degradation over 55% missing data and 35% deceptions

Project Findings-2: NetSTAR Recognizes Unconventional Structures

Actor Mapping Accuracy: Comparing NetSTAR Performance for Different Organization Types

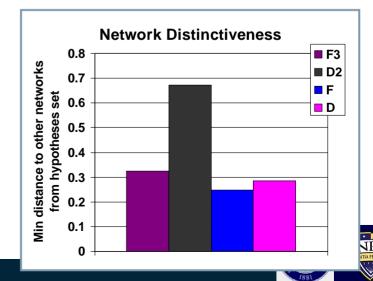
Conclusions:

- NetSTAR algorithm achieves high detection accuracy of acting non-traditional organizations and is not affected by experience biases
- Performance is affected by distinguishability of structures
- Some hybrid organizations exhibit unique structural patterns that enable identification

Organizational types:

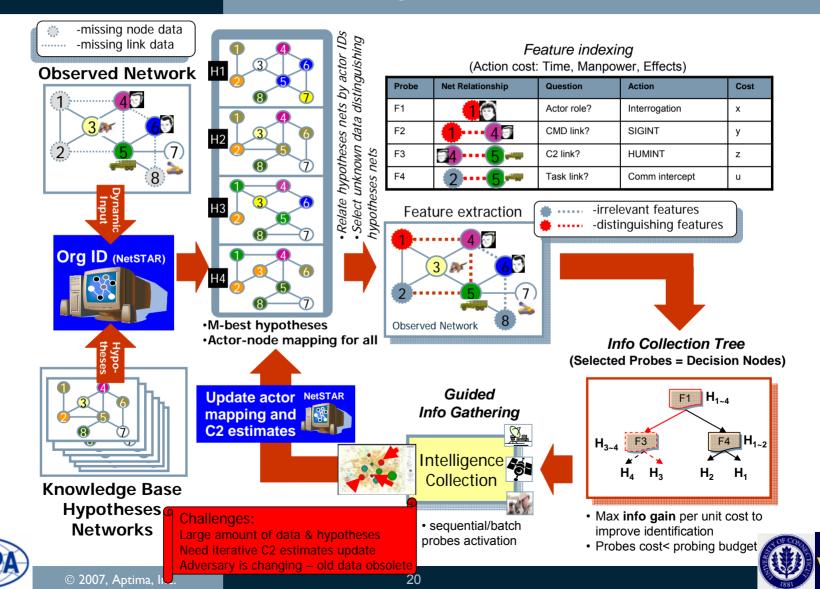
- **D = divisional** organization
- CMDRs have similar resource mix & geographically distributed mission responsibilities

Real-world Example: US Army is organized divisionally


F = functional organization

 CMDRs have distinct resource mix & functionally distributed mission responsibilities

Real-world Example: US Navy is organized functionally


D2, F3 = hybrid organization

- Some CMDRs similar to D, some to F
- Current adversaries have hybrid C2 structures

Integrated Process: Organization ID and Intel Planning

Details: **Probes Tree Construction**

Distinguishing node feature

H2

- 1: Feature extraction: Select unknown information Ы in observed network that distinguishes current threat Same impact network hypotheses
- 2: Feature indexing: For each feature, identify intel collection actions (probes), their cost, and ability to obtain the info (Pr of error, Pr of false alarm)
- 3: Feature organization: Rank-order the features and organize them in a decision tree to max info gain (reduce ambiguity of current predictions) and satisfy intel collection constraints on cost of probes
 - Update probabilities for each probe's result branch

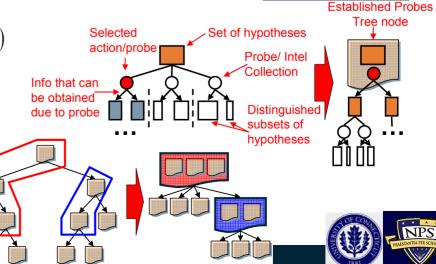
$$H(G_{M} | G_{D}^{n}, f_{M}) - H(G_{M} | G_{D}^{n}, f_{M}, O) = -\sum_{i=1}^{m} p(G_{Mi} | G_{D}^{n}, f_{Mi}) \log p(G_{Mi} | G_{D}^{n}, f_{Mi})$$

$$+\sum_{o} \frac{|s:\{O=o\} \in G_{Ms}|}{m} \sum_{i=1}^{m} p(G_{Mi} \mid G_{D}^{n}, f_{Mi}, O=o) \log p(G_{Mi} \mid G_{D}^{n}, f_{Mi}, O=o)$$

where : $p(G_{Mi} | G_D^n, f_{Mi}, O_k = o) = \frac{p(O_k = o | G_{Mi}, f_{Mi})p(G_{Mi} | G_D^n, f_{Mi})}{\sum_{k=0}^{m} p(O_k = o | G_{Mj}, f_{Mj})p(G_{Mj} | G_D^n, f_{Mi})}$

4: Feature clustering: Merge related probes for integrated intelligence collection actions

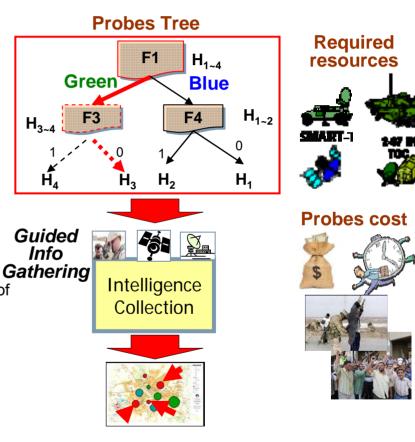
ambiguity: separate <H1,H2> from <H3< 3


Distinguishing link feature

Feature	Net Relationship	Question	Action/probe	Required res	Cost
F1	10	Actor role?	Interrogation	A,B	х
F2	145	CMD link?	SIGINT	В	у
F3	145	C2 link?	HUMINT	C,E	z
F4	25	Task link?	Comm intercept	G,H,K	u

$$\max_{A} \left(H\left(G_{M} \mid G_{D}^{n}, f_{M}\right) - H\left(G_{M} \mid G_{D}^{n}, f_{M}, O_{k}\right) \right)$$

m


Subject to {probes cost}<budget

Details: Intelligence Collection using Probes Tree

- 1: Resource check
 - Is database accessible at the moment?
 - Are human collection teams available?
 - What can be consequences of intelligence collection activity?
- 2: Probes selection
 - Select most efficient probe (e.g., intel collection to acquire F1 = interrogation to elicit role of actor 1)
- 3: Observation
 - Obtain results from probe/intelligence gathering (e.g., role of agent 1 is Green)
- 4: Update
 - Move to next step in probes tree
 - Update likelihoods
 - Recalculate estimated cost of intel collection plan
- 5: Repeat
 - Next probe = feature F3 (establish existence of resource control between 4 and 5 from HUMINT)
 - Observe = F3=0 (no resource control relationship)
 - Outcome = correct adversarial network is H3

Powered by TEAMS-RDS[®]

Details: Updating Network Predictions

• 1: Org ID

- Have mission observations
- Obtain best hypothetical/predicted networks of the enemy
- Rank-order enemy C2 networks and obtain network actor-node mapping $a posteriori: p(f_M | G_M, G_D^n)$

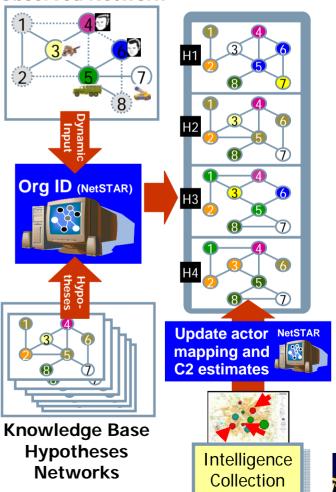
likelihood : $p(G_M | G_D^n, f_M)$

2: Intelligence collection

- Obtain new observation "O"

3: Update probabilities

a - posteriori : $p(f | G_M, G_D^n, O) \cong p(O | f, G_M) p(f | G_M, G_D^n)$ likelihood : $p(G_M | G_D^n, O, f) \cong p(O | f, G_M) p(G_M | G_D^n, f)$


- 4: Update actor-node mapping
 - Update energy function component

 $U(G_D^n, O, G_M | f) = U(G_D^n, G_M | f) + \log p(O | f, G_M)$

- Continue with current mapping to iteratively update best map
- 5: Update best hypotheses
 - Check likelihood ratio for current best C2 network hypothesis

-missing link data Observed Network

-missing node data

Project Conclusions

Automation

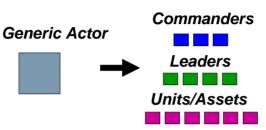
 Proven experimentally that it is possible to build automated tools that can classify network interaction patterns and identify roles of actors

NetSTAR benefits:

- Speed-up & improved accuracy of threat analysis decisions
- Handling larger volumes of data under higher uncertainty
- Increased efficiency of counteractions

Preliminary analyses indicate that the value-added of NetSTAR will be even greater for unconventional adversarial structures, such as those encountered in asymmetric warfare

Backups



Network Transactions Data

In NetSTAR Experiment

 Sources and targets of transactions

Other Applications

- Individuals
- Groups, Organizations
- Phone numbers
- •Computer/email address; etc.

- Classes of interactions

 Link attributes
- Types of node roles

 Node attributes
- Interaction summary
 - # of intercepted interactions per each class per each sourcetarget
- Role summary
 - # of actions or features per each type per each node

Network Transactions Data

In NetSTAR Experiment

Other Applications

- Actors
 - Sources and targets of transactions

Classes of interactions

- Link attributes
- Types of node roles
 Node attributes
- Voice: Info
 exchange, info
 request, order
 Actions:
 Launch, Attack,
 Detect

Events

Msg Classes

- Command
- Control
- Coordination

Any message characteristic/classes/categ ories

- Can find using text/voice classification
- Can use duration or means of msg; etc.

- Interaction summary
 - # of intercepted interactions per each class per each source-target
- Role summary
 - # of actions or features per each type per each node

Network Transactions Data

In NetSTAR Experiment

Other Applications

- Actors
 - Sources and targets of transactions
- Classes of interactions

 Link attributes
- Types of node roles
 - Node attributes

- *Events* ■Attack _
- DetectMove
- Roles Classes
- Task class
- Geography region
- Info about transaction source/target
 - Geolocation
 - Subnet ID
 - Size/type of group
 - Actions of target/source

- Interaction summary
 - # of intercepted interactions per each class per each source-target
- Role summary
 - # of actions or features per each type per each node

Network Transactions Data

In NetSTAR Experiment

Other Applications

Actors

 Sources and targets of transactions

- Classes of interactions
 Link attributes
 - Types of node roles – Node attributes

SIGINT: 20 messages between CMD1 and CMD2

Interaction summary

- # of intercepted interactions per each class per each sourcetarget

Ex: Coordination

Messages Summary

Node to

Same, or qualitative summary (low/med/high)

ationa nar	~			11040 10													
ctions per	0	From Name	Total Of Msg Class	ÇN	/ID1	CMD2	CMD3	CMD4	CMD5	CMD6	From Name	Green	Red	Brown	Purple	Blue	Orange
	Ę.	CMD1	46			21	21	3	1		Green		med	high		high	
class per	<u>_</u>	CMD2	47		20		14	3	5	5	Red	med		low	high		
	Ψ.	CMD3	36		22	7		2		5	Brown	high	low		low	high	med
source-	S.	CMD4	22		5	4	1		12		Purple		high	low			high
3001CE-	<u> </u>	CMD5	24		1	6		7		10	Blue	high		high			low
	Ζ	CMD6	31			5	10	3	13		Orange			med	high	low	
													-				

Role summary

 # of actions or features per each type per each node

Network Transactions Data

In NetSTAR Experiment

Other Applications

- Actors
 - Sources and targets of transactions
- Classes of interactions
 - Link attributes
- Types of node roles

 Node attributes
 - Node attributes
- Interaction summary
 - # of intercepted interactions per each class per each source-target
- Role summary
 - # of actions or features per each type per each node

IMINT: CMD1 detected 10 times in Village

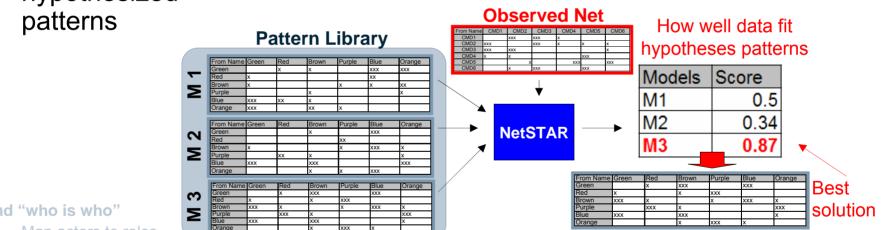
in village

Geographic areaNameNorth GateVillageMarketHighwayCMD1101CMD2251CMD32151CMD4212CMD5421CMD6311

 Same, or qualitative summary (low/med/high)

31

NetSTAR Outputs:


Interaction Pattern Classification and Actor Roles

In NetSTAR Experiment

- **Rank-order model** network patterns
 - From lib of hypothesized patterns
- Relationship categorization Control, communication, coordination, information links
 - Interaction pattern classification

Other Applications

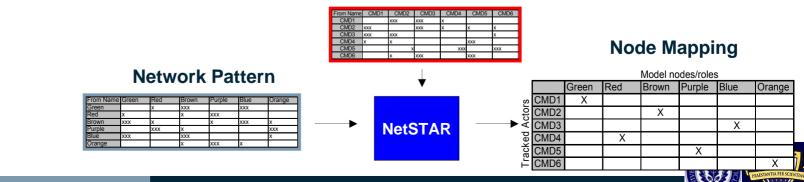
 Group/Coalition identification Rank any interaction pattern hypotheses

Find "who is who" Map actors to roles

NetSTAR Outputs:

"Who is who"

Interaction Pattern Classification and Actor Roles


In NetSTAR Experiment

Other Applications

- Rank-order model network patterns
 - From lib of hypothesized patterns

- Find "who is who"
 - Map actors to roles
- Roles & responsibilities of tracked actors
- Actors' positions in the org
- Actors' relationships to others

Observed Net

