

Identifying the Enemy – Part II: Algorithms versus Human Analysts

The Command & Control Research & Technology Symposium, Newport, RI

19 June 2007

Elliot E. Entin Rebecca Grier Tyrone Jefferson Georgiy Levchuk

NetSTAR Problem Formalization

Cannot effectively predict enemy's COAs w/o knowing enemy C2 organization

Cannot develop effective enemy HVTs
 & counteractions w/o knowing enemy C2
 organization

•Might entail unintended consequences if the action is taken w/o full realization of the C2 structure and roles of individuals

How can we recognize the **enemy C3I organization** given uncertain observations

- Actors
- Resources
- Communication intercepts
- Involvement in activities
- Intel on individual actors & resources

Main Premise:

Organizational Interactions Form Structural Patterns

- Vector of values for quantitatively representing multiple relationship types
- Value weighs the relationship

Hypotheses Networks

Link labels correspond to expected volume of messages

Node labels

- Source: area of responsibility, performed functions/tasks, expertise
- Example: sniper ops; sales of weapons; money laundering

Link labels

- **Source:** types of messages
- **Example:** transfer of information; action request; synchronization; etc.

NetSTAR Validation Design

- Reuse readily available data from human-in-loop A2C2 Experiments
 - JTF operations; 42 data samples
 - Communications manually coded
 - Events logged in
- Complexity
 - Number of commanders = 6
 - Number of assets = 137
 - Number of events, comms = 1000-4000
- Data uncertainty model based on probability of miss, deception, & error
- Identification of nodes: actor-node
 mapping
- Identification of resource allocation:

control structure

 Compare results of detecting adversarial organizations as produced by human 2-person test team in 1 hour vs algorithm
 Calculate the impact of information uncertainty on prediction accuracy

DARE

NetSTAR: Experimental Design

- Two independent variables: organizational type and amount of "data fogging" (noise or error)
 - Three organizational types: Functional, Divisional, and Intermediate structures
 - Three levels of data fogging (Low 10%, Medium 30%, Large 50%)
- The five organizational structures-data fogging conditions tested were:
 - Functional 30%
 - Divisional 30%
 - Intermediate 10%, 30%, 50%
 - Incomplete design

Experimental Design & Counter-balancing

Each of the nine 2-person teams saw four within-subjects trials

Team 1	Team 2	Team 3	Team 4	Team 5	Team 6	Team 7	Team 8	Team 9
D-30%	F-30%	D-30%	F-30%	D-30%	F-30%	D-30%	F-30%	H-30%
H-10%	D-30%	H-10%	H-50%	F-30%	H-30%	F-30%	H-30%	H-50%
H-50%	H-30%	F-30%	D-30%	H-50%	H-10%	H-10%	D-30%	F-30%
F-30%	H-10%	H-50%	H-10%	H-30%	D-30%	H-30%	H-50%	D-30%

NetSTAR Experimental Procedure

Input Example: Network of Intercepted Control Messages from CMDRs to units/assets

(Data Sample: Divisional Org)

Procedure

- Teams were trained with the data from study
- Teams were given one stimulus data set and tasked to matching it to 1 of 7 hypothesis C2 structures
- Stimulus data set was noisy (contained errors)
- 7 hypothesis C2 structures were error free
- 7 hypothesis C2 structures included 1 functional, 1 divisional, and 5 intermediate or hybrid structures
- Description of each organizational structure was presented in 9 spreadsheets & 9 diagrams
- At the end of each trial, teams developed two products
 - Surveys measuring:
 - Self-reported workload,
 - Selection confidence,
 - Perceived Fogging Level
 - and Perceived Complexity

Mapping between Commanders, Leaders, & Assets

		Observed									
	Commanders Mapping	CMDR Alpha	CMDR Bravo	CMDR Charlie	CMDR Delta	CMDR Echo	CMDR Foxtrot				
Hypotheses	Green	x									
	Blue			x							
	Purple						x				
	Red		x								
	Orange				x						
	Brown					x					

Output Example: Mapping between Observed and Hypothesis CMDRs

© 2006, Aptima, Inc.

Identification of Organizational Structure

- Human teams identified organizational structure correctly in 17 of 36 trials or 47.2% of the time
 - If just chance, only 14.5% expected, human teams performed 230% better than chance
 - NetSTAR was perfect 100% correct (110% better than human teams, p < .001)
 - Holding fogging level constant (30%), NetSTAR did significantly better for Divisional & Functional (ps < .05), but not Hybrid (p = .2)
 - Human performance worst when fogging was highest

© 2006, Aptima, Inc.

Mapping of Commander & Combatant Platform Owners

- There were 14 nodes to match: 6 commander and 8 combatant platform owners
 - NetSTAR significantly out performed the human teams for every organizational structure (all ps < .001)
 - NetSTAR appeared to affected by organizational type

Conclusions

- The NetSTAR algorithm significantly outperformed the human analyst teams
 - identifying organizations
 - mapping commander and combatant platforms owners
- NetSTAR algorithm was unaffected by organizational type or amount of fogging when performing the identification task
 - This was not true for human teams
 - The higher the fogging (noise) the poor the performance
 - Functional organizations more difficult to identify than other organizations
- NetSTAR algorithm was affected by organizational type when performing commander and combatant platforms owner mapping
 - Human team mapping performance was weak but not affected by
 - organizational type