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The Easy Problem

» How do we recognize expertise?
— Performance

* How do we know it is high?
— Benchmarking

= How can we achieve high expertise?
— Training

D
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= What if the task is ill-
structured or complex?

— Can make mistakes in
recognizing achieved
expertise

— Do not know impact of training
= Why?
— Multiple types of expertise
combine to affect performance

— Incorrect/biased observer ratings
or measures

— Weak knowledge of expertise
dynamics
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What Happens to Training?

= You cannot train what you cannot
measure
— How do you give training if you do not
know achieved expertise and impact
the training will have?
= Different teams = different learning

curves
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» |TTS systems rarely model team learning, typically
model
— Expert team members (Miller, et al., 2000)
— Coaches for individuals (Freeman, et al., 2005)

» Qualitative I/0 models of team learning are ... qualitative
so cannot drive training sims

» Quantitative I/O models of team learning do not drive
training sims (Kozlowski, et al., 2001)
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Our Contributions

= Definition of expertise & dynamics

= Assessment: benchmarking via optimal mission
execution solution

= Improvement: intelligent training system

= Optimization in instructional strategy: Train the team with
expert-selected, annotated, and animated near optimal
solutions delivered in feedback

= Optimization of instructional strategy: Select scenarios
maximizing likelihood of advancing the team most directly to
goal expertise using a POMDP model
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o Expertise (1-2 vectors, with 1=inadequate; 2= adequate):
— ISR maintaining low risk
— ISR maintaining high coverage
— ISR nominating and DTC designating TSTs
— DTC prioritizing TSTs
— DTC coordinating a strike package plan
= Mission:
— # Time sensitive targets
— # Enemy defensive threats
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Assessment

= Scenario Benchmark: Near Optimal Solution Model
— Agent Model

= Human Performance

— Analysis of DDD log files
— “Playback” Model
— Analysis of chat communications

— >
Training
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Model
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Team
Execution
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Strategy Improvement

* Training = Planning under Expertise

uncertainty State | M1dden
— State = discrete expertise =
— Learning dynamics = impact of A.afect on expertise

training
— Control = training scenarios
— State observations = measures

Training
Scenario
effect on
measures

of performance \\\ ) 'C
Y; Measures
Partially Observable ‘A\ Ceerved
Markov Decision | %
Processes IV,
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current

Hidden state transition model: expertise state
how the training affects team | .
. action = training | a |
expertise Pr{s,|s,a}
— Variables: Pr ( current state | next
state, training scenario) transition

states
= next expertise

Observation model: how current
scenario and team expertise affect
what measures can be observed Pr{z.[s.a}

— Variables: Pr ( observed measure
| next state, training scenario)

transition

Observations (measures)
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Do we have control
Markov over the state transitons?
Models
NO YES
Markov Chain MDP
YES
Are the states Markov Decision Process
completely
observable? HMM POMDP
NO
Hidden Markov Model Partially Observable
Marlcov Decision Process
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How Does POMDP Work?

= Benefit of training defined
using “reward” of visiting
expertise state nodes
— Want to maximize the

expected total reward of
training

= (Can incorporate specific
“training path” restrictions

— Depends on trainer’s
objectives
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POMDP solution is
provided as a

“policy graph” =
look-up table

= Policy nodes =
abstractions for belief
about expertise state
—Policy node is
described using
(PolicyNodelD, StepID) — _ _
—pair POMDP Policy Solution  2- Receive Observation

[ [What to do? olicy Node ID if Observation =
SteplD Policy Node ID |Scenario ID |Scenario Namefl 11111[)2111] 12211{ 12221]21111| 21211[ 21221] 22211 22212| 22221| 22222 ||NextStepl|D

0. Start - | . = 's|d; —ea 23|§ | 1(1)3|x 23|§ |X zs|§ |§ |§,ﬂ 7

3 N T 3. Mark next policy node - :

* Each node specifies Next node 1 1. Use this scenario g >; art Nex: policy Node :
tralnlng Scenarlo O 4 179 9|d4 X X X 51|X X 51|X 51 51 19 5

be given to the team : % o — S0 S :

g g? ggi X 5)( 5X S 30(X 5)( o 30X = 3OX 30x 33 2

6 5 7|d2 3 3 11X 3 1IX 11X X X 7

6 8 8|d3 X X 1 2|X 1 2 11X 2|X 7

6 30 9|d4 X X X 2|X X 2|X 2 2 2 7

. 6 33 4(c3r4 X X 1 2|X 1 2 1 2 2 2 7

= For each feasible ; B i W I KK 2
observation — specify 7 3 Tl S S S S S S S S ;

next policy node
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Find: Detect and differentiate (T.0.1) Time | ==\ %" %
Sensitive Targets (TSTs) ISR
— Minimize risk to assets .
— Maintain high coverage of targets | —— ETEadnriy
— Nominate & designate TSTs o
= Fix: Complex communications to detect and B B SR B
differentiate (T.0.1) & prioritize (T.0.2) TSTs T e Y
= Target: Complex communications to coordinate |  f.. = wed
attack assets (T.0.3) T T L] L[] [ doaroia

= Approve strike package

= Team:7 Ss
— Participants: ISR, DTC Chief, Ground Track Coordinator
g%gg Attack Coordinator (AC), Target Duty Officer
— Confederates: Senior Offensive Duty Officer (SODO),
Chief of Combat Operations (CCO)
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Empirical Validation: Procedure

Control treatment

= Participants: 7 undergraduates e
= Phases

— Phase I: Declarative & procedural
training + practice (50 hrs)

— Phase Il: 49 trials + feedback (49 hrs)

= Consistent enemy
= Scale-up targets & threats

— Phase lll: 18 trials (18 hrs) T2 3 N

* Inconsistent enemy
= Scale-up targets & threats Threats

= Measure

— Quality of the proposed strike package
(TOJ) for each TST, determined by
expert ratings (96% agreement)

= Design (within Ss)
— Protocol (POMDP vs. control)
— Phase (Il vs. 1ll)
— Test (pre vs. post)
— (Counterbalanced scenarios & order)

Targets

1 2 3

Potential POMDP treatment

Targets

1 2 3

1.2 3 .7 N

Threats
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Results

Near transfer Far transfer
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Pre Post Pre
All Ss Control POMDP

Teams can learn the task (p<.01)

Far transfer degrades performance (p<.01)
Controls learn slowly if at all (p>.05)
POMDP condition learns rapidly (p<.01)

» Phase Il training produces mid/high competency operational team

LN~
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Conclusion

» Aptima is leading research in optimizing instructional
strategy
— Optimization in instruction: near-optimal solutions as feedback
— Optimization of instruction: POMDP model driven scenario
selection
= Qur developed automated intelligent tutoring system
significantly utperformed expert-based training solutions
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