
Model-Based Techniques in the Development of
Net-Centric Applications

June 20, 2007

Timothy A. Anderson
Basil C. Krikeles

BAE-Systems
Advanced Information Technologies
6 New England Executive Park
Burlington, MA 01803

This work was sponsored by the Air Force Research Laboratory (Contract # F30602-01-D-0053 Order 
No. 0012, subcontract S06021). Any opinions, findings and conclusions or recommendations expressed 
in this paper are those of the authors and do not necessarily reflect the views of the United States Air 
Force. 

Approved for Public Release; distribution unlimited.



Document number- 2

Why is it important to develop next-generation software 
technologies such as MDA?

– Size and complexity of software 
systems rapidly increasing beyond our 
capacity to handle with current 
technology

– Functionality moving from hardware to 
software (flight control, radios)

– Networked – evolving constellation of 
systems to integrate with

– Underlying technologies and 
infrastructure rapidly evolving

– Requirements rapidly evolving 
– For complex systems it may not be 

possible to accurately capture system 
requirements, especially in software 
with long lifecycles

– Need to protect large software 
investment by ensuring software can 
be managed, maintained, extended, 
modified, and adapted over a long 
period of time by teams other than the 
original developers 

– MDA supports “Software Producibility”



Document number- 3

Model Driven Development, xUML, DSLs

– Model-driven development is focused on a representation of the functionality and 
behavior in of a system that is independent of the ultimate implementation 
technology, language or infrastructure

– Relies on automated or semi-automated means of transforming the model into 
a platform specific executable

– Executable UML (xUML) comprises a subset of the UML standard with 
sufficiently precise semantics to be capable of being executable

– XUML attempts to provide a generic MDA solution, i.e. one that works in any 
application domain

– Domain Specific Languages (DSLs) implement MDD in the context of specific 
problem domains, and can be optimized for those domains



Document number- 4

XML-defined Gateway for Tactical Data Links

Link Interface and CMF-
Link Translator 

Code Generation

Link Message Format 
Specifications (.xml)

Link Message 
Translation

Specifications (.xml)

Layered, Dynamically 
Loadable Link Interface 

Modules 
(C++)

External Data 
Interface 
Adapters 

(C++)

XDG

Common Message 
Format (CMF) 

Specifications (.xml)

– TDL specifications are generally 
human-readable, making 
implementation V&V difficult.

– Several data links (Link-11, Link-16, 
etc.) are in active use. Each one 
requires robust, high-performance 
support.

– Message forwarding among a variety 
of TDLs can be an N2 implementation 
problem: each pair of network types 
can require a module to handle 
translation.

– XDG represents TDL data formats 
and rules in XML, from which it 
generates a common data 
representation and link-specific 
translators and forwarders.



Document number- 5

XDA DSL: A Model Driven Framework for Domain Engineering 
with Auto-generated XML parser

meta.xsd

tracking.xml
(Domain Def XML)

tracking.xsd
(Domain Def XSD)

Instance Data

XML Tool

Domain Engineering

XSLT
xform

Code
Generator

(Domain Implementation
Standard C++ or Java)

GMTITrackUpdate Class

XDA Library

Application PSI at Runtime

Application Logic

Instance DataTrackUpdate
(Instance Data)

XML Parser and
Writer for Domain

validates

validates

Platform Specific Instance (PSI)

Platform Independent 
Domain Model (PIM)

XDA Middleware
Interface



Document number- 6

Our case study and its value proposition

Shared Business Logic implemented in xUML
(Cooperative Analysis, Design, Coding)

Weapon System Instantiation A
(Integration, Testing, Program Mgmt)

Weapon System Instantiation N
(Integration, Testing, Program Mgmt)

…

Versus

Implementation A of Business Logic
(Weapon system specific 
Analysis, Design, Coding)

Weapon System Instantiation A
(Integration, Testing, Program Mgmt)

Weapon System Instantiation N
(Integration, Testing, Program Mgmt)

…
Implementation N of Business Logic

(Weapon system specific 
Analysis, Design, Coding)N

 Im
pl

em
en

ta
tio

ns

With MDA and xUML: one executable PIM
with multiple instantiation for each weapon system

Conventional procurement strategy: multiple implementations of same business logic



Document number- 7

Platform-specific deployment

Target HardwareTarget Hardware

WeaponsWeapons

SensorsSensors

CommsComms

Run-Time Interface Domains

Adaptation
Domains

User 
Interface
Domains

HUD/HDDsHUD/HDDs

DisplaysDisplays

Other ToolsOther Tools

Target Execution Environment
(Processors / Operating System / Language)

Core
Processing

Logic

Isolates application from 
hardware devices and data 

buses

Isolates application from 
hardware devices and data 

buses

Isolates application from 
underlying execution 

technologies

Isolates application from 
underlying execution 

technologies

Core domains capture 
common behaviour to 

ensure uniformly applied 
processing rules in a net-

centric environment

Core domains capture 
common behaviour to 

ensure uniformly applied 
processing rules in a net-

centric environment

Isolates application from 
user interface formats 

and devices

Isolates application from 
user interface formats 

and devices



Document number- 8

Configuration Management Issues

– Effective tools have been developed to support text-oriented software 
development, for example

– Concurrent modification of the same source file by multiple developers
– Source code differencing
– Semi-automated merging of different versions of the same source file
– Automated patching of released versions
– Branching of the source tree and merging of different branches

– None of these tools exist in usable form for Model Driven Development, resulting 
in hard to overcome problems for large MDA projects

– Development must be centralized
– One small team of two to three developers must be assigned to each unit of 

re-use (domain, or package or set of classes) in order to serialize
modifications and to de-conflict access by direct communication

– Patching a release of the model is virtually impossible; significant defects 
typically force a re-release of the modified model

– Domain interactions happen in “Bridges” across domain boundaries and are 
even harder to manage

– The next generation of MDA technologies must address this issue



Document number- 9

Unintended Consequences

– Use of the relational data model and specialization hierarchies rather than 
inheritance reduces performance and developer effectiveness

– Expressivity of the Action Specification Language is not adequate for many 
algorithms

– An abstract language may be adequate for describing an algorithm, but not 
expressive enough to capture optimizations and other implementation-specific 
details needed for system performance

– Use of abstract state machines and event queues can yield fragile, inefficient 
code



Document number- 10

Model Compilation and PSM Generation

Compiler
Generator

Platform
Translation Rules

(Transformation model)

PSMC
(exe)

g++

Platform-Specific
Build Set (PSBS)

Model Compiler 
Framework

Compiler Meta Model

Creation of Customized 
Code Generator

Creation of 
Target Executable

Generate
d C++ 
(PSM)

Generate
d C++

Legacy headers
& libraries

g++

Platform-
Specific

Implementation
(PSI)

Platform-
Specific

Model Compiler
(PSMC)

xUM
L

Source 
code

Executa
ble 

binary

Executa
ble 

binary



Document number- 11

Lessons learned from current experience with MDA

– MDA technology is in its infancy but holds tremendous promise
– Standards are being developed
– MDA has been successfully applied in the well-scoped area of Domain Specific 

Languages
– Effective general purpose MDA tools will require the following:

– A next-generation standard for a subset of UML that includes execution 
semantics and effectively addresses all aspects of software modeling 
including runtime model, threading/concurrency, state machines and multi-
processing

– Ability to represent different levels of detail within a model according to the 
user’s interest

- Subject matter experts can see a view appropriate to them, while developers and 
modelers can drill down to implementation details

– Industry accepted standards enabling cross-vendor interoperability 
– Additional research to address version control and configuration management 

in the context of MDA and to support concurrent model modifications and 
distributed model development



Document number- 12

Suggestions for improving the next xUML standard

– Include a new approach to domain interaction that will eliminate the tight coupling 
induced by bridges and inline code, truly hide the internal implementation details 
of domains

– Enable a heterogeneous approach to modeling to allow for efficiencies and 
optimizations at different levels of representation

– Do not relegate platform-specific and optimization issues to the model compiler. 
The modeling language, if appropriate for the granularity of the model, should be 
able to abstract and capture both platform issues and optimization strategies.

– The strategy of relying on the model compiler is both unrealistic and brittle
– The runtime architecture should not be drastically different from current state of 

the art. The Relational Database Model used by the current version of xUML is 
confusing, error-prone and inefficient

– Include interoperability standards. The market place will force tool vendors to 
comply allowing developers to mix and match MDA tools and to create 
customized modeling environments with the tools best suited for their task

– Try to emulate at the MDA level the utility of the Unix constellation of file-based 
tools and the success of the Eclipse “eco-system” of development tools



Document number- 13

Conclusion

– As software projects continue to grow in size and complexity, MDA can be a 
valuable approach to managing the development

– With current technology, MDA is especially effective when more narrowly focused 
and used in conjunction with domain-specific modeling languages.

– Standards are still being developed
– General tools are either limited in expressive power or lack platform 

independence
– Cross-tool interoperability standards are critical, in order to allow competition, 

evolution, and use of best-of-breed tools
– New technologies for configuration management are required to support effective 

development
– It is extremely difficult to provide a single tool that supports all levels of 

development
– Different levels of detail could require different modeling paradigms
– Interoperability will be required between tools at different levels of detail on 

the same project
– Final thought: a model is an artifact that can be used beyond code generation, to 

produce documentation, complexity or producibility statistics, etc.


	Model-Based Techniques in the Development of�Net-Centric Applications
	Why is it important to develop next-generation software technologies such as MDA?
	 Model Driven Development, xUML, DSLs
	XML-defined Gateway for Tactical Data Links
	XDA DSL: A Model Driven Framework for Domain Engineering with Auto-generated XML parser
	Our case study and its value proposition
	Platform-specific deployment
	Configuration Management Issues
	Unintended Consequences
	Model Compilation and PSM Generation
	Lessons learned from current experience with MDA
	Suggestions for improving the next xUML standard
	Conclusion

