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PAL-Enhanced CPOF
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e CALO Task Manager
 LAPDOG Task Learning Component

* Interfaced to CPOF

* PAL components connected to CPOF through
PAL-to-CPOF bridge (developed with GD Viz)
» CPOF Users ask PAL to learn new procedures

by observation
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Demonstrated at Ft. Stewart OCT 2006

“Based on my experiences and what | saw during the demo,

PAL could be an incredibly powerful tool for Tactical Operations
Center (TOC) operations. It has the potential to save countless
man-hours by conducting routine, repetitive tasks with little or no
input from the user. Those man-hours could then be reallocated to
other tasks (analysis, rest, etc) or even free up Soldiers to conduct
combat operations.” -- CAPT Daniel Kent, Battle Captain, 31D
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~ Learning Composite Tasks

TAILOR
learning by instruction

PLOW
learning by discussion

LAPDOG
learning by demonstration

»
»

active instruction by user

passive observation of user

From Myers, AAAI 06 Invited Talk
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Three Possible Outcomes for San Diego
Effectiveness and Efficiency
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Effectiveness-Curves-Using-50-Point-Shiding- Windows—
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Varying Training Amounts
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Effectiveness and Efficiency over
Preparation Strategies

Effectiveness Curves Using 50 Point Shiding Windows
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Effectiveness over Different Human " sanoies
Use Strategies
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Conclusions

* As expected, more training Is better
than less training.

 What wasn’t expected was the lack of
value of focused training.

* Observability is significant factor once
around 30%.

« Human use strategy Is critical.
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