www.mak.com info@mak.com 617-876-8085

ICCRTS JUNE 2007

GIS-Enabled Modeling and Simulation (GEMS)

MÄK

Tom Stanzione & Kevin Johnson tstanzione@mak.com, kevinj@mak.com

Sponsor

 This work is funded by the US Army Topographic Engineering Center, Ft. Belvoir, VA

Government POC

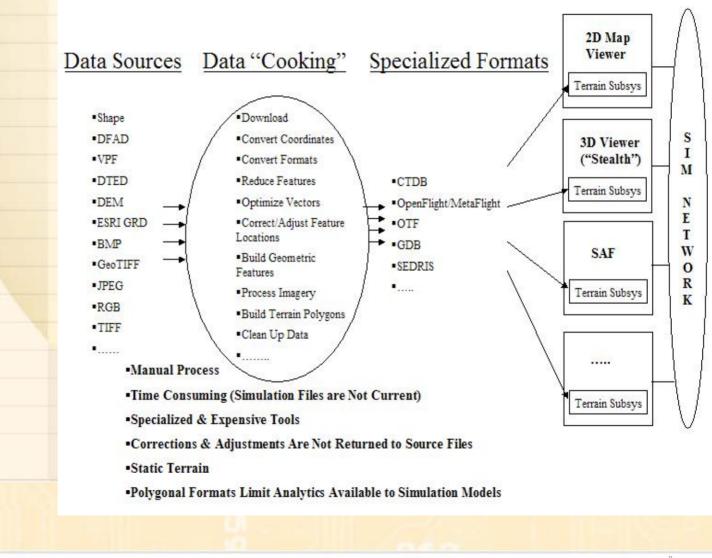
David Lashlee, Ph.D.

Associate Technical Director

▶ (703) 428-7133

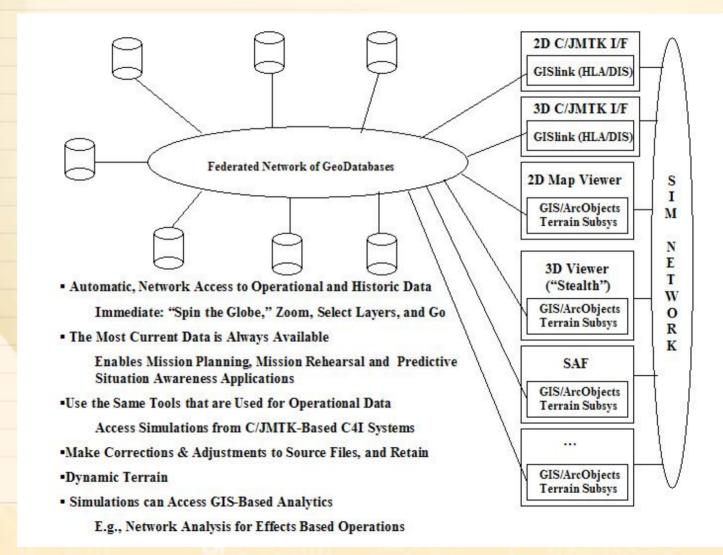
TECHNOLOGIES

J.David.Lashlee@erdc.usace.army.mil


Contract # W9132V-06-C-0018

Objectives

- Enable modeling, simulation, and visualization systems to operate directly on GIS-based terrain
- Eliminate need to for time-consuming and expensive conversion to specialized formats
- Use same data used in operational C4ISR systems (C/JMTK)
- Enable mission planning, mission rehearsal, and predictive situation awareness


Terrain Generation for M&S Current Practice

MÄK

TECHNOLOGIES

GIS-Enabled M&S

MÄK

GIS and C4ISR

- Commercial Joint Mapping Toolkit (C/JMTK)
 - Mapping, Charting, Geodesy, and Imagery functionality for C4ISR applications
 - Deployed to support both legacy and new mission applications
 - Components for the management, analysis and visualization of map information
- Includes ESRI ArcGIS components
 - ArcGIS Engine & Desktop
 - Military Analyst extension

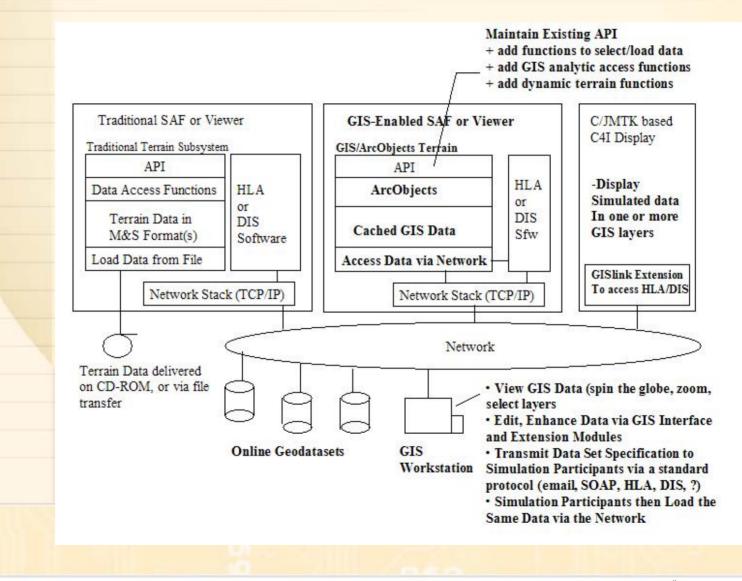
- Direct use of NGA vector and raster products
- Military Overlay Editor (MOLE) for 2525B symbology
- Selected for GEMS terrain subsystem because of close ties to C4ISR community

CGF Terrain Databases

- > 2D Visualization
 - Abstract representation (maps)
 - Realistic representation (imagery)
- Reasoning
 - Geometry and attribution of elevation and features
 - Data structures in memory
 - Uses:

- Vehicle placement
- Movement algorithms
 - Path planning
 - Obstacle avoidance
 - Vehicle dynamics
- Line of sight
 - Targeting
 - Communications

CGF Terrain Databases


- Terrain Skin
 - Grid or TIN of elevation values
 - May or may not be stored as polygons
 - Attributes
 - "Soil Type"
 - Water
 - Mobility Characteristics
- Features
 - Point, Lines, Areas
 - Attributes
 - Width, height, type, …
 - 3D Models
 - Typically associated with point features
 - Building models
 - Varied fidelity
 - Overturned shoe boxes to complex structures with interior details
- Spatial organization
 - Find all terrain information around a location quickly
 - Grid-based
 - Hierarchical
 - Quad trees

Requirements Analysis

- M&S terrain data
 - Elevation
 - Features
- GIS terrain data
 - Existing C4ISR data sets
 - Geodatabase schemas
 - Theater Geospatial Database (TGD)
- Interfaces for M&S data
 - VR-Forces, OneSAF Testbed, Delta 3D

System Components being Developed

TECHNOLOGIES

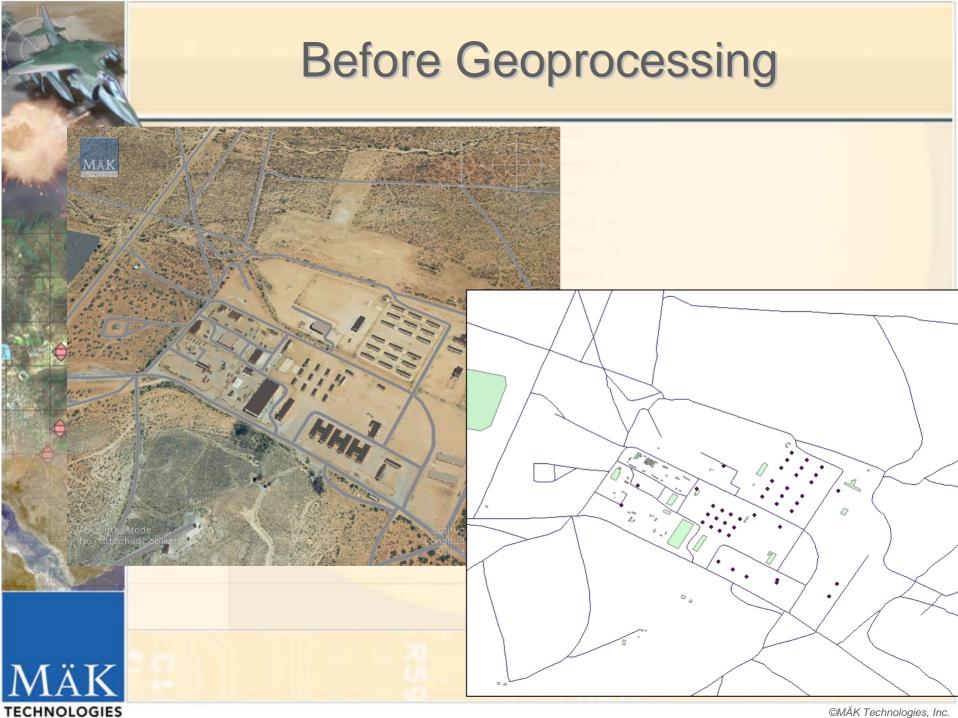
MÄK

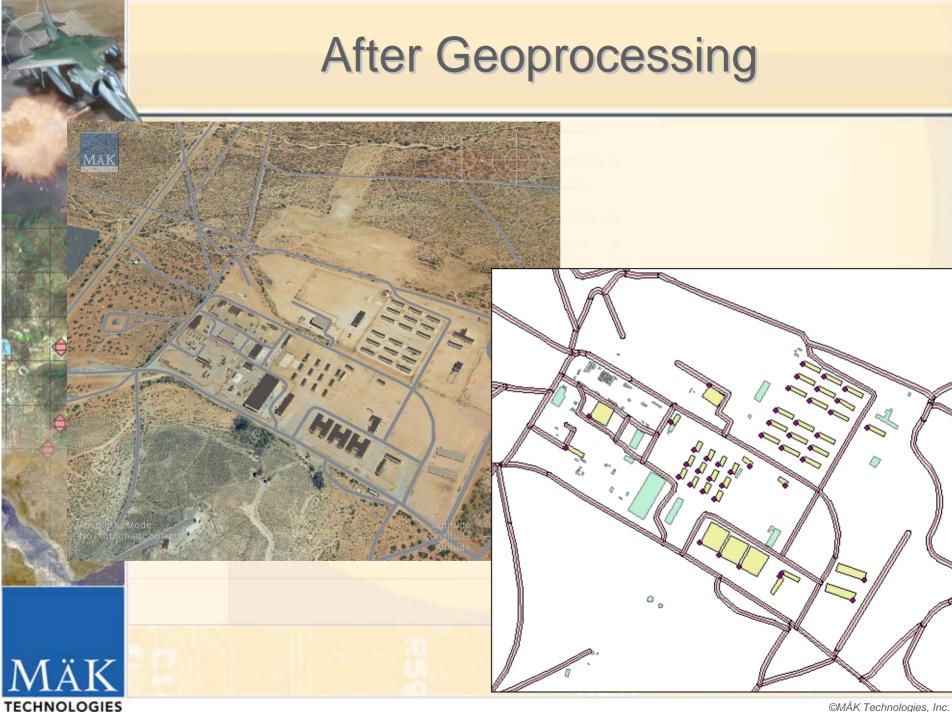
GIS Terrain Data for M&S

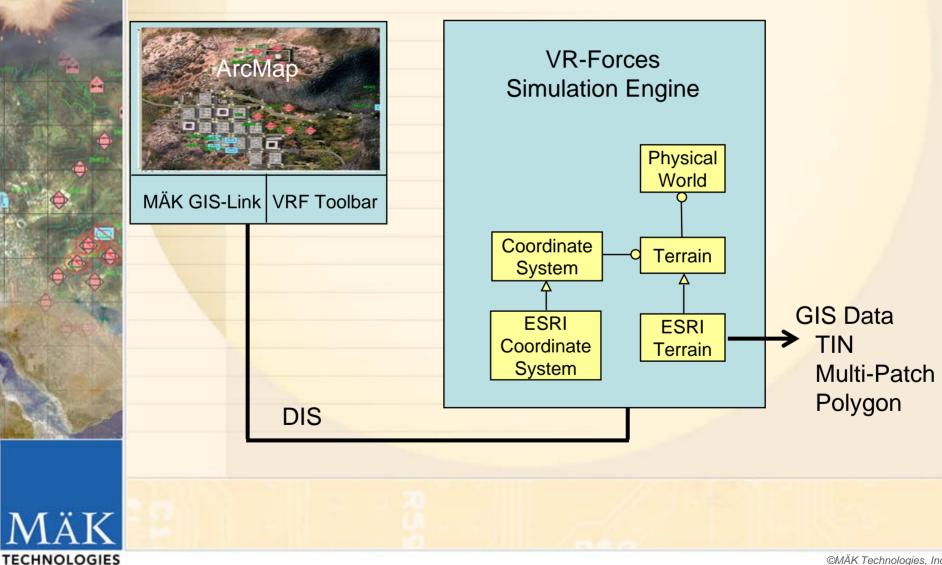
- Elevation Data
 - Raster
 - Triangulated Irregular Network (TIN)
 - Terrain Feature Class (GeoDB)
 - Polygon Z Feature Class (GeoDB)
- Feature Data
 - Shape Files
 - Multi Patch (GeoDB)
 - Polygon, Polyline, Point Feature Datasets (GeoDB)
 - Networks (GeoDB)
- Geodatabase
 - Personal
 - File

TECHNOLOGIES

Network


Geodatabase Design


- TIN for elevation data
- Multipatch datasets for 3D features
- Individual point, polyline, and polygon feature datasets for 2D features
- Everything except TIN in a file geodatabase
 - Faster than personal geodatabase
- Database schema based on the TGB operational terrain schema


Geoprocessing

- Geoprocessing on GIS data for runtime efficiency
- Convert point buildings to footprints, merge with area buildings, extrude to 3D and store as multipatch features
- Create a unified soil types layer from linear and area features
 - Linear features are expanded by width attribute

Terrain Subsystem Prototype

TECHNOLOGIES

Software Implementation

- Geoprocessing tools to populate a geodatabase for CGFs
- Developing prototype API for CGF
 - Elevation from TIN
 - LOS thru TIN and buildings
- Modifying VR-Forces to use API
 - ESRI Terrain subclass using ArcObjects
 - ESRI Coordinate System subclass using ArcObjects

GIS vs GDB Performance

- Three main terrain calls:
 - ClosestIntersection Elevation
 - Intersect (1) Horizontal LOS
 - Intersect (2) Vertical surfaces intersection
- Scenario
 - 10 moving ground vehicles, 3 moving amphibious vehicles, 1 moving surface vehicle, 4 moving air vehicles and 16 non moving target vehicles
- Average length of time in each call (microseconds)

	GDB w/ soil type	TIN	Raster	TIN w/ soil type
ClosestIn tersection	37	94	25	298
Intersect (1)	54	705	2006	N/A
Intersect (2)	62	407	691	N/A

TECHNOLOGIES

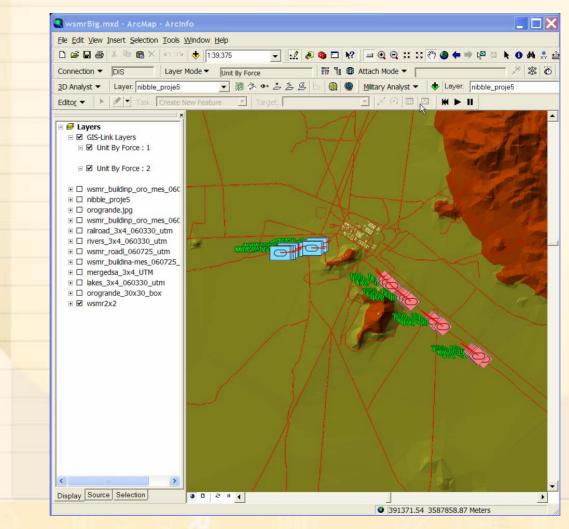
Performance Improvements

- Use of geocentric coordinate (GCC) system in ArcGIS
 - Used in DIS and HLA simulation protocols to provide continuous coordinate system anywhere around the world
 - Not yet supported by ESRI, so have to convert in each terrain call
 - GIS data in UTM or geodetic
- Caching algorithms
 - Especially multipatch features, which are stored as compressed data and have to be uncompressed

Simulation system terrain call optimization

TECHNOLOGIES

Performance Improvements


- Using pointers from TIN triangles to attribute table for soil type look up
 - Eliminate separate lookup for soil type and elevation
- Bounding box of buildings added to TIN
 - Expand base of buildings by a few centimeters to avoid vertical polygons
 - Faster LOS
 - Reference to multipatch for more detailed LOS
- Wrote own LOS test that walks TIN topology
 - ESRI test walks whole ray
 - We only need to find first intersection
- Using geographic coordinate routines in ArcSDE SDK
 - Eliminate overhead with each coordinate conversion

Updated Performance

	GDB w/ soil type	TIN	Raster	TIN w/ buildings & soil type
ClosestInt ersection	37	94	25	74
Intersect (1)	54	705	2006	234
Intersect (2)	62	407	691	79

VR-Forces using GIS Terrain Demonstration

Click on image to run demo

Conclusions

- Early prototyping suggests feasibility of GIS terrain for M&S
- M&S using operational data facilitates embedded training in C4ISR systems
- Can still benefit from high fidelity M&S terrain databases
 - Convert to GIS formats as needed
 - Use automated content generation from terrain database generation systems

Future Work

- GIS Server technology to distribute GIS terrain data
- > 3D Visualization Capabilities
 - Extend terrain subsystem
- Access to GIS-based Analytics and Terrain Reasoning
 - Extend terrain subsystem API
 - Develop framework for asynchronous processing
- Dynamic Terrain
 - Extend terrain subsystem and GIS-Link
 - Data management and distribution

