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Adaptive Information Fusion in Asymmetric Sensemaking Environment 
 
Abstract 

 
The existing sensemaking models for traditional force-on-force battlefield information 
management rarely survive the kinds of information in asymmetric battlespace 
environments. By combining the abduction process and Bayesian probability network 
formalisms, we propose a Bayesian Abduction Models (BAM) to support in the 
sensemaking process of evaluating multiple hypotheses in the context of changing 
information. This paper describes a Bayesian network that captures abduction logic 
primitives from a kernel of disparate information sources. We use a genetic learning 
algorithm to solve BAM information fusion problems. We show how the model can be 
used in prospective and retrospective sensemaking conditions to simulate the ways 
commanders and the battle staffs process information.  
 
Introduction 

 
Consider the current military conflicts in Iraq and Afghanistan. The adversary 
environment is known to be complex, “ wicked” and completely asymmetric--the 
adversaries are barely known, and their tactics keep changing against the coalition forces. 
The deliberate military decision making processes (MDMP) with all their linearity 
assumptions collapse immediately in contact with asymmetric information environments. 
Generating courses of action must be progressive and opportunistic--the usual analytical 
models of judgment and choice that fit force-on-force tactics must be recalibrated to fight 
against unknown enemies. Sensemaking, the process of connecting dots to disparate 
information and seeking explanation to potentially unexpected evolving situations, has 
been suggested as an embellishment or precursor to existing MDMP. Unfortunately, 
these nascent decision systems lack analytical models that can capture the evolving states 
of battle dynamics and its information equivocality. The proposed method seeks to 
minimize this problem by developing a probabilistic abduction model for sensemaking 
process.  
 
To help elucidate our point of discourse, consider a fictitious case in the current conflict 
in Iraq. We can use a hypothetical network depicted below to illustrate an example of 
analyzing the Iraq insurgency. The top most variable Ho will represent a composite 
hypothesis for a desired end state problem. For example, we can hypothesize that, 
according to intelligent speculations, that Iran is responsible for the sectarian violence. 
The variables hi form a subset of Ho and will represent the operational focus (e.g., 
funneling money and weapons to insurgents, covert operations in Iraq, etc.); Xi may 
represent  the perceived motives f; Si may represent the influence path (example: Al-Sadr 
militia cell, Al-Qaeda cell, etc.) responsible for attacking targets mi (e.g., mosques, 
coalition forces, kidnapping, etc.). Figure 1 shows the network of the information 
described above.  
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Figure 1: Example network where { hi,xi,Si,mi} represent the End state, Operational 

Focus, Motivation, Influence Pathways, and the Target variables, respectively. 
 
From a sensemaking perspective we are interested in knowing what happens when new 
information unexpectedly arrives to the intelligent analyst. For instance: 
1) The adversaries change their attack methods; and 
2) New targets are exploited by the adversaries.  
From the list of possible hypotheses and variables, the analyst is interested in determining 
the most probable explanation, and/or making the best inference from the given evidence. 
The existing courses of action and planning models rarely survive the kinds of 
information described above. Sensemaking is suggested as a model for situations with 
ambiguities such as the one in the above case; more so, abductive reasoning is suggested 
as its supporting tool. Abduction is a reasoning process that tries to form plausible 
explanations for abnormal observations. A typical abduction task is a classification of a 
given data set into potentially relevant elementary explanatory hypotheses. By combining 
the abduction task and Bayesian probability formalisms, we have developed a Bayesian 
Abduction Model (BAM) to support in the performance analysis during a sensemaking 
process such as illustrated in the sample case above. 

 
 
 



 
Theoretical Foundation 

 
Developing an abduction driven Bayesian model of sensemaking begs for an important 
question: “Can sensemaking with all its tacit dimensions of knowledge be represented 
mathematically (and computationally)? Our answer is definitely yes, but with a caution 
about avoiding over generalization.  
 
Let us review some of the existing models developed to either target sensemaking or its 
pseudo-variances. Computationally, Schmidt (1994) view sensemaking as a symbolic 
system of human communication when he notes that “in systems that hold and 
manipulate information, it is possible for a system to hold and manipulate information 
that represents the system itself, in such a way that there is a causal link in both directions 
between the system and the information; if the system changes the information, the 
system itself changes accordingly. These (conditions) are self reference that make goal 
directed (sensemaking) systems symbolic and computational reflective systems.” Schank 
(1982) observes  that sensemaking is a system of actions, symbols and processes that 
enables an organization to transform information into valued knowledge which in turn 
increases its long run adaptive capacity (1982; pp.8). Weick (1995) notes that 
sensemaking is a theory and a process of how people reduce uncertainty or 
ambiguity…during decision making. In DARPA’s Information Awareness Project 
initiatives, sensemaking is considered an important tool for the Future Combat Force 
because, with fragmentary battle space information, “meaning has to be derived from 
these fragmentary cues”. 
 
Peircean philosophy provides a foundation for understanding human reasoning and 
capturing behavioral characteristics of decision makers due to cultural, physiological, and 
psychological effects. Peirce’s theory focuses on a system of logic that can achieve the 
best possible conclusions based on the available information. Pierce (1877) first 
described abductive inference by providing two intuitive characterizations: given an 
observation d and the knowledge that h causes d, it is an abduction to hypothesize that h 
occurred; and given a proposition q and the knowledge that p→q, it is an abduction to 
conclude p. In either case, abduction is uncertain because something else might be the 
actual cause of d, or because the reasoning pattern is the classical fallacy of “affirming 
the consequent” and is formally invalid. Additional difficulties can exist because h might 
not always cause d, or because p might imply q only by default. Generally, we can say 
that h explains d and p explains q and we shall refer to h and p as hypotheses and d and q 
as data. Peirce (1877) further defined the process of inquiry or discovery as including 
three fundamental inference processes: 

 
1) Abduction generation of hypotheses to explain new anomalous data. 
2) Deduction performs the function of making a prediction as to what would occur if 
the hypotheses were to turn out to be the case. 
3) Induction finds the ratio of the frequency by which the necessary results of 
deduction does in fact occur. 

 



Abduction is then, a reasoning process that tries to form plausible explanations for 
abnormal observations. It is distinct from deduction and induction in that it is inherently 
uncertain since information or data supporting abduction process is dynamic in nature, 
leading to human construction of multiple and often competing hypotheses. 
 
Bayes Theory 

 
We have alluded to the use of Bayesian theory in our proposed work. What follows is a 
short summary on the foundation of the Bayesian approach (Pearl, 1995). In any situation 
in which we have to make decisions we are often interested in determining the best 
hypothesis from some construct space H, given observed data D. Bayes theorem   
provides a way to calculate the probability of a hypothesis based on its prior probability, 
the probabilities of observing various data given the hypothesis and the observed data 
itself. To define Bayes theorem precisely, we first need to define the notations used. Let 
P(h) denote the initial probability that hypothesis h holds, before we incorporate any new 
data.  P(h) is the prior probability of h and may reflect any background knowledge we 
have about the chance that h is our atypical belief or a correct hypothesis. If no such prior 
knowledge exists, let P(D) denote the probability that evidence data D  will be observed. 
P(D) represents the probability of evidence D given  no knowledge about which 
hypothesis holds. Let P(D|h) denote the probability of observing data D given some 
world in which hypothesis h holds. We are interested in the probability P(h|D) that h 
holds given the observed data D. P(D) serves to confirm, reject, or modify our initial 
belief about h. P(h|D) is called the posterior probability of h because it reflects our 
confidence that h  holds after we have seen  some evidence D.  
 
Bayes theorem provides a way to calculate the posterior probability  P(h|D), from prior 
probability  P(h),together with P(D) and P(D|h) and can be mathematically stated as, 
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In previous studies, Pate-Cornell (2001) used Bayesian analysis to study intelligence 
fusion. McLaughlin and Pate-Cornell (2005) used Bayesian techniques to provide an 
analytical illustration of Iraq’s nuclear program intelligence. Sticha, Buede and Rees 
(2005) developed APOLLO, an analytical tool for predicting a subject’s decision making. 
Starr and Shi (2004) conducted a study on Bayesian belief networks and their 
applications to land operations for the Australian military. So far, there has been no 
substantive study of the application of Bayesian networks in sensemaking. There are 
several reasons for this. First, equation (i)  above cannot  handle well hypotheses of 
multiple disorders since Bayesian models are more grounded in diagnostics decision 
making process (Pearl,1988). For example, given two independent hypotheses h1 and h2  
and a common data set D1,D2,…,Dm, the computation P(Dj|h1^h2) presents a serious 
logical analysis challenge. Secondly, it is difficult to handle causal chaining where there 
is no direct influence; note that the success of Bayesian Belief Networks (BBN), e.g. 
Pearl (2000), is based on the availability of direct conditional influences. 
 



Abduction and Bayesian Model 
 

The existing models of abduction are purely from the logical approach (Konolige, 
1992).Our model is not for logical reasoning. We are interested in the probabilistic 
models of uncertainties that allow some causal inference to take place in a sensemaking 
information network. In this case, the relationship between Bayesian reasoning and 
abduction is governed by the assertion related only to a set of plausible explanations 
(Prakken, 2004). Simply 
 

Let P(w) = ∑ P(E)     (ii) 
 
Where E is an explanation of world w 
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P(w|E) may represent, say, mass demonstration by Iraqi citizens because of bombing of a 
mosque by the coalition force. The abduction problem in sensemaking is: given E, 
explain E, then try to explain  w from these explanations. 

 
Mathematical   Illustration 
 
We briefly demonstrate the Bayesian abductive inference using a mathematical 
illustration. For simplicity, inference is performed only for a part of the network as shown 
in Figure 2 below. We define an end state of the network as a composite hypothesis Ho 
and to this we assign a prior probability. The prior probability can be assumed based on 
the level of past information that we have about a particular situation that is of interest. 
For example, Ho  could be maintaining stability operations in Bagdad. The estimated 
probability could be from the news media, intelligence briefings, or simply the 
commander’s estimate. We can write, 4.0)( =oHP  

 
This means that we are only 40% confident that our chosen hypothesis is plausible. By 
the axioms of probability, the probability of an alternative hypothesis    
representing any other end state is therefore, 

)( aHP
6.0)( =aHP  and we need not explicitly 

state this. Similarly we can assign apriori probabilities for the conditional probabilities of 
interest representing the probabilities of the children events, given the parents. 
 
Next, we can compute the prior probabilities of all the instantiated variables as follows 
 

P(h1)= P(h1|Ho)P(Ho) +P(h1|Ha)P(Ha)= (0.9)(0.4)+(0.8)(0.6)=0.84 
 
P(x1)= P(x1|h1)P(h1) + P(x1|h2)P(h2)=(0.7)(0.84)+(0.4)(0.16) =0.652 
 



P(S1)=P(S1|x1)P(x1) +P(S1|x2)P(x2)=(0.5)(0.652) +(0.6)(0.348) =0.5348 
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Figure 2: Example network where {hi ,xi Si} represent the End state, Operational Focus, 

Motivation and the Influence Pathways variables respectively 
 
Now suppose the variable X is instantiated for x1. Since the Markov condition entails that 
each variable is conditionally independent of the next variable given its parents, we can 
compute 
 

P(h1|Ho)=0.9 
 
P(x1|Ho)= P(x1|h1,Ho)P(h1|Ho) + (P(x1|h2,Ho)P(h2|Ho) 
             = P(x1|h1)P(h1|ho)+P(x1|h2)P(h2|Ho) 
             = (0.7)(0.9) + (0.4)(0.1) =0.67 
 
P(x2|Ho)= P(x2|h2,Ho)P(h2|Ho) +P(x2|h1,Ho)P(h1|Ho) 
             =P(x2|h2)P(h2|Ho) + P(x2|h1)P(h1|Ho) 
             =(0.6)(0.1) +(0.4)(0.9)=0.42 
              
 
P(S1|Ho) = P(S1|x1,h1)P(x1|Ho)+P(S1|x2,h2)P(x2|Ho) 
               = P(S1|x1)P(x1|Ho)+P(S1|x2)P(x2|Ho) 
               = (0.8)(0.67) + (0.6)(0.42)= 0.734 
 



Applying abductive inference, we can compute  
 

P(x1|S1) = 60.0
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To compute P(h1|S1), we again apply Bayes theorem 
 

 P(h1|S1) = )(
)()(|(
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But we need to first compute the P(S1|h1). That is  
 

P(S1|h1) = P(S1|x1)P(x1|h1)P(S1|x2) + P(S1|x2)P(x2|h1)P(x2|h2) 
               = (0.5)(0.7)(0.6) + (0.6)(0.3)(0.6) =0.318 
           
P(h1|S1) = 0.504 

 
We then compute the probability P (S1|Ho) and P(Ho|S1) in a sequence as follows 
 

P(S1|Ho) = P( S1|h1)P(h1|Ho)+P(S1|h2)P(h2|Ho) 
                =   (0.53)(0.9)+(0.47)(0.1) = 0.524 

                
The value of 0.524 gives the numerical probability that we may assign to our degree of 
belief that event S1 will happen given a world in which the hypothesis Ho holds plus all 
the other instantiated variables. Referring to our fictitious scenario network, we can say 
with a 52% certainty that the end state represented by hypothesis Ho will influence event 
S1. In terms of prospective sensemaking S1 is therefore the most probable explanation for 
hypothesis Ho. 
 
 
 
 
Again, by using Bayes theorem 
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Similarly, given  the influence path S1 ,we can perform a backward inference and say that 
S1   will influence the desired end state Ho  only 39% of the time (i.e., probably not a very 
significant influence path for this hypothesis). This backward inference corresponds to 
the consequent→antecedent reasoning or the retrospective sensemaking of the network 
scenario. 
 
Considering the network shown in Figure (1) above  
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Because of the independence of {S1, S2, S3...Sr}, we can write 
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Clearly, the complexity of the computation, even for a relatively simple network can be 
seen. When new evidence is introduced, the analyst is interested in determining the 
possible effects on his most probable hypothesis, Ho. Suppose the new evidence points to 
a new target to be exploited by the insurgents. The new target may be a coalition 
command and control (C2)post in a previously secure part of the country. This would 
definitely require a level of sophistication, challenging the analyst’s previous hypothesis 
about the end state of the insurgency. Using a Bayesian abduction inference, we can 
compute the state of the network with variable Xi instantiated as follows: 
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Once the state (solution) of the network is determined, it is straightforward to perform 
forward or backward inference. It is easy to see also that the more complex the network, 
the more difficult the computation. Unfortunately abductive inference in belief networks 
belongs to the class of NP-hard problems (Cooper, 1990). Complexity increases 
drastically as a function of the number of undirected cycles, discrete states per variable 
and variables in the network. Approximate solution techniques which reduce calculation 
time and generate rankings of possible hypotheses have been introduced as an alternative.  
 
In order to overcome the problem of computational complexity, the BAM uses a genetic 
algorithm (GA) to perform the search and computation for the most probable hypothesis. 
GA’s can handle very complex network problems and perform efficient and fast 
computation over large search spaces. Using GA, inference is performed as a search in a 
large discrete multi-dimensional space of competition hypotheses. Generally, GA can 
conduct a search adaptively and thus facilitates the discovery of a hypothesis path with a 
high probability instantiations.  
 



One major advantage of GA is that we can represent multiple states for each variable 
depending on the cardinality that we choose for the genetic coding. Our GA model uses 
probabilistic transition rules to propagate search along the direction of “best” fit in the 
Bayesian network, making use of Bayesian characteristics that conditionally explore or 
prune nodes based on their probabilistic scores.  
 
The first step in applying GA to our BAM model is to code all the variables in our 
hypothetical network as a finite length string. The simplest scheme is to use two-variable 
cardinality so that the set {0,1} is sufficient to represent all the states of the variables. At 
any instance, the state of the network can be fully determined by using a vector a, where  
 
                                                                                   1 if a node Ckj is instantiated  

a =        
                                                                                   0 otherwise 
 
At each level k of the network, we have Nk nodes such that kkj NC ∈ ,  ...,3,2,1 nj =
The resulting network representation for all nodes is a binary pair {Cj, a} for all nodes k. 
The initial population is generated by coding each of the variables with a {0,1} 
depending on the state of the instantiation. The initial population is then subjected to 
genetic operators {mutation, crossover, reproduction}. The fitness function to determine 
reproduction is calculated based on classical Bayesian operators. Figure 3 below 
represents the network with the instantiated variables (nodes) coded by {1}. The 
generated string for all the parameters to be manipulated is represented as: 
 

Ho Ha h1 h2 h3 hn X1 X2  X3  Xk  S1 S2 S3 Sr m1 m2 mj
1   0   1   1  0  0   0    1   0   1   1   0  1   0  1   0   1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mj:1m2:0m1:1

Sr:0S3:1S2:0S1:1

xk:1x3:0x2:1x1:0

hn:0h3:0h2 :1h1: 1

Ho: 1

1,0

2,1 2,2 2,3 2,n

3,1 3,2 3,3 3,k

4,1 4,2 4,3 4,r

5,1 5,2 5,j

Endstate

Operational
Focus

Motivation

Influence
Pathways

Target

Figure 3: The network with all the instantiated variables coded {1}.the nodes are given 
position coordinates for the search process 

 



In a previous work, Gelsema (1995) applied a GA to abductive reasoning in Bayesian 
belief networks. Gelsema used a two level network depicting a classical diagnostic 
problem. Our approach differs significantly from Gelsema’s approach in two ways. 
Foremost, Gelsema’s goal was to find the states of the network (solutions) with the 
highest overall posteriori probability. To do this, the fitness function was 
straightforwardly calculated as a product of n multipliers, one for each of the n nodes in 
the network. This could be seen as more of a search for an optimal solution. The BAM 
model does not search for the optimal solution; rather it searches for the most probable 
outcome (hypothesis) given the evidence in the prospective sensemaking phase using 
abductive inference. In retrospective sensemaking, the BAM model searches for the 
evidence, given a probable outcome (hypothesis). 

 
Sample Results 

 
To clarify the approach, using a hypothetical network, an array of conditional probability 
tables was generated using Bayesian abduction inference. The results of the sample 
calculations are shown in Table 1 below. 
 
 
 
Table 1: Sample calculations using MatLab software 
 

 Array 1: P(hi|Ho) 

9.0
3.0
5.0
8.0

1|

44

33

22

11

hH
hH
hH
hH

HHh ooi

=
=
=
=

=

 

 
 Array 2: P(Xi|hi) 

5.07.09.01.0
1.06.03.09.0
8.05.04.03.0
1.06.02.07.0

|

44

33

22

11

44332211

xX
xX
xX
xX

hHhHhHhHhx ii

=
=
=
=

====

              

 
Array 3: P(Si|Xi) 

4.07.06.05.0
5.03.01.09.0
4.05.00.01.0
3.09.06.05.0

|

44

33

22

11

44332211

sS
sS
sS
sS

xXxXxXxXxS ii

=
=
=
=

====

   



 
Array 4: P(mi|Si) 
 

  
6.02.09.01.0
9.04.05.03.0
1.08.03.06.0

|

33

22

11

44332211

mM
mM
mM

sSsSsSsSSm ii

=
=
=

====

 

The variable names in the arrays are replaced with the position coordinates representing 
the variables. When a new information arrives to the analyst, the corresponding 
information a variable is either defined or instantiated, and coded by a {1} in the string. 
The GA model then performs the abductive inference by performing the computation for 
all possible states of the instantiated network variables and giving the approximate 
inference. The result is then output as the most probable explanation.  
 
Figure 4 illustrates the sample results using 1000 generations from a genetic algorithm. 
The graph shows how the most probable outcome varies as we manipulate the value of 
one variable h1 .For  example if the analyst believes there is a 70% chance that the 
Operational Focus of the adversary is node h1 then there is a 30% chance that the targeted 
node is m3. If on the other hand the analyst has reason to totally discount the possibility of 
the Operational Focus being node h1 (in other words,0% chance for node h1),then the 
node with the highest probability of being targeted would be m2 ( 26% chance). Notice 
also that with a 30% chance of occurrence for  node h1  both m1 and m3 are equally likely 
targets. If  the probability of h1 occurring is increased to 0.4 then  both m1 and m2 are 
equally likely targets. With h1 instantiated with probability 0.35, m2 and m3 are equally 
likely to be targeted and it would be left to the analyst to look at other contributing 
factors before making further inference. Figure 5 is a Venn diagram to capture the above 
result explanations. Similarly, backward inferences can be made, starting with apriori 
probabilities for the targets and inferring most probable outcomes for any of the other 
network variables. 
 
Conclusion 

 
In this paper we have presented a computational model of adductive inference using 
Bayesian techniques. We use a genetic algorithm to solve a BAM directed information 
fusion problem that deal with a multiple hypotheses sensemaking problem. By using a 
constructive information network from Iraq conflict, we demonstrate our model in terms 
of robustness when compared to the traditional Bayesian model alone. Sample simulation 
experiments with a small information network were used to demonstrate the model 
efficacy. The BAM model is still being refined and future tasks include developing a user 
interface for the BAM that can be used by intelligence analysts and comparing the current 
results to decision tree approaches. 
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Figure 4: A graph showing a sample GA run. Variable h1 is instantiated for different 
values and the resultant steady state probabilities of variable m3  are displayed. 
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Figure 5: Solution space showing the feasible solutions for the sample run in figure 4 
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