12TH ICCRTS
“Adapting C2 to the 21" Century”
Resource Integration and Inference in Vanilla World
Modeling and Simulation, Network-Centric Experimentation and Applications, Technologies and
Systems

R. Scott Cost, John Cole, Markus Dale, Chris McCubbin,
Ronald Mitnick, Dave Scheidt
POC: R. Scott Cost
Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Rd.
Laurel, MD 20723
443-778-1137
scott.cost@jhuapl.edu

May 2, 2007

1 of 21

Abstract

In a highly dynamic environment, knowledge of currently available and relevant resources is essen-
tial to the development of comprehensive situational awareness and assessment of threat level or status.
We present an agent-based framework, the Active Metadata Framework, which supports the intelligent
distribution of resource information among diverse assets, in a manner which supports focused aware-
ness of resources and provides some measure of network disruption tolerance. This framework supports
the concept of power to the edge by rapidly moving key data products directly to front-line warfighters.
This accelerated movements of information improves war-fighter effectiveness by shortening the observe-
orient-decide-act (OODA) loop. This framework is demonstrated within a simulated complex military
engagement in which assets are required to identify information sources (such as other similar assets,
sensors, or databases), and utilize the data they provide to infer information about their situation and
required actions. Inference in this framework is performed using Markov Logic Networks (MLNs) with
temporal extensions. Preliminary results are presented which demonstrate the successful, ad-hoc cre-
ation of networks of assets using this framework, the effective distribution of data through this dynamic
network of assets, and the ability to infer information of value from the available data.

1 Introduction

In a highly dynamic environment, it is important to be able to connect entities with the information resources most
relevant to their immediate need. As the number of distributed services available increases, the amount of data available
grows. For large systems the amount of information potentially available at a single node can easily overload the
capacity of an individual node. It is therefore important for information to be filtered, limiting information provided
to a node to that which is useful. Typically the filtering of data sources is performed by the operator, or a supervisor
responsible for operator performance. Reliance on the edge war fighter is costly in terms of manpower and time-
criticality as during those times when new information is most important edge war fighters do not have time to pull
information from the network. This leads us to the first contribution of this effort, a ‘smart’ distributed technology that
is capable of getting the right information to the right people at the right time. These smart technologies must provide
a ‘pluggable’ framework to dynamically discover and integrate heterogeneous sensor information, and dynamically
adapt to ever-evolving environments. Local information must be combined with larger, distributed data systems to
create a complete informational picture.

Adversary activities are the most important time-critical information. While stealth and deception have always been
used in warfare, their use has never been more prevalent than today’s fourth generation conflicts. Adversary activities
are only partially observable and the amount of similar non-combatant activity, ‘noise’, surrounding adversary activity
is high. The current analysis-based approach to identifying the precursors to a fourth generation attack is both labor
intensive and time-consuming. The latency between a key observation that allows an analyst to “connect the dots”
and when an actionable intelligence report reaches the edge warfighter limits the tactical use adversary information,
placing our forces in a reactive, rather than proactive position. This motivates our second contribution which is a
reasoning system that provides tactical information products for the edge warfighter by rapidly, and autonomously
inferring threatening adversarial behavior.

One example of a dynamic environment which requires this type of information awareness service is in-theater military
situational awareness. We have developed a generic scenario called Vanilla World which represents just such an
environment. We have developed an architecture of intelligent software and networking components that will allow
for enhanced situational awareness.

20f 21

In this paper we describe the application of our architecture to the Vanilla World scenario and present our results and
analysis.

2 Background and Motivation

Modern information age warfare places a premium on a force’s agility, which Alberts and Hayes [1] define as the ability
to develop effective situational awareness and effective decisions rapidly. Agile forces will require command and
control infrastructures which are themselves agile. Information age command and control infrastructures must rapidly
integrating information resources. These resources may exist in relatively static or highly dynamic environment.
Transient systems composed of loosely coupled federations of relevant resources provide more flexibility than rigidly
organized, tightly coupled persistent systems. This is especially true if the resources themselves may be entering and
exiting the environment.

Because the information resources available may not be known during design or even deployment the agile informa-
tion integration will require run time integration. Manning costs and delays associated with operator driven integration
makes using human operators at best undesirable and probably infeasible for agile command and control infrastruc-
tures. We therefore conclude that information resources must be capable of autonomously integrating during the
course of an operation. In order to effectively self-integrate resources must be able to recognize and understand peer
resources whose identity was not known at deployment. To support this each resource must be able to determine the
range of specific relevant and available resources. That is, resources must recognize the set of resources that can ef-
fectively be used, and that can provide the most relevant information or valuable service. One approach is a directory
based approach supports the registration of resource information with a centralized (or distributed) directory service.
This directory service can in turn be queried by resources requiring a match. While this provides an effective means of
coordination in some situations, there are drawbacks. In a highly dynamic environment, information in the directory
may not be updated frequently enough to reflect reality. Also, there is significant overhead associated with maintain-
ing a common directory, especially as the scope of the region or the number of entities increases. Also, this approach
assumes that all entities have persistent access to a directory service. In a highly dynamic or hostile environment, this
may be too strong an assumption to make. Our emphasis in this work is on environments in which there is a benefit to
exploiting significant amounts of autonomy on the part of the framework elements.

An alternative approach assumes that resources push information to potential consumers. In contrast to the pull-based
directory approach, service providers have a responsibility to make themselves known directly to consumers, which
may or may not need the information at the time they receive it, but may cache it for later use. This puts more of a
burden on the service provider, but has the advantage that resource information is distributed in advance, and therefore
may be available even if access to resources or directory servers is not.

Our approach, a modified version of a push-based model, puts the burden on the resource description, or metadata,
itself, by creating and leveraging the use of intelligent resource proxies, or agents. These agents are tasked seeking out
likely partners for the resource they represent. In this way, once released, they free the advertising resource from the
responsibility of managing awareness. This simplifies the job of the resource, and makes the framework more robust
in the face of intermittent network connectivity. This provides for a scalable, distributed approach to the advertisement
of resource information with a domain that is also tolerant of network delays and failure.

3of21

2.1 Related Technology

Our approach combines several recent advances in agents, service oriented architectures[18], mobile ad-hoc networking|[5],
and simulation. Combining these technologies is an active area of research. Implementing Service Oriented Architectures
(SOAs) on mobile ad-hoc networks presents a unique set of problems. Since the network is highly dynamic, even no-
tions such as point-to-point messaging become an issue. Various routing protocols have been developed[4, 11], but
most prominent routing protocols only search for routes that exist at the current time and are not delay-tolerant. Some
research has been done in delay-tolerant routing. Depending on the ad-hoc operational concept, a centralized direc-
tory of services, popular in pull-style SOA networks, may not be a feasible option. Several alternatives exist, such as
on-demand advertising and directory replication.

The use of agents within Mobile Ad-Hoc Networks (MANETS) is another current area of research. Several research
teams have focused on the use of agents to improve bandwidth and real time communications within MANETS[8, 15].
Peysakhov experimented with this idea in the domain of the “compromised host” problem, in which agents were
allowed to reason about the state of the underlying network topology, based on a state description of the MANET[12].

Automated migration of agents to geographical area of interest inside MANETSs was explored by Tei[17]. The agents
then migrated intelligently to remain in this location despite changes in the underlying MANET.

Hijazi researched the use of agents for intrusion detection within MANETSs[6]. His team utilized agents to reduce the
strain on communications across the network with lack of infrastructure by migrating code, rather than data, to reduce
latency and save battery life.

Moro et al.[9] describe the advantages of using agents in a P2P environment to overcome the P2P limitations of
message expressiveness, data models, data integration/transformation and routing. In [16], we see an example of an
agent-based P2P system that uses queries (an information “pull” paradigm) to discover resources. That system con-
sists of “ResultAgents” that generate a resource query, “SearchAgents” that distribute the queries to their peers and
“Resource SearchAgents” that match the query against ontology-based resource descriptors. The resource descriptors
remain stored with the resource that they describe. The Active Metadata agent system in contrast uses an information
“push” paradigm to distribute resource metadata. The K-Trek system[3] describes a framework where resource infor-
mation is also statically stored with the resource in form of a “K-Beacon” which “stores contextual information about
a specific location” and periodically broadcasts information about itself. This information source can be discovered by
“K-Voyager” mobile devices based on location proximity. Active Metadata agents allow information about a resource
to be spread to locations in the network where this information can likely be used beyond location proximity. The
TOTA (“Tuples On The Air”) system described in [7] provides a P2P middleware which uses tuples with content and
propagation rules to distribute location- and content-based information which is similar to the Active Metadata system.
However, the Active Metadata system also provides proxy services to resources via the instantiated Active Metadata
agents representing a resource. TOTA also used an emulator environment to analyze propagation in a larger scale
MANET environment.

3 System Design

The overall design of the system can be seen in Figure 1. We have created a generic scenario called “Vanilla World”.
A detailed description of this scenario can be found in section 3.1. This scenario consists of a set of events of various

4 of 21

anilla World Scenario Data

scenario Generator
database
Blue Force Blue Force
Vehicle UAY

A

v

Markov Logic
Network
Reasoning
Engine

1§

3

Figure 1: Simulation Inferencing System: Overall Design

types. A piece of software called the Data Generator interfaces with this database and publishes events at a specified
multiple of real-time. These events are captured by agents representing friendly, also known as blue, forces. These
forces are then in turn connected to the Active Metadata Framework (AMF), a prototype architecture for the intelligent
dissemination of metadata. This framework is described in section 4.2. Using this framework, agents share organic
information with other blue force entities. Some blue force entities have a reasoning engine that attempts to determine
several things, such as probable terrorists or threat indexes. This reasoning generates the main metrics of the system.
The reasoning engine we use, called MLNS, is described in section 4.3 and the results are detailed in section 5.

3.1 Vanilla World Scenario

We have designed a scenario which we call Vanilla World. This scenario takes place in a hypothetical country, and
describes a number of events, some of which are undesirable. We wish to detect these undesirable events from a stream
of data that contains not only information leading up to the events, but also a significant quantity of random “normal”
events.

The scenario used in the experiment required randomly generated “noisy” background data in which to embed the sig-
nificant undesirable activity that the system is meant to detect. The following rules were used to create approximately
70 days worth of activity; days 1-39 are considered historical data and days 40-70 are used to generate the simulation.

S5of21

JZONE O ZONE 1 ZOME 2 ZONE 3
Lk A p""“\ H .I"r“‘\ o \‘\ LV f/)
i abady S{ >‘J l\:i"/ \\‘
£ gl o . = o
e o = o B s
HD‘\.C- \x\ F L vz
it f-/*\\\) 2 o cc
2 - ~ = L
\\ e s %y
s f/’“\ =% lféi\ AL /)
o O !
/ S .—// s £
™ N i % §<d AR f‘aﬁ’
=% o /k\ DD
i = E 5 LT '\
o \..\. </;/_/ \\\ ,/.a \.\\1
'C._J_ % &)
ZONE 4 ZOME & ZONE 8

Figure 2: Capitol City Zones/Segments

e Two thousand identities were created randomly from a list of names.

e For locations, a “Capital City” was divided into six zones, as shown in Figure 2. In addition, five external cities
were utilized.

e Each person was assigned a home city. Half of the names were assigned to one of the Capitol City districts,
whereas the other half were divided evenly among the five external cities.

One of the data streams in the simulation is information about aircraft manifests. In the scenario, there are ten aircraft
originating from Capitol City, and one aircraft from each of the 5 external cities. In the A.M. of any given day five
aircraft leave Capitol City; one for each of the five external Cities. In the P.M. of any given day one aircraft from each
external city returns to Capitol City; the other travels to another external city so that each city ends with the original
number of aircraft they started with. To determine the passengers for each flight, two groups of 100 persons were
selected at random from Capitol City and divided into groups of 20, with overlap allowed. Next, four groups of 10
persons were selected from each of the five other destinations, with overlap allowed.

Another type of data stream in the scenario is a phone call log. To create the phone call log, at each time frame we
created 50 cell phone conversations, selecting sender and receiver randomly. There was no correlation between time
frames.

Finally, every day each of the three Units based in Capitol City patrol a path along the “segments” of the city (see
Figure 2) that eventually return them to their original base. Patrol information for days 1-39 are found in the historical
record. Patrol data for days 41-70 are used by the simulation, but also stored in the historical record as the “planned
routes” for the Units.

6 of 21

3.1.1 Significant Activity

Significant-Activity data was added to the noisy data to create the final dataset that would be stored in “historical”
databases and distributed by the Vanilla-World simulator.

First, a collection of Human Intelligence (HUMINT) data with names from the “Names” and “Locations” database
tables was compiled into a free-text file. Next, eighteen “Significant” names were added to the database. Names from
the “Significant” list were added to the passenger lists of certain flights to coincide with the periods preceding events
of interest in the scenario. In addition, names from the “Significant” list were added to the phone call list; contacting
each other to coincide with the periods preceding events of interest in the scenario. Event reports were added to days
1-39 of the dataset. These events were added to the historical and simulation datasets, but were not distributed to the
simulation until seven (simulation) days after the event. Unmanned Aerial Vehicle (UAV) reports were added to days
1-39 of the dataset. The possible UAV reports included significant precursors to the events of interest. Each UAV
report is identified by segment or zone (See Figure 2).

It should be noted that only one quarter of the UAV events defined for the scenario were actually added to the dataset
to represent activity when a UAV was not present. An additional five percent of false-positive activity was added to
the dataset as well.

3.1.2 Accessing Historical Data

The historical data in the system is stored in a set of disparate data sources distributed across the network. Each set
of data offering a different piece of information that can be correlated to identify possible threats. For the purposes of
this experiment all of the historical data is stored in two repositories that can be accessed by any agent as-if it were
heterogeneous data sources. The first is a Microsoft Access database file that contains tables storing the following
information: Names, Cities, Zones, Home cities, Aircraft, Flights, Passengers, Phone-calls, Patrols, event reports, and
UAV Reports.

The second data source is the text file of HUMINT data in free-text format. Scattered throughout this intelligence-data
are keywords that can be matched against data in the historical database and data from the real-time simulation.

4 Component Descriptions

4.1 Vanilla World Simulation System

The Vanilla World simulation software was designed to present the ground-truth information defining the target sce-
nario. Rather than have every software agent in the experiment simulate its role in the scenario independently, it
was decided that a single coordinator process would schedule all the ground-truth data. The coordinator would then
communicate the relevant event data directly to the agent producing/observing that data in the simulation. Various
agents then communicate event among themselves as appropriate. For example, the simulation software would inform
a sensor of an event that it should have ‘observed’ in the context of the scenario. That simulated sensor would then
communicate event detection information directly to other data consumers in the simulation.

7 of 21

The Vanilla World simulator consists of two parts; A Microsoft Access database that mirrors the format of the one
used by the historical database and a Java process that reads the database and distributes the message to the agents.
The database contains a single table per type of agent that will distribute the data as its own. Event types contained in
the database include: Phone calls intercepted by listening posts, event reports, patrols status reports, and UAV status
reports.

In addition to event type, the database also records such relevant information as event time, and associated entity (e.g.
the simulated entity for which the event is directly relevant.) This information is used to distribute event data to the
correct entities and in the correct sequence in the Vanilla World simulation.

4.2 Active Metadata Framework
4.2.1 AMF Architecture

Our implementation utilizes an agent-based framework to implement the push network architecture. Each component
of an AMF node is, in fact, an agent following a set of behaviors, which are based on conversations/interactions with
other agents. The mechanism for the implementation of the push network is the migration of these agents from node
to node. As these agents travel through the network, specific nodes may query them in order to obtain metadata
regarding the resource they represent. In order to ensure that this metadata is current, the migrated agents must
periodically update their metadata from their source node. In this section, we briefly highlight the functionality of
each agent which makes up an AMF node, as well as the process of migration and updating within the network. A
high-level diagram of a typical AMF node can be seen in Figure 3.

Components The Active Metadata Agent (AMA) is the building block of an AMF node. AMAs carry the node’s
metadata around the network as they migrate between nodes. These are the agents to be queried by other nodes to find
sources or consumers of data within the network.

A variety of other service agents implement the functionality of the AMF framework itself. The Manager Agent serves
as a proxy to outside requests to the AMF node. It handles all requests to populate the node with AMAs, as well as
queries as to which AMAs currently reside on the node. With all requests, the Manager begins and facilitates conver-
sations with the corresponding agents on the node to produce the desired results. The Instantiator and Deinstantiator
Agents are responsible for low-level creation and destruction of AMAs, respectively, and transition between nodes.
The Atlas Agent holds information on all AMAs which have lived on the node, as well as other nodes connected to the
local node. It maintains a database entry for each AMA this node as seen containing its local name, who it was created
by, where it came from, and its last known address. Network connectivity between nodes is managed by a Network
Bridge Agent.

The Detailer Agent is a major hub of activity in the AMF node. It handles requests for migration from the AMAs,
as well as registering and de-registering AMAs by utilizing the Instantiator and Deinstantiator. In addition, this agent
handles updated metadata provided by its node. The Detailer will pass this updated information through the network
to all living AMAs that originally came from the Detailer’s node.

8 of 21

-———

- o
F S "y
= AMF Node \
/ A Y
/ Manager A
I)}
l‘ Detailer Atlas AMA
\ AMA
\ Instantiator .
\ Network
% . . .
. Demstanhator' Bridge
-~ ”
oy -

o —

Figure 3: An example AMF node, with all agent-based components listed.

Migration The mechanism by which the push network architecture accomplishes propagation of metadata is via
migration of the AMAs through the network. Through this process, AMAs find their way to nodes where their
metadata can be best utilized, and remain resident for some period of time. Nodes can query locally resident AMAs
for any desired metadata. For example, AMAs originating at a node which produces a certain type of data (e.g.
imagery for a specific geographic region) will migrate to nodes where such data is likely to be needed, and vice versa.

As AMAs migrate throughout the network, they lose contact with their home node, and therefore do not see all
changes and updates to their node’s metadata. It thus becomes necessary for these AMAs to periodically attempt to
update their metadata from their home node, in order to obtain current accurate metadata. A detailed description of this
process, which is complicated by multiple migration steps and potential gaps in connectivity, is beyond the scope of
this paper. It is important to note, however, that the framework will provide maximally up-to-date resource information
when connectivity is available, and best-guess capability when nodes are isolated from peers in the network. As with
migration, the process of AMA/originating host connectivity, which is managed by the Dertailer Agent, is facilitated by
the Arlas. Updates may be ‘pulled’ on demand by remote AMAs, or may be distributed via push from the originating
resource.

We have described our agent-based implementation of the push network architecture, where each component is a rule-
based agent. These agent-based components communicate with each other using behaviors based on the messages
received. The final implementation is based on the ability to migrate AMAs around the network, each with the ability
to periodically update its own metadata.

4.2.2 AMF Validation Experiments

We conducted several experiments of AMF at the site of The Johns Hopkins Applied Physics Lab (Figure 4). In
the context of this experiment, we created three AMF nodes, two of which served as ground stations, while the third
traveled in and out of connectivity along the roads surrounding the test site. As the moving vehicle moved in and out of

9 of 21

Figure 4: Satellite image of APL testing area. Two ground stations are shown in red, while the traversable area of the
moving vehicle is shown in blue.

range of the ground stations, AMAs traveled among the three nodes, dispersing metadata throughout the network. The
intent of these tests was to examine the moving vehicle’s ability to gather current metadata produced by the ground
stations in real time through its AMF node by examining the produced data using a client application.

Physical Setup Our experiment was conducted on an 802.11g ad-hoc network. Each AMF node consisted of a Dell
laptop connected to a Lynksis wireless ethernet bridge, which in turn was amplified by a G network Hyperlink antenna
amplifier.

The ground stations were given fixed Global Positioning System (GPS) coordinates by a hand held Garmin GPS
device. However, the moving AMF node’s laptop was connected to a Garmin GPS device to obtain current GPS
locations. This moving AMF node was placed in a vehicle and driven around the surrounding areas of the test site.

Services Each ground station was able to continually supply images from an infrared camera. These images could
be produced periodically, or upon a detection of movement in the image. The ground station’s AMF node would be
updated with metadata on these new images as they became available. Additionally, the ground station supplied its
static GPS location.

In contrast, the moving vehicle was a consumer of these camera images. Specifically, the test was designed for the
moving vehicle to gather the image from the closest ground station within a configurable range, and be able to view
that image on demand.

10 of 21

File Setup
~Query Results
“Tyvpe Lat Lon New Infio Date Range To Url
iy Position-
Lat Lon
12.4000000 1300000000
Attach to AMF OperrURL Stop

Figure 5: A screenshot of the moving vehicle’s client application GUI. The top line shows filtered query results from
the AMF node, while the bottom line shows the current GPS location of the vehicle.

Client Applications The purpose of the ground station client application was simply to provide updates of the
infrared image metadata. Upon arrival of any new data, the client application would relay this update to its AMF node,
which in turn would update its AMAs. A screenshot of the client application can be seen in Figure 5.

The moving vehicle’s client application was in fact a Graphical User Interface, providing the driver of the vehicle
updated metadata on the closest ground station’s infrared images. The Graphical User Interface (GUI) did so by
querying the AMF node for any AMAs which came from a ground station. Of these, the GUI pulled the GPS location
of the ground stations, and displayed the GPS location of the closest ground station to the vehicle within a range
chosen by the user of the GUI. In addition, when that ground station contained an infrared image to consume, the GUI
provided the user a button to view the image, using the metadata provided by its AMF node.

4.2.3 AMF Simulation Environment

Following lessons learned in field simulations, we have created an AMF simulation environment. This environment
allows us to more easily experiment with various protocols and approaches to metadata distribution than the full-blown
implementation. As the simulation environment itself was not used in the overall architecture described in section 3,
a detailed discussion of the implementation is beyond the scope of this paper. However, it has proven invaluable to
rapidly evaluate AMF algorithms. We describe it briefly here.

Our AMF simulation framework is designed in Java with certain specific goals in mind; primarily, the ability for rapid
prototyping and testing of different AMA behavior strategies as well as the different actions from users of the AMF
network. In addition, a flexible, abstract framework is needed for the porting of the simulation to field tests. We would
like to make the framework flexible, so that as much code as possible from a simulation can be ported directly into
field tests. These goals are accomplished by placing an abstract framework in place, which will apply to all strategies
and underlying network representations.

Simulation frameworks for ubiquitous computing are currently being researched in several projects. Reynolds et al.
[13] have laid out a set of requirements for a generic tool to simulate many types of ubiquitous computing situations.
Hewlett Packard’s Ubiwise[2] is another simulation environment that combines a network simulation with a 3-D
visualization environment based on the Quake3 engine. A similar simulator is the Tatus simulator[10].

11 of 21

Framework Structure Each AMF node is represented as a class which holds a user proxy implementation, as well
as a listing of all AMAs currently occupying the node. In addition, the node maintains a database of objects that AMAs
can query or post to while they inhabit the node. The abstract user proxy class allows for varying implementations
of user actions throughout execution. An implementing proxy must handle an initialization call upon the start of
execution which will create and return a list of the user’s AMAs. Furthermore, at each timestep, the user proxy will be
allowed to execute any additional user action, such as updating the metadata for its AMAs. Each AMA is represented
as a class which holds its assigned metadata. The metadata class will be abstract, as to allow several possible types
of implementing metadata. In order to implement its behavior strategy, the AMA is assigned two abstract classes,
behaviors and abilities. The behaviors class implementation will allow for the implementation of different migration
and updating strategies by the AMA, whereas the abilities class implementation provides the basic network abilities
to the behaviors class in order to perform its strategies.

Behaviors The abstract behaviors class is implemented by two functions: an initialization function, and a method to
execute the AMA strategy. The initialize function is invoked when the AMA is first created by its originating node’s
user proxy. From then on, during each timestep the execute strategy method is invoked on the AMA. When calling this
function, the behavior is additionally provided with whether or not this is the first execution timestep since a successful
migration in case any additional processing is required.

Abilities An abilities implementation will be the interface with which the behaviors class interacts with the frame-
work. Functions such as tryToUpdate and tryToMigrate will be implemented here according to the underlying frame-
work implementation. For example, these functions may be much more complex if the framework is implemented
for field tests, whereas they might be fairly simple for simulations. This flexibility allows for rapid prototyping and
portability of our code across different platforms.

Graphical Interface In order to test our AMA migration strategies, a graphical user interface was created to view
the migration and logs of the AMAs as they traverse the network. An example network is shown in Figure 6. Nodes
are shown in orange, while AMAs are shown as red dots inside the nodes. At any point in the simulation, the user can
click on the node to see a listing of the AMAs currently on it, as well as their current metadata. In addition, the user
can click on the node’s database, shown in green, to see a listing of the logged objects by that node.

To begin the simulation, a user first loads a configuration file, which describes how the user proxy and AMA behaviors
and abilities will be implemented, as well as the structure of the underlying network. The user also has the ability
to change the underlying network at given timesteps through the configuration file. Once this file is loaded, the user
clicks initialize which displays the network, and invokes the initialize method on each node’s user proxy as well as
each AMA created by the user proxies.

The graphical interface now allows the user to step, play, and pause the simulation by using the provided VCR controls.
Upon each step, the simulation invokes the execute behavior methods in each node’s user proxy, as well as on each
AMA.

Underlying Network Network connections between nodes in this simulated interface are represented by two values,
the probability of failure and the type of failure. Once a link has been determined to have failed by drawing random

12 of 21

= . AMF Simulation Framework

Menu Oplions
HODES 'HODE?
HODE4 HODES
L] e
MODEE AMAs Metadata
TESTH TEST_METADATA —
TESTS TEST_METADATA | |'““’am| |

Figure 6: Graphical User Interface screenshot, showing an example AMF network.

13 of 21

numbers according to its probability of failure, the link can fail in two ways. First, the link can simply bounce all
communications, in which case the sending node is aware of the loss of communications. For example, a migrating
AMA will be aware of the failure, and its sending node will be notified of the loss, and keep the AMA there. However,
the other type of failure forces all communications across a link to be lost, in which case the sending node is not made
aware of the loss. In the case of migration, the sending node believes the communication to have worked, and removes
its local copy of the AMA, whereas the receiving node never receives the AMA, causing it to be dropped from the
simulation.

4.3 Markov Logic Network

Markov Logic Networks (MLNs) are a tool combining first order logic with probabilistic reasoning. A MLN can be
described as a collection of statements in first-order logic. A full description of MLNs can be found in[14]. First order
logic statements are made up of conjunctions, disjunctions, and existential operators applied to a set of ground atoms,
variables that can either be true or false. An example of ground atoms are “rained()” which is true if it rained, and
“wetGrass(lawn)” which is true if the grass is wet on the specified lawn. A first order logic statement would take the
form “If it rained and the season is spring, then there exists a lawn where the grass is wet”. Each first order logic
statement in a MLN is given a weight which is approximately equivalent to the probability of that statement holding.
Once we have a network like this in place, we may assert a set of true ground atoms, and ask the system questions like
“given that the ground atoms I have listed are true, what is the probability that this other ground atom is true?”. We
are using the ‘alchemy’ implementation of MLNSs.

In our studies we are also using a variant on the idea of fluents, that is, some of our ground atoms also have a discretized
notion of time as part of their variable tuple. For example, a fluent “wet(lawn, day)” is true if the lawn specified is
wet on the specified day. We utilize alchemy’s ability to define predicate functions that can be specified in C code to
implement functions like “before(day1,day2)” which is true when day|1 falls before day2. In the following sections we
describe the specific MLN that we used for our experiments.

5 Results

The motivation for this effort is to develop an autonomous resource integration system that supports agile forces. The
quality of the system must be judged by the correctness, utility and timeliness of the information provided to the
operator. To understand the correctness and utility of the system we go to the three tasks the system is being asked to
perform:

1. Identify patterns of behavior that indicate a threat
2. Match existing behavior to established threat patterns

3. Transmit information on current threats to threatened friendly forces

To date our efforts have focused upon hardware in-the-loop experiments with the active meta data infrastructure and
simulation-based experiments of the Markov Logic Network. The AMF experiments focused upon (3), the ability

14 of 21

to transmit information on current threats to threatened friendly forces. Markov Logic Network experiments have
focused on (2), matching current observations to hidden patterns of threat behavior.

Each of these tasks can be evaluated by three metrics:

1. The probability that a result was correct (Pp)
2. The probability that a result was incorrect (Pr)

3. The speed at which the task was performed

For our AMF experiments Pp is the percentage of available germane facts that were provided to each member of the
blue force and is Pr is the percentage of unimportant facts that were provided to each member of the blue force. For
MLN experiments Pp, is the percentage of attacks in the vicinity of a member of the blue force that were predicted and
transmitted to the blue force and P is the percentage of non-threatening behaviors that were transmitted to members
of the blue force as “threatening”.

5.1 Active Meta-Data Results

A series of hardware in the loop experiments with as many as three blue force vehicles, three unmanned air vehicles,
two unmanned ground sensors and intelligence databases were connected through AMF. The blue force vehicles
conducted a mock war game against red team forces that included vehicles and dismounts. The small size of the
opposing forces limited the experiment’s complexity and scope. In addition, the fitness criteria for determining for
“threatedness” used by AMF to filter information and the evaluation criteria (Pp and Pr) were the same. Over the
course of the experiments Pp was 100

5.2 Reasoning Engine Performance

The objective of the MLN testing two-fold: first we sought to establish that the speed at which threatening behavior
could be identified could be reduced sufficiently to be used tactically rather than strategically or forensically; second,
we needed to infer information on behavior that was tactically useful.

In our testing of the ML N’ application to the Vanilla World data, we must create a mechanism for inserting events into
the MLN as they occur in simulation time from the Vanilla World. To accomplish this, a data generating simulation
agent was created. This “ground truth” agent steps through the events of the Virtual World at a configurable simulation
rate. These events, such as phone calls and precursor observations, will then be packaged by the ground truth agent,
and broadcast to another intermediate agent. This intermediate agent parses and collects these events, appends the
currentday predicate, and sends them to the MLN inference engine. The engine will run the current collection of
ground truth observations through its MLN, and return the computed results for the Persons of Interest (POIs) and
threatened predicates for each person and location to the intermediate agent for analysis.

15 of 21

Baseline Results Our first experiment was set up as previously described, with the ground truth agent supplying
observations at a simulated rate of five seconds for each thirty minutes of the Vanilla World. These observations were
packaged by the intermediate agent, and sent to the MLN inference engine at every instance of a non-call event, and
at the end of each simulated day. So any time the intermediate agent was presented with a non-call observation, such
as a precursor event, or an observation for a new day, the agent would collect all previous observations, append the
currentday predicate, and send the set of observations to the MLN inference engine. The results from this experiment
are shown in Figures 7, 8, and 9. In each of these graphs one can see the threat level determined by the MLN for each
simulated day. The red lines indicate when significant events take place. Threat level rises in concert with significant
events in these three zones. It is important to note that no zone other than the three shown experienced significant
events in the Vanilla World, and the MLN threat level for those zones shows any indication of a imminent threat.

A-priori Information By analyzing the output of the threat levels, we noticed a failure to identify the early events in
the Vanilla World due to the lack of a-priori information. Without a previous knowledge of any known POIs, the MLN
engine is unable to identify the patterns leading to the first significant events. However, once these events happen, POIs
become identified, as well as patterns leading to the event. So future events can be identified.

To examine the value of even a small amount of a-priori information, we first examined the baseline results to compile
a list of possible POIs. We chose the nine people identified by the MLN engine as POIs for the longest period of time.
We classified an identification of a Person of Interest (POI) as that person’s computed probability of being a POI to be
above ninety percent. Next, we added this list of “known” POIs to each collection of observations sent to the MLN
engine in successive simulations. An obvious improvement was seen in the detection of the first significant event. As
shown in Figure 10, the first event was predicted a full three days before the event was reported. As the simulation
progresses, the simulation with no a-priori information “catches up” and discovers the POIs itself. This is the reason
why the advance warning only occurs for the first event.

Obtaining Social Networks Another interesting analysis of output from the MLN inference engine is the construc-
tion of social networks. By looking at the friends predicate as an output from the MLN, as well as the POI predicate,
we can construct social networks graphs such as Figure 11, where the circle size relates to the probability a person is a
POI, and line width related to the probability two people are friends. We have filtered the friend links” to only appear
in cases where the probability of the two people being friends was computed as greater than fifty percent.

6 Future Work

There are a number of avenues that we would like to pursue further. Clearly, if such an approach is to succeed, there
must be a means of driving the intelligent distribution of AMAs. This is very rudimentary in the current instantiation.
However, it is intended that migration patterns of AMAs should be guided by information collected about the envi-
ronment, local needs and capabilities, and sophisticated algorithms and protocols. There is a balance that needs to be
struck; relying on/requiring too much information will result in slower performance and a reliance on broader connec-
tivity. On the other hand, the use of minimal information would likely result in inefficient or ineffective distributions of
metadata. There are a number of different aspects of the work which are relevant to this, including the compilation and
representation of knowledge about the world, the algorithms which make use of this information, and the mechanisms
of interaction employed (e.g. AMA to home-resource interaction, AMA-AMA coordination, etc.) Our current focus

16 of 21

Probahilty

Figure 7: Predicted threat levels for the zone 3 of the Vanilla World throughout the simulation.

Zone 3 Threat Lewvel

e
o
T

o
iy
T

DQ?M

R

L
45

n
S0

n L
55 (=18 =t

irtual WWorld Day

Zone 5 Threat Lewvel

O

L
75

a0

0-2_ W\/l
DIll:I 4‘5 5ID 55 EID =11 7ID 75 80
irtual WWorld Day
Figure 8: Predicted threat levels for the zone 5.
Fone & Threat Lewvel
1t - g+ [e
osl g
0.6 —
0.4 F -
0.2 F -
DIll:I 4‘5 50 55 EID =11 7o 75 80

irtual WWorld Day

Figure 9: Predicted threat levels for the zone 6.

17 of 21

Comparison of Zone 3 Threat Level

At the end of the

| run, the resulis
Advance warning 1

produced by a- — | _7'_*({_-:;31] I ‘}\ } ’ \ converge

priori list of POIs 08 s
2
é 06 {\ \ (ﬁ \ \ —— Without Terrorist List
E - ¥ 2 —=— With Terrorist List
£
Tt ld -
] T T T g
40 50 60 70 80
Time

Figure 10: An example of the impact of a-priori information to the MLN.

Strong friend
association

Figure 11: An example social network extracted from MLN results. Red circle size represents how likely a person
is a POI, and line width indicates the probability two people are friends. Links weighted less than 50% have been
removed.

18 of 21

is on the first aspect: creating richer representations of the domain via interaction with AMAs and other nodes in the
network.

Another aspect of the work that needs to be explored further is the integration of security. This also is relevant in a
number of ways. While AMF provides a fairly safe and constrained environment for the participating hosts, it is still
essential that they be protected from any malicious or uncontrolled behavior on the part of the AMAs or the remainder
of the network. The framework must also support authentication, to protect against the introduction of rogue agents,
and encryption, to protect information being carried/represented by AMAs.

A related point is the implementation of proxy features which enhance overall security (rather than leveraging it).
For example, it may be desirable to make the services of a sensitive resource available within a specific environment.
As such, it may be preferable to distribute as minimal a description of that resource as possible. An AMA could
be designed to interact with its home resource to field queries about its capabilities, rather than carrying complete
information with it, in this way minimizing the amount of information placed on the wire.

Other uses/extensions have been envisioned. It is conceivable that AMAs could be distributed which represent poten-
tial resources. In this way, proxies could be used in conjunction with resource servers to invoke the instantiation of
resources not currently available within the current network environment.

While this framework provides considerable advantages in a network compromised environment, there are certain
advantages that can be gained from a pull-based approach when network availability/reliability is high. In order to
reap the maximum benefit, we would like to explore ways in which this approach can be seamlessly integrated with
existing pull-based frameworks in order to provide a comprehensive and optimal solution.

The AMF simulation framework will provide a rich simulation environment where we will test these ideas. Future
improvements on the simulation framework will allow for a wide range of testing. We would like to more fully develop
the simulation components used to derive, represent, and use information about the local and global environment. This
component transfers easily into fielded implementations, and is a major focus of this effort; advances here benefit both
the simulation framework, and the AMF project in general. A significant portion of this work involves decisions
regarding which information should be stored, and how it should be represented. Also important are the means by
which this information is collected. Similarly, this relates to protocols which this framework is designed to help
explore, but also make for a richer simulation environment. A necessary element in the simulation is the expression
of information to be recorded. That is, if nodes are collecting information about the presence of, and activity at, other
nodes, the simulation must support the creation and collection of such information at a simulated node level.

References

[1] David S. Alberts and Richard E. Hayes. Power to the Edge. CCRP, 2003.

[2] J. Barton and V. Vijayaraghavan. Ubiwise: A ubiquitous wireless infrastructure simulation environment, 2002.
note: tech. report HPL-2002-303, HP Labs.

[3] P. Busetta, P. Bouquet, G. Adami, M. Bonifacio, F. Palmieri, G. Moro, C. Sartori, and M. P. Singh. K-Trek: a
peer-to-peer approach to distribute knowledge in large environments. Agents and Peer-to-Peer Computing. Sec-
ond International Workshop, AP2PC 2003. Revised and Invited Papers (Lecture Notes in Artificial Intelligence

19 of 21

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

Vol.2872). Springer-Verlag; UNLTU.RIM S.p.A., Fondazione Cassa di Risparmio di Rimini, Germany; Berlin,
20040101.

T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr), oct 2003. howpublished: RFC 3626
(Experimental).

S. Corson and J. Macker. Rfc 2501: Mobile ad hoc networking (manet): Routing protocol performance issues
and evaluation considerations, jan 1999.

A. Hijazi and N. Nasser. Using mobile agents for intrusion detection in wireless ad hoc networks. In Wireless
and Optical Communications Networks, 2005. WOCN 2005. Second IFIP International Conference on, pages
362-366, 6-8 March 2005.

M. Mamei, F. Zambonelli, G. Moro, C. Sartori, and M. P. Singh. Location-based and content-based infor-
mation access in mobile peer-to-peer computing: the TOTA approach. Agents and Peer-to-Peer Computing.
Second International Workshop, AP2PC 2003. Revised and Invited Papers (Lecture Notes in Artificial Intelli-
gence Vol.2872). Springer-Verlag; UNLTU.RIM S.p.A., Fondazione Cassa di Risparmio di Rimini, Germany;
Berlin, 20040101.

S. S. Manvi and V. Telsang. An agent based approach to qos routing in mobile ad-hoc networks. In Signal
Processing and Communications, 2004. SPCOM ’04. 2004 International Conference on, pages 86-90, 11-14
Dec. 2004.

G. Moro, C. Sartori, and M. P. Singh. Agents and Peer-to-Peer Computing. Second International Workshop,
AP2PC 2003. Revised and Invited Papers (Lecture Notes in Artificial Intelligence Vol.2872). Springer-Verlag;
UNLTU.RIM S.p.A., Fondazione Cassa di Risparmio di Rimini, Germany; Berlin, 20040101.

Eleanor O’Neill, Martin Klepal, David Lewis, Tony O’Donnell, Declan O’Sullivan, and Dirk Pesch. A testbed
for evaluating human interaction with ubiquitous computing environments. In TRIDENTCOM ’05: Proceedings
of the First International Conference on Testbeds and Research Infrastructures for the DEvelopment of NeTworks
and COMmunities (TRIDENTCOM’05), pages 60—-69, Washington, DC, USA, 2005. IEEE Computer Society.

C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (aodv) routing, jul 2003. howpub-
lished: RFC 3561 (Experimental).

M. Peysakhov, D. Artz, E. Sultanik, and W. Regli. Network awareness for mobile agents on ad hoc networks. In
Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the Third International Joint
Conference on, pages 368-375, 2004.

Vinny Reynolds, Vinny Cabhill, and Aline Senart. Requirements for an ubiquitous computing simulation and
emulation environment. In First International Conference on Integrated Internet Ad hoc and Sensor Networks
(InterSense 2006). OCP Science, may 2006. note: invited paper.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107-136, 0201.

R. RoyChoudhury, K. Paul, and S. Bandyopadhyay. An agent-based protocol to support multimedia commu-
nication in ad hoc wireless networks. In Parallel and Distributed Processing Symposium., Proceedings 15th
International, pages 2026-2033, 23-27 April 2001.

20 of 21

[16] A. Smithson, L. Moreau, G. Moro, and M. Koubarakis. Engineering an agent-based peer-to-peer resource
discovery system. Agents and Peer-to-Peer Computing. First International Workshop, AP2PC 2002. Revised and
Invited Papers (Lecture Notes in Artificial Intelligence Vol.2530). Springer-Verlag, Germany; Berlin, 20030101.

[17] K. Tei, N. Yoshioka, Y. Fukazawa, and S. Honiden. Geographically bound mobile agent in manet. In Mobile
and Ubiquitous Systems: Networking and Services, 2005. MobiQuitous 2005. The Second Annual International
Conference on, pages 516-518, 17-21 July 2005.

[18] Do Van Thanh and I. Jorstad. A service-oriented architecture framework for mobile services. In Telecommu-
nications, 2005. Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and
Intermittent Resources Conference/ E-Learning on Telecommunications Workshop. AICT/SAPIR/ELETE 2005.
Proceedings, pages 65-70, 17-20 July 2005.

Appendix A: List of Acronyms

OODA observe-orient-decide-act
C2 Command and Control

AMF Active Metadata Framework
MLN Markov Logic Network
HUMINT Human Intelligence
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
AMA Active Metadata Agent

APL The Johns Hopkins University Applied Physics Laboratory
GPS Global Positioning System
GUI Graphical User Interface
POIs Persons of Interest

POI Person of Interest

SOA Service Oriented Architecture

MANET Mobile Ad-Hoc Network

21 of 21

