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ABSTRACT 

 
Sensemaking in the 21st century C2 environment will be critical not only for soldiers but also for 
autonomous equipment.   Sensemaking by humans entails understanding the meaning and import 
of information, often conveyed via natural human language, about events and objects in the 
battlespace.  Analogous  sensemaking in autonomous and semi-autonomous UGVs requires 
cognitive robotics, i.e.  the ability to link human language and concepts to robot perception and 
object recognition.  Advanced sensemaking in UGVs would allow soldiers to send such equipment 
through urban environments using the same verbal instructions they would give another soldier.  
A robust natural language-based sensemaking capability in UGVs could also  contribute 
information about the battlespace to the Global Information Grid while requiring few or no 
services in return. 
 
Recent work by Haas and Shimizu has demonstrated the ability of a simulated robot to respond 
correctly and without additional guidance to naively-produced navigational commands (expressed 
in unconstrained English) with ~80% accuracy. Our current work extends this approach to 
natural language processing into physical robots, introducing uncertainties of sensor perception, 
object recognition and language-to-environment mapping. The goal of this research is to quantify 
accuracy for a simple indoor environment and then more complicated environments, 
characterizing sources of error and identifying strategies to reliably overcome them.  
 
 
Introduction 
 
Network Centric Warfare is already a reality, in nascent form.   A case study of Operation Iraqi 
Freedom performed at the U.S. Army War College [1] concluded that  

“the introduction of extended reach communications and networked information 
technologies significantly enhanced the ability of U.S. Army commanders to make faster 
decisions, more easily exploit tactical opportunities, conduct coordinated maneuver while 
advancing further and faster than at any previous time and more fully integrate and 
synchronize joint fires; all of which resulted in the rapid defeat of Iraqi military forces and 
the fall of the Ba’athist Regime in Baghdad.” 

 
The study describes an effective synergy between networked sensors (including Hunter UAVs, 
Predator UAVs and the Long Range Advanced Scout Surveillance System) and the Automated 
Deep Operations Coordination System which provided a common operational picture to 
commanders.  Together with voice communications and enabled by the wideband TACSAT, the 
unmanned systems had significant tactical and operational level impacts [2]. 
 
As the Army’s Future Combat Systems components mature, the number and nature of unmanned 
ground systems in the battlespace will evolve rapidly.   Already, in recent years while the Hunter 
and Predator UAVs were bringing sensor data into the common operational picture in OIF, their 

 2



Towards Commanding Unmanned Ground Vehicle Movement In Unlearned Environments 

ground equivalents were proving highly useful in the caves of Afghanistan.   New UGVs continue 
to play an important role in the on-going mission in Iraq today. 
 
As the Network Centric Operations Conceptual Framework notes [3], collecting and sharing 
information does enable shared situational awareness.  That is not, however, the broadest or 
deepest benefit to be gained.   Shared awareness in turn enables other benefits, including shared 
sensemaking and  the ability to substitute information for people and material.   We might add to 
that a future ability to substitute autonomous systems for humans in some circumstances and for 
some purposes. 
 
The U.S. Army’s Future Combat Systems program envisions missions for UGVs that go beyond 
remotely-operated data collection.  Intelligent munitions, robotic mules that carry soldiers’ gear, 
autonomously navigating trucks that bring vital supplies and a variety of other robotic equipment 
will find their place on the networked battlefield.   As these and other robotic systems proliferate it 
will be increasingly important to consider how they will be integrated into battlefield operations at 
the cognitive and social domains as well as at the level of the physical network and information 
gathering and sharing. 
 
The War College’s OIF case study notes that voice communications were key to developing 
shared situational awareness.  Commanders benefited from the availability of real-time, extensive 
information collected by sensor platforms and fed into a common operational picture of ongoing 
events in the battlespace.   But those commanders also made sense of the implications of that 
information in part through verbal communications.  That’s not surprising:  speech is the most 
natural way for humans to share and interpret information. 
 
The NCO CF posits that enhanced situational awareness and understanding of the information that 
is collected can and should, in turn, lead to more agile force elements and overall enhanced 
mission effectiveness [4]: 
 

What makes network-centric forces more effective? The answer that is emerging is 
twofold. First, mission effectiveness is greatly enhanced by agility: the ability to be quick 
and nimble; the ability to be adaptive and responsive to changing circumstances; and, the 
ability to innovatively solve problems. …. Second, agility is possible only if we accept 
that, “Network Centric Operations is not about technology, it’s about people!” The most 
impressive gains in force effectiveness resulted from a synergy of investments across the 
lines of development (technologies plus training, leadership, organizational change, etc.). 
 

 
This is a useful reminder when we think of unmanned systems in particular.   Ultimately, it is not 
the significant technical challenges inherent in developing autonomous and semi-autonomous 
battlefield vehicles and their payloads that must dominate our attention, nor the complex work of 
integrating them technically as users and sources for the Global Information Grid.  Rather, the 
more fundamental question regarding unmanned systems is how they will be designed and 
deployed to further facilitate agile, effective operations.  
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Soldier – UGV Interfaces:  The case for natural language 
 
We believe that an important aspect of useful unmanned systems is the interface through which 
soldiers must interact with and use them.   The ideal UGV would be much like the ideal soldier:  
able to receive commands, interpret them intelligently, execute them reliably, ask questions when 
something is not clear and alert someone when unexpected or significant events occur.  The more 
natural the means of communication, the less training required for soldiers and the easier it is for 
commanders to leverage UGVs as another element in the unit, as a truly organic capability. 
 
In general, the most natural means with which to command an element on the battlefield is human 
speech – English, or whatever other language the unit members speak and understand well.    
There are, however, a range of useful ways to command UGVs that are simpler to implement than 
natural language understanding and which are appropriate for many valuable tasks.   
 
For instance, voice recognition of a carefully constrained list of command words could be valuable 
in many systems, as would the ability of driverless vehicles to navigate through a route specified 
by GPS coordinate waypoints.   Each of these is already a maturing capability. Voice recognition 
of  constrained commands is now commonplace in the civilian world, although in some cases 
command execution is non-trivial (as with NASA’s work towards voice commanded / voice 
output information lookup to support astronauts doing complex repairs in space).  Although 
autonomous navigation is currently less mature than voice recognition, each successive DARPA 
Grand Challenge has demonstrated greater success as UGVs find their way towards that year’s 
destination. 
 
For many unmanned systems, simple voice recognition capabilities or the use of a console to input 
navigation waypoints will suit the mission well.  However, these interfaces do impose some  
limitations.     For instance, both constrained voice command recognition and waypoint-based 
navigation require prior planning before they can be used.    Command lists must be drawn up and 
corresponding actions programmed into the equipment, producing a static set of actions which 
may be selected among.   Waypoints must be mapped with precision if they are to guide 
navigation.   These capabilities, then, will best fit unmanned vehicles intended for well-defined 
repeated tasks (voice commands) or for environments that are familiar to some degree (GPS 
waypoint navigation).  In addition, personnel must be trained before they can operate systems 
through built-in touch screens or keyboards or a limited set of voice commands. 
 
The constraining effect of these interfaces for unmanned systems is most obvious with regard to 
systems that will be tactical in nature and that most naturally are associated with small unit 
activities.  If they are to support the tactical mission well, these UGVs require a human-to-
machine interface that is more flexible, more powerful and that can be applied to a wide variety of 
tactical situations and environments while entailing a limited training burden.   They must, in other 
words, be sufficiently intelligent to be extremely easy to deploy as part of small unit activities in a 
wide variety of circumstances. 
 
Consider the value of being able to send small UGVs to perform tasks in response to the directions  
one would give a human soldier: 
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 “Go down this road to the first cross-street.   Turn left, go two blocks and then turn 
right.  Stop in front of the second building.   Radio if you see any white vehicles parked 
along the streets as you patrol.  Radio if you believe you may have found any unexploded 
ordinance or IEDs along the roadside.” 
 
 “Go to the second house ahead on the right.   Enter the door, go up the stairs to the 
third floor.” 

 
Scouting through a hostile neighborhood.  Delivering ammunition, food or medical supplies to 
soldiers under fire.   These are tasks that have historically been executed by soldiers but that might 
well be assigned to autonomous UGVs at some point in the foreseeable future.   The ability to 
send UGVs to perform these kinds of tasks using natural language will enhance the agility of the 
units they serve, allowing them to quickly respond to changing circumstances and facilitating 
creative responses to problems as they are encountered.  Moreover, in stressful combat and near-
combat situations it is a significant advantage if soldiers need not remember artificial means of 
using their equipment, but rather can fall back on the linguistic capability they have used for most 
of their lives. 
 
UGVs with these capabilities would indeed “empower the edge”.   There are, however, significant 
hurdles to overcome before they can be deployed. 
 
 
The challenges:  natural language,  cognitive robotics  and GIG interface 
 
Before squad leaders can send their UGVs off with a few terse directions to do autonomous  
reconnaissance,  progress must be made in three areas. 
 
First, we must be able to construct software that can interpret directions given in unconstrained 
English (or other natural language).  This is the natural language processing challenge 
 
Second, we must be able to construct robotic equipment that can recognize objects in the 
environment and we must be able to link that recognition to the object attributes that humans are 
likely to reference when giving directions.  This is the cognitive robotics challenge. 
 
And third, we must consider the degree to which it is necessary or desirable for UGVs with natural 
language interfaces to interact with the Global Information Grid.    
 
On the one hand, it would be ideal if small-unit tactical UGVs were capable of processing and 
responding to command sequences using their own computational power most or all of the time.   
This would allow deployment of many such systems in a battlespace without over-burdening the 
communication network and the Global Information Grid repeatedly during unit operations. 
 
On the other hand, a UGV that can interpret and execute spoken navigation directions of the sort 
listed above is more than a sensor platform – it is a significantly intelligent application in its own 
right.   Of necessity it must be capable, not only of fusing information from its own sensors in 
order to navigate, but also of analyzing and interpreting that information in order to recognize 
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objects and their attributes as described by human language.  In other words, it must make sense of 
the sensor data it is collecting, understanding the import of that information for execting the 
mission it has been assigned.   And in the course of sensemaking for its own purposes, it may well 
be generating information and understanding that would be of use to other automated systems and 
to humans. 
 
 
The natural language processing challenge 

 
Natural language processing (NLP) has been a goal of artificial intelligence research for decades 
[5].   Results have been slow coming, however.  There are several reasons for this. 
 
First, natural languages are complex, with large vocabularies and variable syntax.   Moreover, 
people often cut grammatical corners when they speak, making spoken language even harder to 
parse than written texts. 
 
Second, language is often ambiguous, metaphorical or idiomatic, making semantic interpretation a 
difficult task for literal-minded software.   “Run that by the commander.”   “Hang a right at the 
corner.”  “We’re going to slow roll this one.”   “I am, like, sooooo dead when Sarge finds out ….”     
Plus, as any parent of teenagers knows, languages like English add idioms and metaphors easily, 
baffling the uninitiated. 
 
These characteristics have presented significant barriers to full syntactic and semantic analysis of 
natural language by software.   Although many computational linguists continue to chip away at 
this problem, major breakthroughs do not seem to be on the immediate horizon. 
 
Ambiguity and often errors in spoken language aren’t problems for software alone.     In one 
recent NLP effort, Macmahon and his colleagues set up a simple virtual indoor environment and 
asked experimental subjects to write directions for a trip from a given starting place to a given 
destination.   Out of 786 examples collected from 6 subjects, other human beings could only reach 
the correct destination by using the directions 69% of the time [6].   In this experiment, the  
majority of failures were due to clear-cut errors in the directions:  saying ‘left’ where ‘right’ was 
intended, for instance.   As we will see below, other researchers have found more fundamental 
sources of potential error and ambiguity in navigation direction giving. 
 
Constraining language helps somewhat, but doesn’t remove the problem.   Although the services 
invest considerable training time teaching specialized vocabularies relating to military matters, and 
structure communications in predictable formats such as op orders, anecdotal evidence suggests 
that ambiguity in natural language persists even in the context of military operations and must be 
overcome by verbal interaction (verifying correct understanding of information or orders, asking 
for clarification) or through maps and other visual aids. Although we are not familiar with any 
rigorous studies of the issue, it is likely to be the case that requests for clarification occur as part of 
sensemaking and not primarily due to difficulties with linguistic processing per se.   Native 
speakers of a language generally are fluent at parsing grammar and have extensive vocabularies – 
their difficulties arise due either to ambiguous wording or to a perceived mismatch between the 
other speaker’s statement and the assumptions and information that the hearer had previously 
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acquired about the topic at hand.  Thus we are not surprised that the War College case study of 
OIF found voice communications to be a critical component of the network centric operations in 
Iraq.    Clarifying and verifying information in this way would have enabled more rapid and more 
confident sensemaking, resulting in more rapid and confident decisions and execution. 
 
All is not hopeless with regard to software and natural language processing, however.  There are 
several areas of progress in this regard.   For instance, considerable success has been achieved in 
text summarization, query answering and document retrieval by constructing indices that relate 
terms and phrases statistically.    The most familiar such system for most people is probably a Web 
search engines such as Google.    National security and intelligence community members will be 
familiar with other examples as well. 
 
Information retrieval (IR) and text summarization approaches are powerful ways to find 
information of interest but as with most technologies they have limitations.   First, they require 
large corpuses of reference documents from which to establish statistical correlations.  Second, as 
the name implies, information retrieval software doesn’t so much interpret natural language as it  
characterizes and retrieves documents containing it.   Indeed, some attempts to improve 
information retrieval by augmenting queries using semantic databases such as Princeton 
University’s WordNet have resulted in degraded performance for many search techniques rather 
than in the hoped-for improvement.  
 
Information retrieval approaches function best with a (potentially considerable) degree of 
interactivity between the software and the human user.   Search engines suggest different search 
terms, allow users to identify more- and less-relevant results from initial searches and otherwise 
use feedback to refine the program’s ability to find the desired text. 
 
IR approaches are unpromising for natural language processing in UGVs and other autonomous 
and semi-autonomous systems for several reasons.   First, they require truly huge collections of 
texts and large indices, imposing very large hardware requirements.    Second, at heart they are 
suited not to understanding language so much as to finding relevant pre-written language in 
response to user queries.  And third, they accomplish these tasks primarily through statisitical 
correlation that is generally void of most (or any) semantic understanding of the language 
involved. 
 
Other current attempts at artificial intelligence for NLP utilize formal semantic frameworks such 
as ontologies both to describe linguistic mechanisms and also to guide automated translation and 
summarization of documents.  These techniques show some promise for those applications, but 
again are unpromising for NLP as the interface for UGVs on the battlefield. 
 
The most promising approach for our purposes emerges, not from traditional linguistic study of 
syntax (in particular)  nor from the large corpus-oriented world of search engines and text 
summarization.  Instead, it begins with  the simple observation that we want UGVs to interpret 
natural language in order to do some important task as a result of that language.  In other words, 
our primary goal in UGV NLP is to connect words to objects and actions in the real world.  In 
linguistics, this is the sub-discipline called pragmatics. 
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Focusing our attention on pragmatics simplifies the NLP task in several ways.   We don’t need to 
interpret all possible constructs in English, only those likely to be produced as imperative 
sentences in a particular context.   We will, however, also be interested in cognitive linguistics, i.e. 
in how a speaker’s sentences reflect his assumptions and understanding of the world. 
 
 
Initial research results for direction following 
 
The potential utility of adopting a pragmatics focus on NLP for unmanned vehicles is suggested 
by the initial success of one of us (Haas [7]) and his doctoral student Shimizu [8].  The setup for 
both approaches was similar.   Experimental subjects were presented with a simple layout of a 
building interior, marked with icons indicating  “the robot is here” and “destination”.    They 
generated written directions for the simulated robot to follow in order to reach the destination.  
Shimizu applied rule-based heuristics and machine learning techniques to interpret directions.   
Haas, on the other hand, limited his language processing to extracting a limited number of 
relations expressed in the directions. 
 
Haas’ results are noteworthy for the significant accuracy achieved with a very simple pass through 
the direction sets.   Out of 865 sets of directions written by 89 subjects, and tested against 218 sets 
of directions written by 22 new subjects, the program correctly interpreted the directions and 
reached the destination 79% of the time.  (The experimenter also tried to follow the directions and 
only those which he or another native English speaker agrees are adequate were counted among 
the successes.) 
 
These results were reached without any secondary requests for clarification and without reference 
to syntactic or semantic models other than the basic language and world familiarity that identified 
the key relations to be extracted.  Each step can be characterized in terms of:   
 

• The type of destination for this step (doorway, side hall, end of hallway) 
• Direction (left, right, forward) 
• An ordinal characteristic for the destination (first, second, third, last) 
• At-end (true if the destination for this step is the end of the hallway ahead of the 

agent as it begins the step) 
• The action required for this step (advance, advance and turn, or do nothing until the 

next step) 
 
Despite the wide range of potential grammatical constructs available in English for the purpose, 
the subjects tended to use a limited number of constructs when giving directions.  However, the 
software needed to keep track of some meaning beyond individual phrases due to the narrative 
flow of some direction sets.  For instance, subjects sometimes will say “Go forward until you 
reach the second door on the right.  Turn right.”  This illustrates the need to fill in implicit 
references, in this case that “turn right” means “turn right at the second door on the right”.   
Similarly, “You will see a door on your left.  Go inside.” means “Go in the door on your left.” 
 
Both Haas’ approach to interpreting the directions and the machine-learning approach of Shimizu 
are built on the fact that successive steps in the directions depend on the agent’s position and 
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orientation as the step begins.  This matches the extensive literature on first-person orientation in 
navigation by humans. 
 
The most common problem in directions resulted from ambiguity about ordinals.  For instance, 
Figure 1 appears to be straightforward: 
 

 
 
Some subjects, however, say things like “Make a right into the first hallway” in order to 
accomplish this movement.   The desired hall isn’t the first encountered by the simulated robot, 
but it is the first one on the right. 
 
How should the program treat these two commands?   If it insists on linking the direction of the 
intended turn with the count of halls, then the initial example will not execute correctly – the 
desired turn is not into the second hallway on the right, but rather the first hallway on the right.  
On the other hand, if the program ignores this issue, it will correctly interpret the first example but 
not the second. 
 
Thus even this simple experiment illustrates the need for context and clarification, beyond basic 
relation extraction, to correctly interpret directions in all cases.   In the results for this stage of the 
research, the two potential errors are about equally common so for the program assumed that we 
are counting all hallways when we say “second” or “first” hallway in a step. 
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Ordinal numbers occur frequently in this experiment and other ambiguities arise with ordinals as 
well.   For instance, although the program interprets ordinal numbers as in Figure 2 below, with 
the arrow representing the robot agent, there is inherent ambiguity regarding paths like the one 
shown in  Figure 3.   Eleven subjects consider B to be “the first door on the left”, but three others 
considered it to be the second such door.  One subject made an extensive attempt at 
disambiguation: 
 

Turn left into the second room on your left side (the first room being the one at the corner 
of the hall where you just turned right) 

 
Correctly interpreting phrases like “the hall where you just turned right” requires a more 
sophisticated mapping of the building space and interior objects than was implemented in the 
simulation for this first set of experiments, so unfortunately this careful exegesis was utterly 
ignored during program execution. 
 
 

  
  
The experiment results were matched against a test corpus of 218 sets of directions.  A native 
English speaker attempted to follow the directions and found the correct destination in 134 out of 
137 attempts.    By breaking down the directions into individual steps and manually extracting the 
relations listed above, Haas was able to establish an overall success rate for the system of 79%, 
with a 91% success rate for the back end portion of the program which executes the extracted 
steps.   Haas concludes that a simple parser was needed to eliminate overly-simplistic extraction of 
relevant phrases, a conclusion that agrees with other literature on relation extraction.   By way of 
comparison, Macmahon’s program produced significantly poorer results (61%) despite the fact 
that he preprocessed all instructions in an attempt to clarify their syntax 
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Moving into a real robot:  the cognitive robotics challenge 
 
Haas’ initial results for processing natural language navigation directions intentionally used a 
simple simulated environment, so as to establish a baseline for language-only performance.  The 
next step we are taking is to replicate his experiments in a real robot traversing a physical 
environment of similar layout and complexity. 
 
The simulated robot perfectly knows the location of objects (doors, hallways) and moves to them 
flawlessly based on the language interpretation.   Real robots introduce variability and 
imperfection in sensing, in object recognition and in moving to desired locations.  This is true no 
matter which of several possible algorithms are used for vision processing and object recognition.  
Thus, if we make no changes to Haas’ NLP code we can expect that the accuracy of the same 
approach within a physical robot is likely to be less than that the same code executed via the 
simulation. 
 
Nonetheless, the choice of reasoning approach used to identify objects is important.    Many robots 
achieve object recognition by training artificial neural nets or other software with large training 
datasets.  A robot presented with several hundred, or thousand, images labeled ‘door’ extracts 
patterns by means of which it classifies new images as ‘door’ or ‘not door’. 
 
If our primary purpose were door recognition for its own sake (in, say, a dedicated security robot 
used to verify that all interior doors are fully shut at night), this would be an effective approach.  
Our problem is somewhat different, however.  We want to identify doors as they are described by 
humans when giving navigation or other task directions.  That is to say, we want our door 
identification to be based on the attributes that the direction giver chooses as salient for the 
context.    In keeping with our overall intent, the robot will not learn or map its environment prior 
to being given directions – it must construct its map as it draws conclusions about the presence of 
objects it encounters along the way. 
 
This is the challenge of cognitive robotics:  to make a connection between a conceptual 
description of objects and sensory perception.   In many cases, artificial neural nets that are trained 
to recognize faces or do similar tasks do so on the basis of often-complex relationships they’ve 
extracted that do not make intuitive sense to humans. Cognitive robotics, on the other hand, builds 
on the theory of dual channels in human cognition:  a symbolic, ‘logical’ channel that reasons 
about objects and a probabilistic ‘connectionist’ channel that processes vision rapidly and 
unconsciously. 
 
Our current work emphasizes the logical side more than behavior-oriented robotics,  but we are 
also very concerned with the impact of sensory processing.  We address the problem of object 
recognition by mimicking the probabilistic approach that neuroscience has begun to suggest 
characterizes human reasoning as well [10].  Bayesian belief nets are being constructed to map 
robot perception patterns to objects and their attributes.  Beliefs about the identify and location of 
objects are updated in response to new information perceived as the robot moves through the 
environment. 
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As is true in humans, vision processing plays a large role in object recognition for robots.   Color 
interacts extensively with shape in human visual processing [11]; we will be interested to see how 
much our new experimental subjects refer to color when giving directions.   (Color was not an 
attribute of objects in the simulated environment.) 
 
Thus we are collecting two sets of metrics in the robot in the current phase of research:   one set 
that characterizes the variability of robot perception and movement in response to software 
controls and another set that establishes the likelihood of a given object being the cause of specific 
sensor input values that have been received.   Our aim is to identify the nature and degree to which 
various causes contribute to failure by the robot to reach destinations in response to the same sets 
of directions produced in Haas’ initial results.  We will also collect the results of new directions 
given by subjects who have no experience with the simulation and who work only with the 
physical robot.   
 
 
Scaling up to more complex environments 
 
The first step in this research program was Haas’ and Shimizu’s work with unconstrained English 
directions for commanding a simulated robot through a simple indoor environment. 
 
The second step is under way as this paper is being written, namely to replicate Haas’s approach in 
physical robots using a Bayesian approach both in terms of characterizing variability of sensor 
perception and vision processing from a Bayesian statistical data analysis perspective and also in 
terms of nets of Bayesian inferences for object identification.    We chose the Bayesian approach 
because it best fits how we understand humans to draw conclusions about the likely identity of 
objects we perceive:  we adjust our belief as new information is received (as we grow closer to the 
object, for instance). 
 
The third step in our research efforts will be to introduce more complicated environments which 
will require more complex references, vocabulary and relations in the directions required to 
command the robots to their desired destinations.   Here our question is one of scale up.   How 
much additional complexity is required in the relations extracted from the directions as a result of 
more classes of objects, more attributes used to identify those objects and the presence of 
landmarks which, while not destinations of their own, are likely to factor into many subjects’ 
direction giving?[9]  We are also interested in measuring code size and computational load 
changes. 
 
A fourth area of interest has to do with variations in typical directiongiving on the part of those for 
whom English is not a native language.    Istvan Kecskes, a linguist who merges pragmatics and a 
cognitive approach, points out that people who are learning a second language often go through an 
extended stage in which they understand basic syntax and semantics but don’t “think” in the new 
language yet. [12]    As a result they make typical mistakes in generating sentences and have an 
imperfect grasp of metaphors and idioms commonly used in that language.    Kecskes believes that 
the influence of language and thought is mutual:  language reflects the speaker’s concepts and 
assumptions, but learning a new way of speaking can reshape those concepts to the point that there 
are noticeable changes in how he uses his original (native) language. 
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Thus people learning a second language must develop sensitivity to the implications of word and 
phrase choice in that new tongue.  This phenomenon is a familiar one to military trainers, whose 
work consists in part in conveying new terms and concepts and then teaching soldiers to think 
using them. 
 
Sensemaking in a new language is in many ways similar to sensemaking on the battlefield.   
Therefore results with non-native speaking directiongivers may shed light on the issues that can 
arise during joint operations among allied militaries in a networked battlespace, whether or not it 
includes autonomous equipment. 
 
Finally, while we have no plans at the moment to pursue this issue in our own efforts, we note that 
research documents gender differences regarding navigation strategies in virtual environments 
[13].   These gender differences mirror differing facility with spatial orientation vs. verbal 
fluencies.    As unmanned vehicle designs mature, it may be prudent to test both natural language 
and other interfaces against a diverse user base before proceeding to implementation. 
  
 
Conclusions 
 
Although we are not yet capable of producing UGVs that can correctly interpret and follow 
complex sets of unconstrained natural language navigation directions, we believe that the ability to 
field such equipment would enable the kind of the agility at the small unit echelons that contribute 
to enhanced mission effectiveness.   Moreover, fielding such equipment may be possible without  
placing significant demands on battlefield communications networks or Global Information Grid 
services.   Indeed, intelligent UGVs capable of sophisticated object recognition and probabilistic 
reasoning may contribute useful information to other GIG users. 
 
For these reasons, and in response to the significant results achieved by Haas and Shimizu in their 
experiments based on simulated robots, we believe that our research program is of use to network 
centric operations in two ways.  First, it will produce detailed metrics regarding the reliability of 
Haas’ natural language processing approach when implemented in a physical robot which must be 
commanded through increasingly complex environments, identifying sources of error for which 
cost-effective responses (such as limited parsing or requests for clarification)  can be added to the 
baseline system.  And second, this research has the potential to shed light on language- and sense-
making issues that may emerge as the result of joint operations among allied militaries as they 
bring different linguistic experiences, doctrinal assumptions and personal fluencies to the 
networked battlefield.  
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