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Abstract 

Missions assigned to military forces will change as world events occur. Recent events like the 
Indian Ocean Tsunami and Hurricane Katrina in the United States required a massive 
humanitarian effort that included military forces. Information about the event needed gathering, 
distributing, and analyzing to determine how best to use resources to help the people in the 
devastation. Once observers gather information, establishing communications is needed before 
information can be distributed. Command and Control (C2) node functions perform one or all of 
the tasks of information gathering, distribution, analysis, decision making, and distribution of 
decisions. C2 nodes in these situations will be mobile or fixed and will come and go as a mission 
unfolds. Interfacing of C2 nodes may be hampered when the interface mechanisms are not 
worked out before an event and would take time to manually work out, which delays rescue and 
relief efforts. This research defines a framework and methodology for dynamically interfacing 
C2 nodes to a C2 enterprise to accomplish large missions such as responding to operations other 
than war (OOTW), e.g., natural and man-made disasters, peacekeeping, and counter drug 
operations.1 Regional conflicts and general war are other situations requiring C2 enterprise to 
accomplish a large mission.
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1. Introduction (Motivation) 

Missions assigned to military forces will change as world events occur. Events like the Indian 
Ocean Tsunami2 devastated coastal regions of Indonesia, Sri Lanka, India, and Thailand, and 
also affected Somalia, Myanmar, the Maldives, Malaysia, Tanzania, Seychelles, Bangladesh, 
South Africa, Yemen, Kenya, and Madagascar. Hurricane Katrina in the United States created a 
storm surge that caused severe and catastrophic damage along the Gulf coast, devastating the 
cities of Mobile, Alabama, Waveland, Biloxi, and Gulfport in Mississippi, and New Orleans and 
other towns in Louisiana. Levees separating Lake Pontchartrain from New Orleans were 
breached by the surge, ultimately flooding 80% of the city and many areas of neighboring 
parishes for weeks.3 Both events required a massive humanitarian effort that included military 
forces. 

When these types of events occur, information about the event needs gathering, distributing, and 
analyzing to determine how best to use resources to help the people in the devastation. Once 
observers gather information, establishing communications is needed before information can be 
distributed. Command and Control (C2) node functions perform one or all of the tasks of 
information gathering, distribution, analysis, decision making, and distribution of decisions. C2 
nodes in these situations will be mobile or fixed and will come and go as a mission unfolds. 
Since C2 systems may have pieces of information that a decision maker will need, interfacing 
with other C2 systems is necessary in order get a big picture for decision makers to formulate 
their decisions. The goal of this research is to present and implement a systematic method for the 
dynamic interfacing of C2 systems. The core of this method is an entity called the Systems 
Information Broker (SIB). The SIB serves as an arbitrator that will determine whether the 
interfacing is feasible, and as a uniform interfacing platform to support the interfacing of real-
time and non-real-time systems. To aid in the interfacing feasibility, a pre-formulated set of 
methods will be determined that are predicted to yield interfaces among systems. The focus of 
this research is determining the constraints on the methods used in interfacing systems that will 
allow a static calculation that can predict that an interface between systems is feasible. 

2. Basic Architecture and Framework 

The goal of this research is to present and prototype a systematic method to facilitate the 
dynamic interfacing of real-time and non-real-time systems. The core of the method is an entity 
called the Systems Information Broker (SIB). We propose to breakdown the responsibility of the 
SIB into two parts with this research focusing on the first part. 

1) SIB will serve as an arbitrator that will determine whether the interfacing is feasible by 
considering the satisfaction of timing constraints and resource usage. 
1.1) SIB serves as an arbitrator taking into account the reconfiguring issues involved in the 

enterprise of systems supporting forces and units used to fulfill a new mission. We will 
need to create a calculation or mechanism for determining whether the proposed 
methods for interfacing systems are schedulable as systems are dynamically added, 
deleted, and immigrated. 

1.2) In addition, we will need to determine the optimality goals and constraints for the 
resources used on the interfacing systems. Before determining the optimality goals and 

 1 



constraints, we will need to determine the metrics and calculation mechanisms that 
determine the current resource use. Once current resource use is known, one can then 
chose optimality goals and constraints for the interfaced resources. A mechanism will 
be needed to adjust the resource use to comply with the goals and constraints when 
resources are being over used. The SIB will use these mechanisms to determine if 
resources are used properly and make adjustments to comply with goals and 
constraints, but since we will not have complete information of the global state of the 
interfaced systems these mechanisms will only give suboptimal resource use. The goal 
is to still provide effective use of resource, but not necessarily optimal resource use. 

2) SIB will also serve as a uniform interfacing platform to handle data interoperability and 
timing constraints to support the interfacing among systems. SIB will be used in an 
operational mode and serves as a uniform platform to handle the scheduling of system 
interactions, and interoperability among systems. 

Figure 1 is the framework of the systematic method to facilitate the dynamic interfacing of real-
time and non-real-time systems. 
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Figure 1 Framework of the proposed method 
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3. Mechanism for Determining if Systems Can Interface 

We plan to develop a criterion that the SIB uses to determine whether interfacing systems is 
feasible. The SIB will use this criterion to determine if the enterprise of systems is schedulable 
after some systems are added, deleted, or immigrated from the enterprise. We imagine that this 
schedulability determination will be similar to embedded real-time schedulability but with a 
higher magnitude of timing constraint values due to network delays and jitter. The immigrating 
capability will be limited to non-real-time systems. To develop this criterion, a dynamic 
scheduling analysis algorithm for distributed systems with non-real-time and real-time tasks 
needs to be presented. Breaking down the mission the enterprise is required to accomplish into 
phases of operation and placing systems to address one phase may provide a way to bound the 
timing constraints that the systems handling a phase needs to meet. Calculating probabilities of 
moving from one phase to another may provide an additional means of bounding the timing 
constraints among real-time and non-real-time systems. 

Another criterion that the SIB uses is to determine whether the enterprise of systems still has 
good resource usage after some systems are added, deleted, or immigrated from the enterprise. 
To develop this criterion, a resource usage metric needs to be defined and a method will be 
developed to compute this metric. 

This framework will model systems with the base component being a single system. The model 
will not go much below the system level. A description of a system will include characteristics of 
the system and applications running on the system. 

3.1. Alternative Methods for Interfacing Systems 

The idea is to have several methods to choose from when interfacing systems. Methods will be 
ranked by scoring criteria that is explained in the next section, with the top scoring method being 
the primary interfacing method and the remaining methods as alternatives. 

3.2. Modeling Systems Being Interfaced 

We are working the model at a systems level where simple constructs and events are passed 
between systems. Modeling the systems with layers, and allow different layers of a system with 
past-through channels may allow for response times for the overall system not being hindered by 
individual layer transformations. 

To create time-budgets with existing deployed applications and services we are going to need 
tools to measure resource usage using existing OS facilities. We are also going to need a method 
for determining excess resource capacity and heuristics to estimate it. 

The excess capacity would be available to support the interfacing with other systems and few 
tasks or ultimately all tasks required to fulfill a mission thread. 

Figure 2 illustrates the constructs used to interface systems together. 
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Figure 2 Modeling Constructs Used to Interface Systems 

Systems would list out the resources it possesses and also list the resources it seeks. The systems 
send these lists to the SIB for recording and future servicing. Lists of excess resource capabilities 
would also be passed to the SIB. The SIB would coordinate the various lists of requested 
resources and map these with available resources. The goal is to do this mapping without human 
intervention, and then proceed to allocate resources to requests and then send back the lists of 
resource granted plus the list of tasks currently needing service. 

3.3. Application Complexity Rating 

Applications used on a system vary in degrees of complexity from simple to very complex. On 
the complex end are applications that require many data sets, perform a high number of 
calculations on a subset of the data sets, and graphically render the calculated results. Without 
these data sets, desired results may not be precise enough to be useful. Many times developers 
will have an idea of what data their applications need to ingest, but these data sets are not well 
documented such as what the data is making up the data set, the way data is being gathered, what 
organization is maintaining the data sets, or how to get access to the data sets. 

Table 1 contains the attributes that can determine the complexity of an application. An 
application that is real-time and performs any of the other attributes would be considered a very 
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complex application. An application that is non-real-time, calculation intensive, data intensive, 
and graphical, or has only the real-time attribute is a complex application. A semi-complex 
application would be non-real-time and has two of the three remaining attributes. A simple 
application would be non-real-time and has only one of the remaining attributes. 

Table 1 Complexity Attributes for an Application 

Complexity Real-time Calculation 
Intensive Data Intensive Graphical 

 Timing 
constraints 
bounding 
computed 
results 

Requiring high 
number of math 
calculations 

Requiring high 
number of data 
points 

Requiring high 
use of graphics 
to rendering 
information 

Simple    X 
Simple   X  
Simple  X   
Semi-Complex   X X 
Semi-Complex  X  X 
Semi-Complex  X X  
Complex  X X X 
Complex X    
Very Complex X   X 
Very Complex X  X  
Very Complex X  X X 
Very Complex X X   
Very Complex X X  X 
Very Complex X X X  
Very Complex X X X X 

3.4. Data Set Considerations 

Without knowing what data sets or information one needs or an application, process, or system 
needs, one cannot perform processing with the data sets in order to get results from a formula or 
model. The terms process and task will be used the synonymously throughout this paper. Before 
processing formulas or models, data is needed and depending on the use of the formulas or 
models, continuous processing of formulas or models may also require continuous access to the 
data sets for results to be relevant to a user. Relevant results mean that a user will be able to take 
actions to avoid harmful consequences. 

Understanding what data sets are used is a good starting point to keeping an application relevant 
to its users. Keeping the data sets organized, and knowing who and where to get updated data 
sets also adds to an application’s relevance. 
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Making the data sets organized and simple to understand may make the maintenance of data sets 
easier. Plus a systems information base used to keep an enterprise of systems working may 
perform better with well organized data sets Furthermore, having a flat organization for the data 
sets may be an ideal way to understand the data an application or system will need. 

3.5. Real-time and Non-real-time System Attributes 

We will model systems by first separating real-time and non-real-time systems by their 
attributes. Table 2 contains the attributes used to model real-time systems used by a force. 

Table 2 Real-time System Attributes 

Attribute Comment 
Tasks  
CPU Cycles used CPU cycles used to accomplish a 

tasks 
Network resource usage  
Time Constraints: Finish Within or  Maximum 
Execution Time 

 

Periodic, Event Driven, or Both for Task 
Execution 

 

Non-real-time force systems will be modeled with similar attributes shown in Table 3. 

Table 3 Non-real-time System Attributes 

Attribute Comment 
Tasks  
CPU Cycles used CPU cycles used to accomplish a 

tasks 
Network resource usage  
Periodic, Event Driven, or Both for Task 
Execution 

 

3.6. Breaking Down the System Resources 

Resources used by systems will be broken down into system resources and network resources. 
Systems resources are further decomposed into CPU resources, memory resources, and I/O 
resources. Tied with each resource are resource concerns that have the potential of diminishing 
the quality of service of the resource. 

Table 4 and Table 5 below have the resources being modeled plus the resource concerns for each 
resource. 
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Table 4 Real-time System Resources Modeled 

Resource Resource Concern 
System  

CPU Lack of CPU cycles to complete a task 
calculation that will cause a task to miss its 
deadline. 

Memory Lack of memory causing a task to miss its 
deadline. 

I/O Waiting for I/O resources that causes a task 
to miss its deadline. 

Network  
Bandwidth Lack of Bandwidth that causes a task to 

miss its deadline. 
Quality of Service Jitter and Latency that degrade information 

flow and causes a task to miss its deadline. 

Table 5 Non-real-time Systems Resources Modeled 

Resource Resource Concern 
System  

CPU Lack of CPU cycles prevents a task from 
completing its computations in a usefully 
timeframe, i.e., meeting the mission thread 
time-budget. 

Memory Lack of memory prevents a task from 
completing its computations in a usefully 
timeframe, i.e., meeting the mission thread 
time-budget. 

I/O Waiting for I/O resources prevents a task 
from completing its computations in a 
usefully timeframe, i.e., meeting the 
mission thread time-budget. 

Network  
Bandwidth Lack of Bandwidth case prevents a task 

from completing its computations in a 
usefully timeframe, i.e., meeting the 
mission thread time-budget. 

Quality of Service Jitter and Latency that degrade information 
flow and prevents a task from completing 
its computations in a usefully timeframe, 
i.e., meeting the mission thread time-
budget. 
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3.7. Scoring Criteria of Interfacing Methods 

Interfacing methods are scored using criteria of the interfacing latency, capacity, and quality of 
service which includes availability and reliability. Other criteria may include cost of using the 
interface. 

3.7.1. 

3.7.2. 

Computational Model for an Enterprise of Systems 

Y. Qiao, et al., developed an admission control method for dynamic software reconfiguration in 
the systems of embedded systems (SoES) domain.4 This method prevents dynamic software 
reconfiguration from damaging the high confidence of SoES. We plan use many of the concepts 
of the SoES admission control method to provide the computational model for the enterprise of 
systems (EoS) admission control method. 

The EoS admission control method has two parts 1) modeling the systems making up the 
enterprise of systems and 2) the dynamic scheduling analysis for the EoS. The modeling of the 
systems mathematically describes the functional and non-functional aspects of the EoS 
requirements. This description has an external view model and an internal view model. The 
external view model is customer view focused, while the internal view model is designer view 
focused. 

Appendix A describes the admission control model for SoES developed by Y. Qiao, et al., that 
we will modify and use in representing the EoS. 

Maintaining System Schedule 

Interfacing a system into an EoS must not interfere with an individual system’s processing to 
meet local task schedules. An EoS schedule is first determined by the time-budget for the 
mission threads that an EoS supports. Development of time-budget allocations for time-critical 
mission threads is a recommendation of the Committee on C4ISR for Future Naval Strike 
Groups.5

The below tuple represents a mission thread time-budget. 

(MTID, TCM, MTD, R) (1) 

MTID Mission Thread Identification 

TCM Time to Complete Mission Thread 

MTD Mission Thread Description 

R Set of n Resources Needed to Accomplish Mission Thread, where n > 0. 
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A mission thread may be made up of multiple tasks and each task is represented by the following 
tuple. 

(TID, TCT, TD, TR) (2) 

TID Task Identification 

TCT Time to Complete Task 

MTD Task Description 

TR Set of Resources Needed to Accomplish Task where TR ⊆ R. 

TCT is constrained by the mission tread time-budget, TCM. Resources needed to complete a task 
mainly include data sets, but may include computational, storage, networking, radio, and other 
physical resources. 

3.7.3. 

3.7.4. 

Maintaining Optimality Goals and Constraints with Respect to Resource 
Usage 

The goal for individual system resources usage is to utilize the resources close to maximum, at 
least 80%, with 20% to surge processing. But the emphasis is to maintain the system processing 
schedule even at the cost of underutilizing the resources. 

Pulling it Together 

The application complexity rating, data set considerations, real-time system attributes, and 
breaking down of resources will compose the majority of the internal view mentioned in 
Appendix A. 

Once a request for interfacing a new system into the EoS occurs, the information specified above 
would need to be provided by the requesting system. A precedence graph would be built for the 
proposed new system in the EoS, breaking down the mission thread this new system will help to 
fulfill, into the constituent tasks as with precedence graph for a SoES in Appendix B.2. The 
mission tread precedence graph will also have non-real-time dependencies that when broken 
down into its constituent tasks will have non-real-time task interspersed throughout the 
precedence graph. These non-real-time tasks can act as separators between real-time segments in 
the precedence graph. For example, in Figure 3, task T4 separates task T7 and partially separates 
T6 from the rest of the real-time tasks in the precedence graph. 
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Figure 3 Precedence Graph with a Non-Real-Time Tasks T4 Example 

Since non-real-time tasks would act as separators in the precedence graph, the non-real-time 
computation needs to be handled separately using a mechanism to allocate a percentage of a 
system’s CPU to best effort tasks processing. For example, initially setting aside 10% of a 
system’s CPU for best effort processing. Profiling of the non-real-time tasks at the initial CPU 
allocation would provide an average maximum execution time, ready time, start time, and task 
interaction latency, which is beyond the scope of this paper. These average task attributes would 
than be used to seed the real-time task attributes described in Appendix B.2 for the non-real-time 
tasks. Thus making the non-real-time tasks pseudo real-time tasks and allow us to use the 
dynamic scheduling analysis presented in Appendix B for the proposed EoS. 

If the analysis shows that a feasible schedule is achieved, then interfacing of the new system into 
the EoS is allowed. Otherwise the request to interface is denied and the denied request could then 
be sent to the “training process” to determine what settings could be used to obtain a feasible 
schedule. The “training process” would help determine options for the real-time time tasks in 
finding constraints that would lead to a feasible schedule or if the schedule is not being met due 
to the non-real-time tasks not completing. If non-real-time tasks are the reason for no feasible 
schedules, the “training process” could determine if allocating additional CPU to best effort tasks 
processing would provide a feasible schedule. 
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4. Conclusion 

This research provides a systematic method for dynamically interfacing systems to form an 
enterprise of systems. At the EoS level the SIB serves as an arbitrator for the tasks requiring 
remote resources or remote execution on other systems in the EoS. Given the attributes of the 
systems and remote resource needed by a task, the SIB will determine if the tasks and the 
systems making up a mission thread will be able to interface with the EoS and continue to 
maintain local tasks schedules. 

 
Appendix A Admission Control Method Modified for the 

Enterprise of Systems (EoS) 

The functional and non-functional aspects of the EoS are represented with two views: the 
external view model and the internal view model. 

The external view model is denoted as ζ ′ , and represented as 

( )HG,=′ζ  (A1)

G  is the functional emergent property vector that represents the functional aspect of the EoS 
requirements, , where ),,,( 21 igggG K= ]),1[( ligi ∈ .  denotes one of the functional emergent 
properties describing the emergent behavior of the EoS and l  is the number of functional 
emergent properties. The most typical functional emergent property identified in the external 
view model is timing properties such as maximum response time. 

ig

H  denotes non-functional emergent properties related to high confidence. It is described by a 
high-confidence metric vector, , where ),,,( 21 ihhhH K= ]),1[( zihi ∈  is a high confidence metric 
and z  is the number of high confidence metrics. Some typical metrics are failure rate, maximum 
time between two successive failures, the number of faults that can be tolerated, maximum time 
between safety violations and security level etc. 

The Internal view model is denoted as ζ , and represented as 

( )21,,,,, FFDCES=ζ  (A2)

S  is a component system set, { ],1[| nisS i }∈= .  denotes a component system constituting the 
EoS and  is the number of component systems in the whole EoS. 

is
n E  denotes the interaction 

sets between component systems, { }],1[,| nkjeE jk ∈= , where  denotes a set of interactions 
from component system  to component system . C  denotes the constraint sets on how the 
component systems are used in the given environment, 

jke

js ks
{ }],1[| nicC ∈i= .  is a set of 

constraints imposed on .  denotes the constraint sets on interactions between component 
systems, 

ic

is D
{ }],1[,| nkjdD jk ∈=  , where  is a set of constraints applied to interactions in . jkd jke
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1F  and  are two mappings that refine emergent properties of EoS into local constraint sets 
imposed on component systems and interactions, i.e., 

1F
),(1 HGFC =  and . ),(2 HGFD =

In internal view model, timing constraints are included in C  and . Typical timing constraints 
include deadline and maximum execution time of the component system and latency of the 
interaction between two specific component systems. Furthermore, some resource constraints 
such as access mode and control constraints such as trigger method are also included in C  and 

. All these constraints can be extracted as parameters used by dynamic scheduling analysis for 
the EoS. In addition, each component system is either atomic or composite in internal view 
model. For convenience, to support the scheduling analysis, we take each atomic component 
system as a task to be scheduled by the scheduling algorithm. 

D

D

Appendix B Dynamic Scheduling Analysis for an Enterprise of 
Systems 

B.1 Dynamic Scheduling Task Model 

Since EoS are characterized by dynamic combinations of component systems, in this paper we 
mainly consider the aperiodic tasks. Y. Qiao et al., presented a task model for the use of dynamic 
scheduling analysis in SoES and we propose to extend this model for the EoS dynamic 
scheduling analysis as follows:6

1) Each task T  is described as a tuple ( )TTTTT EvDra ,,,, . Here,  is task Ta T ’s arrival time and 
 is Tr T ’s ready time.  denotes TD T ’s deadline.  is the number of Tv T ’s different logic 

versions.  represents TE T ’s maximum execution time. For hard real-time tasks,  is a 
vector denoted by 

TE
( )m

TT ,...,2
T eee ,1

( mjvie T
ij
T =

, where  is the maximum execution time of 
task when it executes on processor  and  is the number of processors in the EoS. For 
soft real-time tasks, the maximum execution time  is a matrix denoted by 

, where  is the maximum execution time of task 

),...,1( mje j
T =

jp m

TE
),...,1;,...,1= ij

Te T ’s logic 
version i  when it executes on processor . Furthermore, for each , the 

maximum execution time of each logic version is ordered such that . Non-
real-time or best-effort tasks provided periods of execution time that can change at runtime. 

jp ),...,1=( mjj
jv

T
j

T
j

T
Teee ≤≤≤ ...21

2) Hard and software real-time tasks are non-preemptive and non-periodic, and these tasks can 
not be parallelized. 

3) Besides processors, tasks might need some other resources such as data structures, variables, 
and communication buffers for their executions. Every task can access a resource either in 
shared mode or in exclusive mode. 

The characteristics of the task listed above can be extracted from internal view computational 
model addressed in Appendix A. For example, the deadline and maximum execution time of a 
task can be derived from constraint sets imposed on the corresponding component system, and 
the access mode of a task can be derived in the same way. 

 12



B.2 Dynamic Scheduling Precedence Graph 

We will use the same precedence graph concept as Y. Qiao, et al.7, to represent tasks, but we will 
have two levels of representations. The first level will model task precedence at the individual 
system level, and the second level will model task precedence at the EoS level. Tasks requiring 
remote resources or remote execution on other systems will have their resources allocated and 
dispatched through the SIB. 

Since the interaction of component systems in an EoS may be just as ubiquitous as SoES, so 
precedence constraints shall be considered during the scheduling analysis. These constraints 
specify whether a task needs to precede another task. If the output of task  is needed as input 
by task , then task  is constrained to be preceded by task . Furthermore, there are two 
kinds of precedence constraints: one is the AND constraint; another is the OR constraint. 
Accordingly, there are two types of tasks: the AND tasks cannot begin their computing until all 
their preceding tasks have completed, while the OR tasks can begin after any one of their 
preceding tasks complete. 

xT

yT yT xT

Definition B.2.1:  represents that task  must precede task . yx TT p xT yT

Definition B.2.2: The precedent-task set of task  is denoted by ; that is,  
indicates which tasks must be completed before  can begin. 

xT )( xTp )( xTp

xT

Definition B.2.3: Assume  is a task.  denotes its ready time;  denotes its 
maximum execution time;  denotes its start time. 

xT readytimeTx . metTx .
starttimeTx .

Definition B.2.4: Assume  is the interaction between task  and task .  denotes its 
latency. 

xyI xT yT latI xy .

The precedence constraint can be represented by means of a precedence graph. In a precedence 
graph, each node represents a task (or a component system). The arrows indicate which task has 
precedence over another task. Figure 4 shows an example of a precedence graph that we use in 
this paper. 
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T1
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T5 T6

T8

T7

 
Figure 4 Precedence Graph Example 

The precedent-task sets for the graph in Figure 4 are as follows: 

∅=)( 1Tp  
{ }12 )( TT =p  
{ }13 )( TT =p  
{ }14 )( TT =p  
{ }325 ,)( TTT =p  
{ }436 ,)( TTT =p  
{ }47 )( TT =p  
{ }68 )( TT =p  

The precedence graph can be constructed based on the internal view computational model since 
precedence relationships between tasks can be derived from interactions between component 
systems described in this model. In this case, AND and OR tasks can be identified by a control 
constraint, i.e., trigger method imposed on each component system, which is described in the 
internal view computational model. If the trigger method of a component system is trigger by 
ALL, this component system will be taken as a AND task. If the trigger method of a component 
system is trigger by SOME, this component system will be considered as an OR task. In addition, 
the latency of interaction between two specific tasks can be derived from the constraint of 
latency imposed on corresponding interaction described in the internal view computational 
model. According to precedence relationships, we can compute the start time for each task 
described in the precedence graph. The principle for this computation is described as follows: 
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If  is an AND task,  and , xT xy TT p xz TT p

))...,...(,.(. latImetTstarttimeTlatImetTstarttimeTMAXreadytimeTMAXstarttimeT zxzzyxyyxx ++++≥

 

If  is an OR task,  and , xT xy TT p xz TT p

))...,...(,.(. latImetTstarttimeTlatImetTstarttimeTMINreadytimeTMAXstarttimeT zxzzyxyyxx ++++≥

 

B.3 Dynamic Scheduling Algorithm for EoS 

In this section, we will extend the SoES dynamic schedule analysis to implement the dynamic 
schedule analysis for the EoS. 

Assume there are  processors , denoted as . Each processor  m )1( >m mppp ,...,, 21 ip ),...,1( mi =  
is assigned a real number  , which is proportional to its speed, i.e., faster processor 
is assigned to a greater . At the same time, 

it ),...,1( mi =

it i∃ , j∃ , where mi ≤≤1 , mj ≤≤1 , ji ≠ , and 
. ji tt ≠

B.3.1 Definitions for the EoS Dynamic Scheduling Algorithm 

In this section we will provide the definitions used for the EOS dynamic scheduling algorithm. 

Definition B.3.1.1: A task is feasible if its timing constraint and resource requirements are met 
in the schedule. A schedule for a set is said to be a feasible schedule if all the tasks are feasible in 
the schedule. 

Definition B.3.1.2: A partial schedule is a feasible schedule for a subset of tasks. A partial 
schedule is said to be strongly feasible if all the schedules obtained by extending the current 
schedule by any one of the remaining tasks are also feasible. 

Definition B.3.1.3:  (or ) is the earliest time when resource  becomes available 
for shared (or exclusive) access. 

s
kEAT e

kEAT kR

Definition B.3.1.4:  is the ideal earliest start time of task )(TIEST T . Let PE  be the set of 
processors and  be the set of resources required by task TR T . Thus, 

. Here,  is the 
start time for task 

)),(,.()( u
kRTk ∈RPEp EATMAXPavailtimeMINstarttimeTMAXTIEST ∈= starttimeT .

T . To derive the start time for task T , we should go through the precedence 
graph for the whole system and find out the precedent-task set of task T . Based on this, we can 
use the principle described in Section B.2 to compute the start time for task T .  
denotes the earliest time at which the processor  becomes available for executing a task and 

)(Pavailtime
P
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the third term denotes the maximum among the earliest available times of the resources required 
by task T  (  for shared mode and su = eu =  for exclusive mode). 

Definition B.3.1.5:  denotes the feasibility of task ),( PTavail T  executing on the processor . 
If the deadline of task 

P
T  can be met by executing on processor , ; otherwise 

. 
P 1),( =PTavail

0), P( =Tavail

Definition B.3.1.6:  is the minimum available time of processors in whole systems, 
i.e., . 

mesysavailti
))(( PavailtimeMINmesysavailti PEP∈=

Definition B.3.1.7:  reflects the speed of processor . The lower the speed of processor 
, the larger the value of . 

)(PSpe P
P )(PSpe

Definition B.3.1.8:  denotes the finish time of task ),( TPFinishtime T  when it executes on 
processor . P

B.3.2 Overview of the EoS Dynamic Scheduling Algorithm 

This section will provide an overview of the scheduling algorithm for both dynamical and 
integrated scheduling a task sets composed of hard and soft deadlines, plus best effort pseudo 
deadlines. The algorithm is based on heuristic searching. When a set of new component systems 
with precedence and resource constraints arrive at an EoS, the tasks associated with these 
component systems along with other unscheduled tasks already in an EoS will trigger this 
scheduling algorithm. 

In this algorithm, the schedule starts at the root of the search tree, which is an empty schedule. 
The algorithm tries to extend the schedule (with one or more tasks) by moving to one of the 
vertices at the next level in the search tree until a fully feasible schedule is derived. For this 
purpose, we set the feasibility check window with K  size for the unscheduled task set. We will 
then check the feasibility of the current schedule by extending the schedule with each task in this 
window. Once the current schedule is not feasible due to a certain task in the feasibility check 
window, we will use a degradation policy described in Section B.3.4to degrade this task. 

If the current schedule is strongly feasible, we will choose the task with the smallest value of the 
heuristic function H  to extend the current schedule. The heuristic function H  for task selection 
is , where  is the deadline of task )(*)( TIESTWDTH T += TD T  and W  is a weight value. 
Once a task, within the feasibility check window, is selected to extend the current schedule, the 
task will be assigned to a specific processor according to the task assignment policy, which is 
described in Section B.3.3. 

Otherwise, if the current schedule is not strongly feasible (even after all soft real-time tasks in 
the feasibility check window that caused the infeasibility of the current schedule have been 
degraded to the lowest service level), we will back track to the previous search level. We will 
then extend the current schedule by another task having the next smallest H  value in this search 
level and choose a suitable processor for this task according to the same task assignment policy. 
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Furthermore, if a task in the feasibility check window is associated with a new component 
system and is found to result in infeasibility of the current schedule, we will compute and the 
maximum execution time threshold (METT) for this task. The computed value for the METT is 
the upper bound of the maximum execution time that this task needs to meet to make the 
extended current schedule feasible. Assuming that  represents the METT of task *

TE T , then 
. )(* TIESTDE TT −=

After the feasibility check for the current schedule, the feasibility check window is moved by one 
task. The above process is repeated until a complete feasible schedule is found or no more 
backtracking is possible. If a complete feasible schedule is found, then adding the new 
component systems will not violate the schedulability of the whole system so that the dynamic 
reconfiguration is accepted. Otherwise, the dynamic reconfiguration is rejected since adding the 
new component systems will damage the high confidence of the whole system. 

In the case where the dynamic reconfiguration is rejected, we need to further detect if the 
unschedulability of the whole system resulted from certain new component systems. If so, the 
recorded METT of tasks associated with these new component systems will be provided as the 
suggested maximum execution times to the “training process” for virtually reducing their 
maximum execution times. 

B.3.3 Task Assignment Policy for the EoS 

The task assignment policy is used to select the most suitable processor to execute task T . Task 
T  is selected to extend the current partial schedule during heuristic searching. We will use a 
heuristic function  to achieve this goal. This heuristic function was developed by Y. Qiao, et 
al..

S
8 For each processor , P )()()( PSpePavailtimePS += . The basic idea of the task assignment 

policy is to select the processor for executing task T  based on the largest heuristic function  
value for a given processor 

S
P . Since earlier  and faster speed of the processor 

having the minimum available time after executing task 
mesysavailti

T  can lead to higher feasibility of 
unscheduled tasks. Furthermore, we will check whether all successive tasks of task T  can meet 
their deadlines if T  is executed in the processor having the largest  value. If the answer is 
negative, we should choose the processor having the next larger  value. 

S
S

In this dynamic scheduling analysis algorithm, the new task assignment policy is denoted as the 
function . This function returns the identification number of the processor selected 
for executing task 

)(Tchoosep
T , otherwise NULL is returned. The detailed task assignment policy is listed 

below: 

1) If the resources required by task T  are no more than processors, then choose the processor 
 that can meet the following constraint for task P T ,. 

2) If task T  requires some other resources besides the processors, then employ the method 
listed below: 
2.1) If there is no intersection between the resources required by task T  and the resources 

required by the remaining tasks, then employ the same processor selections policy as 1) 
for task T . 
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2.2) If there is an intersection between the resources required by task T  and the resources 
required by the remaining tasks, and both task T  and the remaining tasks have shared 
access to the resources in this intersection, then again employ the same processor 
selections policy as 1) for task T . 

2.3) Otherwise, the policy used to choose the processor for task T  is listed below: (We 
assume that processor  meets the following constraints: 

) 
'P
{ } ))pe(()'( 1),(| availtimeMAXPavailtime peTavailandPEpepepe ==∈∈=

2.3.1) If  and TT ESTRr ≤ { } ))((1),(| peavailtimeMAXESTR peTavailandPEpepepeT ==∈∈=  and 
, we will employ the same 

processor selections policy as 
}{ )()( 1),(| peSMAXPS peTavailandPEpepepe ==∈∈==′

1) for task T .  is the time resources are 
available for task 

Tr
T  and  is the earliest available time of all resources 

required by task 
TESTR

T . 
2.3.2) If  and  and 

, we will employ the same 
processor selections policy as 

TT ESTRr ≥ { } ))((1),(| peavailtimeMAXESTR peTavailandPEpepepeT ==∈∈≥

{ } ))(()'( 1),(| peSpeMAXPSpe peTavailandPEpepepe ==∈∈==
1) for task T . 

2.3.3) Otherwise, we will choose the processor  that can meet the following 
constraint for task 

P
T : 

 { } )),((),( 1),(| TpeFinishtimeMINTPFinishtime peTavailandPEpepepe ==∈∈=
3) Check whether all successive tasks of task T  can meet their deadlines under current 

processor selection. 
3.1) If it is not true, choose another processor with the next largest  value for case S 1), 2.1), 

2.1), 2.3.1), and 2.3.2); choose another processor with the next minimum value of 
function  for case Finishtime 2.3.2). 

3.2) Go back to 3) until the processor is selected or no more processors can be selected. 
4) If a processor is selected, return the identification number of this processor; otherwise, return 

. NULL
B.3.4 Task Degradation Policy for the EoS 

Y. Qiao, et al., developed a degradation policy for SoES that would iteratively degrade the 
quality of service (QoS) of soft real-time tasks to improve the schedulability of hard real-time 
tasks. This degradation is done during the feasibility check, where we first use the logic version 
of the soft real-time task with the longest execution time in the feasibility check window. We 
assume that the longer the execution time of the logic version, the better the quality of the result. 
Once the current schedule is not strongly feasible due to unschedulability of a soft real-time task 
in the feasibility check window, the QoS of this soft real-time task is degraded to the next lower 
logic version. This degradation will continue until the feasibility check is successful. If the 
feasibility check is still not successful when the QoS of of this soft real-time task has been 
degraded to the lowest logic version, a backtracking will occur. We denote the detailed 
degradation policy for task T  with the function degrade(T ) and the return value is the service 
level number that can be provide for task T . The service level number corresponds to the logic 
version of the soft real-time task T . Details of the function degrade(T ) are as follows: 
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1) If task T  results in infeasibility of the current schedule and task T  is a soft real-time task 
1.1) Check the current service level of task T . 
1.2) If the current service level is not the lowest, we will degrade the service level of task T  

to the next lower one, i.e., select the logic version with the next shorter execution time 
to the current service level of task T . 

1.3) Repeat 1.1)–1.2) until the service level of task T  has been degraded to the lowest one 
or the feasibility check is successful. 

2) Else exit. 

 

B.3.5 Dynamic Scheduling Analysis Algorithm for an Enterprise of Systems 

The dynamic scheduling analysis algorithm for an EoS is shown below: 

1) Order the task in the task queue in increasing order of their dealines and then start with an 
empty partial schedule. 

2) Check the feasibility window. 
3) For  )(1 KlessorKtoi =

3.1) If the schedule is not feasible by extending the current schedule with task , then 
degrade(

iT
T ); 

4) Determine whether the current partial schedule is strongly feasible by performing feasibility 
check for K  or less than K  tasks in the feasibility check window. If the current partial 
schedule is strongly feasible, then truefeasible = ; otherwise . falsefeasible =

5) If  )( truefeasible ==
5.1) Compute the heuristic function H  value for the K  or less than K  tasks in the 

feasibility check windows, where )(*)( TIESTWDTH T +=  for task T . 
5.2) Extend the schedule by task T  having the smallest H  value in the feasibility check 

window and choose a suitable process for task T  by using the function . )(Tchoosep
5.3) If ( ), then go to NULLTchoosep ==)( 5.4). 
 

Else 

5.4) For each task T  in the feasibility check window, if task T  is associated with a new 
component system and is not feasible in the current schedule, compute and record 

 (the maximum execution time threshold (METT) of task *
TE T ) 

5.5) Backtrack to the previous search level. 
5.6) Extend the schedule by the task T ′  having the next smallest H  value in this search 

level and choose a suitable processor for task T ′  by using function . )(Tchoosep
6) Move the feasibility check window by one task. 
7) Repeat steps 2)–6) until any termination condition listed below is met: 

7.1) A complete feasible schedule has been found. 
7.2) No more backtracking is possible. 
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8) If a complete feasible schedule is found 
8.1) Accept the addition of the new component system and the reconfiguration. 
 

Else 

8.2) Reject the additional of the new component system and the reconfiguration. 
8.3) If the task associated with the new component system results in unschedulability of the 

whole system, provide the METT of the task to the “training process.” 
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