
12th ICCRTS

Adapting C2 to the 21st Century

Use of a Systems Information Broker to Aide in the Dynamic Interfacing of C2 Nodes

Networks and Networking
C2 Metrics and Assessment

C2 Technologies and Systems

Dagohoy H. Anunciado [STUDENT]
Dagohoy H. Anunciado

SPAWARSYSCEN 24226, San Diego, CA & Naval Postgraduate School, Monterey CA
53605 Hull St Bldg A-33

San Diego CA 92152-5001
619-553-5604/619-553-6025 FAX

doug.anunciado@navy.mil

Abstract

Missions assigned to military forces will change as world events occur. Recent events like the
Indian Ocean Tsunami and Hurricane Katrina in the United States required a massive
humanitarian effort that included military forces. Information about the event needed gathering,
distributing, and analyzing to determine how best to use resources to help the people in the
devastation. Once observers gather information, establishing communications is needed before
information can be distributed. Command and Control (C2) node functions perform one or all of
the tasks of information gathering, distribution, analysis, decision making, and distribution of
decisions. C2 nodes in these situations will be mobile or fixed and will come and go as a mission
unfolds. Interfacing of C2 nodes may be hampered when the interface mechanisms are not
worked out before an event and would take time to manually work out, which delays rescue and
relief efforts. This research defines a framework and methodology for dynamically interfacing
C2 nodes to a C2 enterprise to accomplish large missions such as responding to operations other
than war (OOTW), e.g., natural and man-made disasters, peacekeeping, and counter drug
operations.1 Regional conflicts and general war are other situations requiring C2 enterprise to
accomplish a large mission.

 ii

1. Introduction (Motivation)

Missions assigned to military forces will change as world events occur. Events like the Indian
Ocean Tsunami2 devastated coastal regions of Indonesia, Sri Lanka, India, and Thailand, and
also affected Somalia, Myanmar, the Maldives, Malaysia, Tanzania, Seychelles, Bangladesh,
South Africa, Yemen, Kenya, and Madagascar. Hurricane Katrina in the United States created a
storm surge that caused severe and catastrophic damage along the Gulf coast, devastating the
cities of Mobile, Alabama, Waveland, Biloxi, and Gulfport in Mississippi, and New Orleans and
other towns in Louisiana. Levees separating Lake Pontchartrain from New Orleans were
breached by the surge, ultimately flooding 80% of the city and many areas of neighboring
parishes for weeks.3 Both events required a massive humanitarian effort that included military
forces.

When these types of events occur, information about the event needs gathering, distributing, and
analyzing to determine how best to use resources to help the people in the devastation. Once
observers gather information, establishing communications is needed before information can be
distributed. Command and Control (C2) node functions perform one or all of the tasks of
information gathering, distribution, analysis, decision making, and distribution of decisions. C2
nodes in these situations will be mobile or fixed and will come and go as a mission unfolds.
Since C2 systems may have pieces of information that a decision maker will need, interfacing
with other C2 systems is necessary in order get a big picture for decision makers to formulate
their decisions. The goal of this research is to present and implement a systematic method for the
dynamic interfacing of C2 systems. The core of this method is an entity called the Systems
Information Broker (SIB). The SIB serves as an arbitrator that will determine whether the
interfacing is feasible, and as a uniform interfacing platform to support the interfacing of real-
time and non-real-time systems. To aid in the interfacing feasibility, a pre-formulated set of
methods will be determined that are predicted to yield interfaces among systems. The focus of
this research is determining the constraints on the methods used in interfacing systems that will
allow a static calculation that can predict that an interface between systems is feasible.

2. Basic Architecture and Framework

The goal of this research is to present and prototype a systematic method to facilitate the
dynamic interfacing of real-time and non-real-time systems. The core of the method is an entity
called the Systems Information Broker (SIB). We propose to breakdown the responsibility of the
SIB into two parts with this research focusing on the first part.

1) SIB will serve as an arbitrator that will determine whether the interfacing is feasible by
considering the satisfaction of timing constraints and resource usage.
1.1) SIB serves as an arbitrator taking into account the reconfiguring issues involved in the

enterprise of systems supporting forces and units used to fulfill a new mission. We will
need to create a calculation or mechanism for determining whether the proposed
methods for interfacing systems are schedulable as systems are dynamically added,
deleted, and immigrated.

1.2) In addition, we will need to determine the optimality goals and constraints for the
resources used on the interfacing systems. Before determining the optimality goals and

 1

constraints, we will need to determine the metrics and calculation mechanisms that
determine the current resource use. Once current resource use is known, one can then
chose optimality goals and constraints for the interfaced resources. A mechanism will
be needed to adjust the resource use to comply with the goals and constraints when
resources are being over used. The SIB will use these mechanisms to determine if
resources are used properly and make adjustments to comply with goals and
constraints, but since we will not have complete information of the global state of the
interfaced systems these mechanisms will only give suboptimal resource use. The goal
is to still provide effective use of resource, but not necessarily optimal resource use.

2) SIB will also serve as a uniform interfacing platform to handle data interoperability and
timing constraints to support the interfacing among systems. SIB will be used in an
operational mode and serves as a uniform platform to handle the scheduling of system
interactions, and interoperability among systems.

Figure 1 is the framework of the systematic method to facilitate the dynamic interfacing of real-
time and non-real-time systems.

Systems Information
Broker

Arbitrator

Uniform
Interfacing
Platform

Model of
Real-time

Force Systems

Model of
Non-Real-time
Force Systems

Integration
Feasibility

Profile of
Force

Systems

Real-time
Force Systems

Non-Real-time
Force Systems

Schedule of
System

Interactions

Interoperability of
Systems

Figure 1 Framework of the proposed method

 2

3. Mechanism for Determining if Systems Can Interface

We plan to develop a criterion that the SIB uses to determine whether interfacing systems is
feasible. The SIB will use this criterion to determine if the enterprise of systems is schedulable
after some systems are added, deleted, or immigrated from the enterprise. We imagine that this
schedulability determination will be similar to embedded real-time schedulability but with a
higher magnitude of timing constraint values due to network delays and jitter. The immigrating
capability will be limited to non-real-time systems. To develop this criterion, a dynamic
scheduling analysis algorithm for distributed systems with non-real-time and real-time tasks
needs to be presented. Breaking down the mission the enterprise is required to accomplish into
phases of operation and placing systems to address one phase may provide a way to bound the
timing constraints that the systems handling a phase needs to meet. Calculating probabilities of
moving from one phase to another may provide an additional means of bounding the timing
constraints among real-time and non-real-time systems.

Another criterion that the SIB uses is to determine whether the enterprise of systems still has
good resource usage after some systems are added, deleted, or immigrated from the enterprise.
To develop this criterion, a resource usage metric needs to be defined and a method will be
developed to compute this metric.

This framework will model systems with the base component being a single system. The model
will not go much below the system level. A description of a system will include characteristics of
the system and applications running on the system.

3.1. Alternative Methods for Interfacing Systems

The idea is to have several methods to choose from when interfacing systems. Methods will be
ranked by scoring criteria that is explained in the next section, with the top scoring method being
the primary interfacing method and the remaining methods as alternatives.

3.2. Modeling Systems Being Interfaced

We are working the model at a systems level where simple constructs and events are passed
between systems. Modeling the systems with layers, and allow different layers of a system with
past-through channels may allow for response times for the overall system not being hindered by
individual layer transformations.

To create time-budgets with existing deployed applications and services we are going to need
tools to measure resource usage using existing OS facilities. We are also going to need a method
for determining excess resource capacity and heuristics to estimate it.

The excess capacity would be available to support the interfacing with other systems and few
tasks or ultimately all tasks required to fulfill a mission thread.

Figure 2 illustrates the constructs used to interface systems together.

 3

Figure 2 Modeling Constructs Used to Interface Systems

Systems would list out the resources it possesses and also list the resources it seeks. The systems
send these lists to the SIB for recording and future servicing. Lists of excess resource capabilities
would also be passed to the SIB. The SIB would coordinate the various lists of requested
resources and map these with available resources. The goal is to do this mapping without human
intervention, and then proceed to allocate resources to requests and then send back the lists of
resource granted plus the list of tasks currently needing service.

3.3. Application Complexity Rating

Applications used on a system vary in degrees of complexity from simple to very complex. On
the complex end are applications that require many data sets, perform a high number of
calculations on a subset of the data sets, and graphically render the calculated results. Without
these data sets, desired results may not be precise enough to be useful. Many times developers
will have an idea of what data their applications need to ingest, but these data sets are not well
documented such as what the data is making up the data set, the way data is being gathered, what
organization is maintaining the data sets, or how to get access to the data sets.

Table 1 contains the attributes that can determine the complexity of an application. An
application that is real-time and performs any of the other attributes would be considered a very

 4

complex application. An application that is non-real-time, calculation intensive, data intensive,
and graphical, or has only the real-time attribute is a complex application. A semi-complex
application would be non-real-time and has two of the three remaining attributes. A simple
application would be non-real-time and has only one of the remaining attributes.

Table 1 Complexity Attributes for an Application

Complexity Real-time Calculation
Intensive Data Intensive Graphical

 Timing
constraints
bounding
computed
results

Requiring high
number of math
calculations

Requiring high
number of data
points

Requiring high
use of graphics
to rendering
information

Simple X
Simple X
Simple X
Semi-Complex X X
Semi-Complex X X
Semi-Complex X X
Complex X X X
Complex X
Very Complex X X
Very Complex X X
Very Complex X X X
Very Complex X X
Very Complex X X X
Very Complex X X X
Very Complex X X X X

3.4. Data Set Considerations

Without knowing what data sets or information one needs or an application, process, or system
needs, one cannot perform processing with the data sets in order to get results from a formula or
model. The terms process and task will be used the synonymously throughout this paper. Before
processing formulas or models, data is needed and depending on the use of the formulas or
models, continuous processing of formulas or models may also require continuous access to the
data sets for results to be relevant to a user. Relevant results mean that a user will be able to take
actions to avoid harmful consequences.

Understanding what data sets are used is a good starting point to keeping an application relevant
to its users. Keeping the data sets organized, and knowing who and where to get updated data
sets also adds to an application’s relevance.

 5

Making the data sets organized and simple to understand may make the maintenance of data sets
easier. Plus a systems information base used to keep an enterprise of systems working may
perform better with well organized data sets Furthermore, having a flat organization for the data
sets may be an ideal way to understand the data an application or system will need.

3.5. Real-time and Non-real-time System Attributes

We will model systems by first separating real-time and non-real-time systems by their
attributes. Table 2 contains the attributes used to model real-time systems used by a force.

Table 2 Real-time System Attributes

Attribute Comment
Tasks
CPU Cycles used CPU cycles used to accomplish a

tasks
Network resource usage
Time Constraints: Finish Within or Maximum
Execution Time

Periodic, Event Driven, or Both for Task
Execution

Non-real-time force systems will be modeled with similar attributes shown in Table 3.

Table 3 Non-real-time System Attributes

Attribute Comment
Tasks
CPU Cycles used CPU cycles used to accomplish a

tasks
Network resource usage
Periodic, Event Driven, or Both for Task
Execution

3.6. Breaking Down the System Resources

Resources used by systems will be broken down into system resources and network resources.
Systems resources are further decomposed into CPU resources, memory resources, and I/O
resources. Tied with each resource are resource concerns that have the potential of diminishing
the quality of service of the resource.

Table 4 and Table 5 below have the resources being modeled plus the resource concerns for each
resource.

 6

Table 4 Real-time System Resources Modeled

Resource Resource Concern
System

CPU Lack of CPU cycles to complete a task
calculation that will cause a task to miss its
deadline.

Memory Lack of memory causing a task to miss its
deadline.

I/O Waiting for I/O resources that causes a task
to miss its deadline.

Network
Bandwidth Lack of Bandwidth that causes a task to

miss its deadline.
Quality of Service Jitter and Latency that degrade information

flow and causes a task to miss its deadline.

Table 5 Non-real-time Systems Resources Modeled

Resource Resource Concern
System

CPU Lack of CPU cycles prevents a task from
completing its computations in a usefully
timeframe, i.e., meeting the mission thread
time-budget.

Memory Lack of memory prevents a task from
completing its computations in a usefully
timeframe, i.e., meeting the mission thread
time-budget.

I/O Waiting for I/O resources prevents a task
from completing its computations in a
usefully timeframe, i.e., meeting the
mission thread time-budget.

Network
Bandwidth Lack of Bandwidth case prevents a task

from completing its computations in a
usefully timeframe, i.e., meeting the
mission thread time-budget.

Quality of Service Jitter and Latency that degrade information
flow and prevents a task from completing
its computations in a usefully timeframe,
i.e., meeting the mission thread time-
budget.

 7

3.7. Scoring Criteria of Interfacing Methods

Interfacing methods are scored using criteria of the interfacing latency, capacity, and quality of
service which includes availability and reliability. Other criteria may include cost of using the
interface.

3.7.1.

3.7.2.

Computational Model for an Enterprise of Systems

Y. Qiao, et al., developed an admission control method for dynamic software reconfiguration in
the systems of embedded systems (SoES) domain.4 This method prevents dynamic software
reconfiguration from damaging the high confidence of SoES. We plan use many of the concepts
of the SoES admission control method to provide the computational model for the enterprise of
systems (EoS) admission control method.

The EoS admission control method has two parts 1) modeling the systems making up the
enterprise of systems and 2) the dynamic scheduling analysis for the EoS. The modeling of the
systems mathematically describes the functional and non-functional aspects of the EoS
requirements. This description has an external view model and an internal view model. The
external view model is customer view focused, while the internal view model is designer view
focused.

Appendix A describes the admission control model for SoES developed by Y. Qiao, et al., that
we will modify and use in representing the EoS.

Maintaining System Schedule

Interfacing a system into an EoS must not interfere with an individual system’s processing to
meet local task schedules. An EoS schedule is first determined by the time-budget for the
mission threads that an EoS supports. Development of time-budget allocations for time-critical
mission threads is a recommendation of the Committee on C4ISR for Future Naval Strike
Groups.5

The below tuple represents a mission thread time-budget.

(MTID, TCM, MTD, R) (1)

MTID Mission Thread Identification

TCM Time to Complete Mission Thread

MTD Mission Thread Description

R Set of n Resources Needed to Accomplish Mission Thread, where n > 0.

 8

A mission thread may be made up of multiple tasks and each task is represented by the following
tuple.

(TID, TCT, TD, TR) (2)

TID Task Identification

TCT Time to Complete Task

MTD Task Description

TR Set of Resources Needed to Accomplish Task where TR ⊆ R.

TCT is constrained by the mission tread time-budget, TCM. Resources needed to complete a task
mainly include data sets, but may include computational, storage, networking, radio, and other
physical resources.

3.7.3.

3.7.4.

Maintaining Optimality Goals and Constraints with Respect to Resource
Usage

The goal for individual system resources usage is to utilize the resources close to maximum, at
least 80%, with 20% to surge processing. But the emphasis is to maintain the system processing
schedule even at the cost of underutilizing the resources.

Pulling it Together

The application complexity rating, data set considerations, real-time system attributes, and
breaking down of resources will compose the majority of the internal view mentioned in
Appendix A.

Once a request for interfacing a new system into the EoS occurs, the information specified above
would need to be provided by the requesting system. A precedence graph would be built for the
proposed new system in the EoS, breaking down the mission thread this new system will help to
fulfill, into the constituent tasks as with precedence graph for a SoES in Appendix B.2. The
mission tread precedence graph will also have non-real-time dependencies that when broken
down into its constituent tasks will have non-real-time task interspersed throughout the
precedence graph. These non-real-time tasks can act as separators between real-time segments in
the precedence graph. For example, in Figure 3, task T4 separates task T7 and partially separates
T6 from the rest of the real-time tasks in the precedence graph.

 9

T1

T2 T3 T4

T5 T6

T8

T7

Figure 3 Precedence Graph with a Non-Real-Time Tasks T4 Example

Since non-real-time tasks would act as separators in the precedence graph, the non-real-time
computation needs to be handled separately using a mechanism to allocate a percentage of a
system’s CPU to best effort tasks processing. For example, initially setting aside 10% of a
system’s CPU for best effort processing. Profiling of the non-real-time tasks at the initial CPU
allocation would provide an average maximum execution time, ready time, start time, and task
interaction latency, which is beyond the scope of this paper. These average task attributes would
than be used to seed the real-time task attributes described in Appendix B.2 for the non-real-time
tasks. Thus making the non-real-time tasks pseudo real-time tasks and allow us to use the
dynamic scheduling analysis presented in Appendix B for the proposed EoS.

If the analysis shows that a feasible schedule is achieved, then interfacing of the new system into
the EoS is allowed. Otherwise the request to interface is denied and the denied request could then
be sent to the “training process” to determine what settings could be used to obtain a feasible
schedule. The “training process” would help determine options for the real-time time tasks in
finding constraints that would lead to a feasible schedule or if the schedule is not being met due
to the non-real-time tasks not completing. If non-real-time tasks are the reason for no feasible
schedules, the “training process” could determine if allocating additional CPU to best effort tasks
processing would provide a feasible schedule.

 10

4. Conclusion

This research provides a systematic method for dynamically interfacing systems to form an
enterprise of systems. At the EoS level the SIB serves as an arbitrator for the tasks requiring
remote resources or remote execution on other systems in the EoS. Given the attributes of the
systems and remote resource needed by a task, the SIB will determine if the tasks and the
systems making up a mission thread will be able to interface with the EoS and continue to
maintain local tasks schedules.

Appendix A Admission Control Method Modified for the

Enterprise of Systems (EoS)

The functional and non-functional aspects of the EoS are represented with two views: the
external view model and the internal view model.

The external view model is denoted as ζ ′ , and represented as

()HG,=′ζ (A1)

G is the functional emergent property vector that represents the functional aspect of the EoS
requirements, , where),,,(21 igggG K=]),1[(ligi ∈ . denotes one of the functional emergent
properties describing the emergent behavior of the EoS and l is the number of functional
emergent properties. The most typical functional emergent property identified in the external
view model is timing properties such as maximum response time.

ig

H denotes non-functional emergent properties related to high confidence. It is described by a
high-confidence metric vector, , where),,,(21 ihhhH K=]),1[(zihi ∈ is a high confidence metric
and z is the number of high confidence metrics. Some typical metrics are failure rate, maximum
time between two successive failures, the number of faults that can be tolerated, maximum time
between safety violations and security level etc.

The Internal view model is denoted as ζ , and represented as

()21,,,,, FFDCES=ζ (A2)

S is a component system set, {],1[| nisS i }∈= . denotes a component system constituting the
EoS and is the number of component systems in the whole EoS.

is
n E denotes the interaction

sets between component systems, { }],1[,| nkjeE jk ∈= , where denotes a set of interactions
from component system to component system . C denotes the constraint sets on how the
component systems are used in the given environment,

jke

js ks
{ }],1[| nicC ∈i= . is a set of

constraints imposed on . denotes the constraint sets on interactions between component
systems,

ic

is D
{ }],1[,| nkjdD jk ∈= , where is a set of constraints applied to interactions in . jkd jke

 11

1F and are two mappings that refine emergent properties of EoS into local constraint sets
imposed on component systems and interactions, i.e.,

1F
),(1 HGFC = and .),(2 HGFD =

In internal view model, timing constraints are included in C and . Typical timing constraints
include deadline and maximum execution time of the component system and latency of the
interaction between two specific component systems. Furthermore, some resource constraints
such as access mode and control constraints such as trigger method are also included in C and

. All these constraints can be extracted as parameters used by dynamic scheduling analysis for
the EoS. In addition, each component system is either atomic or composite in internal view
model. For convenience, to support the scheduling analysis, we take each atomic component
system as a task to be scheduled by the scheduling algorithm.

D

D

Appendix B Dynamic Scheduling Analysis for an Enterprise of
Systems

B.1 Dynamic Scheduling Task Model

Since EoS are characterized by dynamic combinations of component systems, in this paper we
mainly consider the aperiodic tasks. Y. Qiao et al., presented a task model for the use of dynamic
scheduling analysis in SoES and we propose to extend this model for the EoS dynamic
scheduling analysis as follows:6

1) Each task T is described as a tuple ()TTTTT EvDra ,,,, . Here, is task Ta T ’s arrival time and
 is Tr T ’s ready time. denotes TD T ’s deadline. is the number of Tv T ’s different logic

versions. represents TE T ’s maximum execution time. For hard real-time tasks, is a
vector denoted by

TE
()m

TT ,...,2
T eee ,1

(mjvie T
ij
T =

, where is the maximum execution time of
task when it executes on processor and is the number of processors in the EoS. For
soft real-time tasks, the maximum execution time is a matrix denoted by

, where is the maximum execution time of task

),...,1(mje j
T =

jp m

TE
),...,1;,...,1= ij

Te T ’s logic
version i when it executes on processor . Furthermore, for each , the

maximum execution time of each logic version is ordered such that . Non-
real-time or best-effort tasks provided periods of execution time that can change at runtime.

jp),...,1=(mjj
jv

T
j

T
j

T
Teee ≤≤≤ ...21

2) Hard and software real-time tasks are non-preemptive and non-periodic, and these tasks can
not be parallelized.

3) Besides processors, tasks might need some other resources such as data structures, variables,
and communication buffers for their executions. Every task can access a resource either in
shared mode or in exclusive mode.

The characteristics of the task listed above can be extracted from internal view computational
model addressed in Appendix A. For example, the deadline and maximum execution time of a
task can be derived from constraint sets imposed on the corresponding component system, and
the access mode of a task can be derived in the same way.

 12

B.2 Dynamic Scheduling Precedence Graph

We will use the same precedence graph concept as Y. Qiao, et al.7, to represent tasks, but we will
have two levels of representations. The first level will model task precedence at the individual
system level, and the second level will model task precedence at the EoS level. Tasks requiring
remote resources or remote execution on other systems will have their resources allocated and
dispatched through the SIB.

Since the interaction of component systems in an EoS may be just as ubiquitous as SoES, so
precedence constraints shall be considered during the scheduling analysis. These constraints
specify whether a task needs to precede another task. If the output of task is needed as input
by task , then task is constrained to be preceded by task . Furthermore, there are two
kinds of precedence constraints: one is the AND constraint; another is the OR constraint.
Accordingly, there are two types of tasks: the AND tasks cannot begin their computing until all
their preceding tasks have completed, while the OR tasks can begin after any one of their
preceding tasks complete.

xT

yT yT xT

Definition B.2.1: represents that task must precede task . yx TT p xT yT

Definition B.2.2: The precedent-task set of task is denoted by ; that is,
indicates which tasks must be completed before can begin.

xT)(xTp)(xTp

xT

Definition B.2.3: Assume is a task. denotes its ready time; denotes its
maximum execution time; denotes its start time.

xT readytimeTx . metTx .
starttimeTx .

Definition B.2.4: Assume is the interaction between task and task . denotes its
latency.

xyI xT yT latI xy .

The precedence constraint can be represented by means of a precedence graph. In a precedence
graph, each node represents a task (or a component system). The arrows indicate which task has
precedence over another task. Figure 4 shows an example of a precedence graph that we use in
this paper.

 13

T1

T2 T3 T4

T5 T6

T8

T7

Figure 4 Precedence Graph Example

The precedent-task sets for the graph in Figure 4 are as follows:

∅=)(1Tp
{ }12)(TT =p
{ }13)(TT =p
{ }14)(TT =p
{ }325 ,)(TTT =p
{ }436 ,)(TTT =p
{ }47)(TT =p
{ }68)(TT =p

The precedence graph can be constructed based on the internal view computational model since
precedence relationships between tasks can be derived from interactions between component
systems described in this model. In this case, AND and OR tasks can be identified by a control
constraint, i.e., trigger method imposed on each component system, which is described in the
internal view computational model. If the trigger method of a component system is trigger by
ALL, this component system will be taken as a AND task. If the trigger method of a component
system is trigger by SOME, this component system will be considered as an OR task. In addition,
the latency of interaction between two specific tasks can be derived from the constraint of
latency imposed on corresponding interaction described in the internal view computational
model. According to precedence relationships, we can compute the start time for each task
described in the precedence graph. The principle for this computation is described as follows:

 14

If is an AND task, and , xT xy TT p xz TT p

))...,...(,.(. latImetTstarttimeTlatImetTstarttimeTMAXreadytimeTMAXstarttimeT zxzzyxyyxx ++++≥

If is an OR task, and , xT xy TT p xz TT p

))...,...(,.(. latImetTstarttimeTlatImetTstarttimeTMINreadytimeTMAXstarttimeT zxzzyxyyxx ++++≥

B.3 Dynamic Scheduling Algorithm for EoS

In this section, we will extend the SoES dynamic schedule analysis to implement the dynamic
schedule analysis for the EoS.

Assume there are processors , denoted as . Each processor m)1(>m mppp ,...,, 21 ip),...,1(mi =
is assigned a real number , which is proportional to its speed, i.e., faster processor
is assigned to a greater . At the same time,

it),...,1(mi =

it i∃ , j∃ , where mi ≤≤1 , mj ≤≤1 , ji ≠ , and
. ji tt ≠

B.3.1 Definitions for the EoS Dynamic Scheduling Algorithm

In this section we will provide the definitions used for the EOS dynamic scheduling algorithm.

Definition B.3.1.1: A task is feasible if its timing constraint and resource requirements are met
in the schedule. A schedule for a set is said to be a feasible schedule if all the tasks are feasible in
the schedule.

Definition B.3.1.2: A partial schedule is a feasible schedule for a subset of tasks. A partial
schedule is said to be strongly feasible if all the schedules obtained by extending the current
schedule by any one of the remaining tasks are also feasible.

Definition B.3.1.3: (or) is the earliest time when resource becomes available
for shared (or exclusive) access.

s
kEAT e

kEAT kR

Definition B.3.1.4: is the ideal earliest start time of task)(TIEST T . Let PE be the set of
processors and be the set of resources required by task TR T . Thus,

. Here, is the
start time for task

)),(,.()(u
kRTk ∈RPEp EATMAXPavailtimeMINstarttimeTMAXTIEST ∈= starttimeT .

T . To derive the start time for task T , we should go through the precedence
graph for the whole system and find out the precedent-task set of task T . Based on this, we can
use the principle described in Section B.2 to compute the start time for task T .
denotes the earliest time at which the processor becomes available for executing a task and

)(Pavailtime
P

 15

the third term denotes the maximum among the earliest available times of the resources required
by task T (for shared mode and su = eu = for exclusive mode).

Definition B.3.1.5: denotes the feasibility of task),(PTavail T executing on the processor .
If the deadline of task

P
T can be met by executing on processor , ; otherwise

.
P 1),(=PTavail

0), P(=Tavail

Definition B.3.1.6: is the minimum available time of processors in whole systems,
i.e., .

mesysavailti
))((PavailtimeMINmesysavailti PEP∈=

Definition B.3.1.7: reflects the speed of processor . The lower the speed of processor
, the larger the value of .

)(PSpe P
P)(PSpe

Definition B.3.1.8: denotes the finish time of task),(TPFinishtime T when it executes on
processor . P

B.3.2 Overview of the EoS Dynamic Scheduling Algorithm

This section will provide an overview of the scheduling algorithm for both dynamical and
integrated scheduling a task sets composed of hard and soft deadlines, plus best effort pseudo
deadlines. The algorithm is based on heuristic searching. When a set of new component systems
with precedence and resource constraints arrive at an EoS, the tasks associated with these
component systems along with other unscheduled tasks already in an EoS will trigger this
scheduling algorithm.

In this algorithm, the schedule starts at the root of the search tree, which is an empty schedule.
The algorithm tries to extend the schedule (with one or more tasks) by moving to one of the
vertices at the next level in the search tree until a fully feasible schedule is derived. For this
purpose, we set the feasibility check window with K size for the unscheduled task set. We will
then check the feasibility of the current schedule by extending the schedule with each task in this
window. Once the current schedule is not feasible due to a certain task in the feasibility check
window, we will use a degradation policy described in Section B.3.4to degrade this task.

If the current schedule is strongly feasible, we will choose the task with the smallest value of the
heuristic function H to extend the current schedule. The heuristic function H for task selection
is , where is the deadline of task)(*)(TIESTWDTH T += TD T and W is a weight value.
Once a task, within the feasibility check window, is selected to extend the current schedule, the
task will be assigned to a specific processor according to the task assignment policy, which is
described in Section B.3.3.

Otherwise, if the current schedule is not strongly feasible (even after all soft real-time tasks in
the feasibility check window that caused the infeasibility of the current schedule have been
degraded to the lowest service level), we will back track to the previous search level. We will
then extend the current schedule by another task having the next smallest H value in this search
level and choose a suitable processor for this task according to the same task assignment policy.

 16

Furthermore, if a task in the feasibility check window is associated with a new component
system and is found to result in infeasibility of the current schedule, we will compute and the
maximum execution time threshold (METT) for this task. The computed value for the METT is
the upper bound of the maximum execution time that this task needs to meet to make the
extended current schedule feasible. Assuming that represents the METT of task *

TE T , then
.)(* TIESTDE TT −=

After the feasibility check for the current schedule, the feasibility check window is moved by one
task. The above process is repeated until a complete feasible schedule is found or no more
backtracking is possible. If a complete feasible schedule is found, then adding the new
component systems will not violate the schedulability of the whole system so that the dynamic
reconfiguration is accepted. Otherwise, the dynamic reconfiguration is rejected since adding the
new component systems will damage the high confidence of the whole system.

In the case where the dynamic reconfiguration is rejected, we need to further detect if the
unschedulability of the whole system resulted from certain new component systems. If so, the
recorded METT of tasks associated with these new component systems will be provided as the
suggested maximum execution times to the “training process” for virtually reducing their
maximum execution times.

B.3.3 Task Assignment Policy for the EoS

The task assignment policy is used to select the most suitable processor to execute task T . Task
T is selected to extend the current partial schedule during heuristic searching. We will use a
heuristic function to achieve this goal. This heuristic function was developed by Y. Qiao, et
al..

S
8 For each processor , P)()()(PSpePavailtimePS += . The basic idea of the task assignment

policy is to select the processor for executing task T based on the largest heuristic function
value for a given processor

S
P . Since earlier and faster speed of the processor

having the minimum available time after executing task
mesysavailti

T can lead to higher feasibility of
unscheduled tasks. Furthermore, we will check whether all successive tasks of task T can meet
their deadlines if T is executed in the processor having the largest value. If the answer is
negative, we should choose the processor having the next larger value.

S
S

In this dynamic scheduling analysis algorithm, the new task assignment policy is denoted as the
function . This function returns the identification number of the processor selected
for executing task

)(Tchoosep
T , otherwise NULL is returned. The detailed task assignment policy is listed

below:

1) If the resources required by task T are no more than processors, then choose the processor
 that can meet the following constraint for task P T ,.

2) If task T requires some other resources besides the processors, then employ the method
listed below:
2.1) If there is no intersection between the resources required by task T and the resources

required by the remaining tasks, then employ the same processor selections policy as 1)
for task T .

 17

2.2) If there is an intersection between the resources required by task T and the resources
required by the remaining tasks, and both task T and the remaining tasks have shared
access to the resources in this intersection, then again employ the same processor
selections policy as 1) for task T .

2.3) Otherwise, the policy used to choose the processor for task T is listed below: (We
assume that processor meets the following constraints:

)
'P
{ }))pe(()'(1),(| availtimeMAXPavailtime peTavailandPEpepepe ==∈∈=

2.3.1) If and TT ESTRr ≤ { }))((1),(| peavailtimeMAXESTR peTavailandPEpepepeT ==∈∈= and
, we will employ the same

processor selections policy as
}{)()(1),(| peSMAXPS peTavailandPEpepepe ==∈∈==′

1) for task T . is the time resources are
available for task

Tr
T and is the earliest available time of all resources

required by task
TESTR

T .
2.3.2) If and and

, we will employ the same
processor selections policy as

TT ESTRr ≥ { }))((1),(| peavailtimeMAXESTR peTavailandPEpepepeT ==∈∈≥

{ }))(()'(1),(| peSpeMAXPSpe peTavailandPEpepepe ==∈∈==
1) for task T .

2.3.3) Otherwise, we will choose the processor that can meet the following
constraint for task

P
T :

 { })),((),(1),(| TpeFinishtimeMINTPFinishtime peTavailandPEpepepe ==∈∈=
3) Check whether all successive tasks of task T can meet their deadlines under current

processor selection.
3.1) If it is not true, choose another processor with the next largest value for case S 1), 2.1),

2.1), 2.3.1), and 2.3.2); choose another processor with the next minimum value of
function for case Finishtime 2.3.2).

3.2) Go back to 3) until the processor is selected or no more processors can be selected.
4) If a processor is selected, return the identification number of this processor; otherwise, return

. NULL
B.3.4 Task Degradation Policy for the EoS

Y. Qiao, et al., developed a degradation policy for SoES that would iteratively degrade the
quality of service (QoS) of soft real-time tasks to improve the schedulability of hard real-time
tasks. This degradation is done during the feasibility check, where we first use the logic version
of the soft real-time task with the longest execution time in the feasibility check window. We
assume that the longer the execution time of the logic version, the better the quality of the result.
Once the current schedule is not strongly feasible due to unschedulability of a soft real-time task
in the feasibility check window, the QoS of this soft real-time task is degraded to the next lower
logic version. This degradation will continue until the feasibility check is successful. If the
feasibility check is still not successful when the QoS of of this soft real-time task has been
degraded to the lowest logic version, a backtracking will occur. We denote the detailed
degradation policy for task T with the function degrade(T) and the return value is the service
level number that can be provide for task T . The service level number corresponds to the logic
version of the soft real-time task T . Details of the function degrade(T) are as follows:

 18

1) If task T results in infeasibility of the current schedule and task T is a soft real-time task
1.1) Check the current service level of task T .
1.2) If the current service level is not the lowest, we will degrade the service level of task T

to the next lower one, i.e., select the logic version with the next shorter execution time
to the current service level of task T .

1.3) Repeat 1.1)–1.2) until the service level of task T has been degraded to the lowest one
or the feasibility check is successful.

2) Else exit.

B.3.5 Dynamic Scheduling Analysis Algorithm for an Enterprise of Systems

The dynamic scheduling analysis algorithm for an EoS is shown below:

1) Order the task in the task queue in increasing order of their dealines and then start with an
empty partial schedule.

2) Check the feasibility window.
3) For)(1 KlessorKtoi =

3.1) If the schedule is not feasible by extending the current schedule with task , then
degrade(

iT
T);

4) Determine whether the current partial schedule is strongly feasible by performing feasibility
check for K or less than K tasks in the feasibility check window. If the current partial
schedule is strongly feasible, then truefeasible = ; otherwise . falsefeasible =

5) If)(truefeasible ==
5.1) Compute the heuristic function H value for the K or less than K tasks in the

feasibility check windows, where)(*)(TIESTWDTH T += for task T .
5.2) Extend the schedule by task T having the smallest H value in the feasibility check

window and choose a suitable process for task T by using the function .)(Tchoosep
5.3) If (), then go to NULLTchoosep ==)(5.4).

Else

5.4) For each task T in the feasibility check window, if task T is associated with a new
component system and is not feasible in the current schedule, compute and record

 (the maximum execution time threshold (METT) of task *
TE T)

5.5) Backtrack to the previous search level.
5.6) Extend the schedule by the task T ′ having the next smallest H value in this search

level and choose a suitable processor for task T ′ by using function .)(Tchoosep
6) Move the feasibility check window by one task.
7) Repeat steps 2)–6) until any termination condition listed below is met:

7.1) A complete feasible schedule has been found.
7.2) No more backtracking is possible.

 19

8) If a complete feasible schedule is found
8.1) Accept the addition of the new component system and the reconfiguration.

Else

8.2) Reject the additional of the new component system and the reconfiguration.
8.3) If the task associated with the new component system results in unschedulability of the

whole system, provide the METT of the task to the “training process.”

1 Joint Doctrine for Military Operations Other Than War, Joint Pub 3-07, 16 June 1995.
2 2004 Indian Ocean Earthquake, Wikipedia,
http://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake, Accessed on 12 November 2006.
3 Hurricane Katrina, Wikipedia, http://en.wikipedia.org/wiki/Hurricane_Katrina, Accessed on 12
November 2006.
4 Qiao, Y., H. Wang, Luqi, and V. Berzins, “An Admission Control Method for Dynamic
Software Reconfiguration in Complex Embedded Systems,” International Journal of Computers
and Their Applications, Vol. 13, No. 1, March, 2006, pp. 28-38.
5 C4ISR for Future Naval Strike Groups, Committee on C4ISR for Future Naval Strike Groups,
National Research Council, 2006, http://www.nap.edu/catalog/11605.html, Accessed on 13
November 2006.
6 Ibid.
7 Ibid.
8 Qiao, Y., H. Wang, Luqi, and V. Berzins, “An Admission Control Method for Dynamic
Software Reconfiguration in Complex Embedded Systems,” International Journal of Computers
and Their Applications, Vol. 13, No. 1, March, 2006, pp. 28-3 8.

 20

http://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake
http://en.wikipedia.org/wiki/Hurricane_Katrina
http://www.nap.edu/catalog/11605.html

	1. Introduction (Motivation)
	2. Basic Architecture and Framework
	3. Mechanism for Determining if Systems Can Interface
	3.1. Alternative Methods for Interfacing Systems
	3.2. Modeling Systems Being Interfaced
	3.3. Application Complexity Rating
	3.4. Data Set Considerations
	3.5. Real-time and Non-real-time System Attributes
	3.6. Breaking Down the System Resources
	3.7. Scoring Criteria of Interfacing Methods
	3.7.1. Computational Model for an Enterprise of Systems
	3.7.2. Maintaining System Schedule
	3.7.3. Maintaining Optimality Goals and Constraints with Respect to Resource Usage
	3.7.4. Pulling it Together

	4. Conclusion
	Appendix A Admission Control Method Modified for the Enterprise of Systems (EoS)
	Appendix B Dynamic Scheduling Analysis for an Enterprise of Systems
	B.1 Dynamic Scheduling Task Model
	B.2 Dynamic Scheduling Precedence Graph
	B.3 Dynamic Scheduling Algorithm for EoS
	B.3.1 Definitions for the EoS Dynamic Scheduling Algorithm
	B.3.2 Overview of the EoS Dynamic Scheduling Algorithm
	B.3.3 Task Assignment Policy for the EoS
	B.3.4 Task Degradation Policy for the EoS
	B.3.5 Dynamic Scheduling Analysis Algorithm for an Enterprise of Systems

