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A Ghost of a Chance:  Polyagent Simulation of Incremental Attack Planning1

Abstract 
 
One technique for improving a C2 planning process is to explore as broad a range of potential 
scenarios as possible, while intelligently constraining the search space and managing the 
uncertainty of outcomes. From a modeling and simulation perspective, one novel way to do this 
is to employ a “polyagent” modeling construct to produce emergent planning behavior.   A 
polyagent is a combination of a persistent agent (an “avatar”) supported by a swarm of transient 
agents (“ghosts”) that assist the avatar in generating and assessing alternative (probabilistic) 
futures.  The ghosts in the model employ pheromone fields to signal, identify, and act on threats 
and opportunities relative to the goals, which are then reported back to the avatars for integration 
and decision-making. 
 
The current work implemented a polyagent model of attack planning in a generic spatio-temporal 
space with Red/Blue forces and multiple targets pursued by Red.  The results indicated that Red 
polyagents enjoy an asymmetrical advantage when force strength and planning behaviors, 
(specifically the number of steps in the future the ghosts simulate) are identical. However, 
simulating more than a few steps in the future has either no or negative impact on polyagent 
performance. 
  
 

                                                 
1 The publication of this paper does not indicate endorsement by the Department of Defense, IDA, 
or NewVectors LLC, nor should the contents be construed as reflecting the official positions of 
those organizations. 
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1. INTRODUCTION 

 
Agent-based models have been used to address a wide variety of C2 problems [e.g., 1, 2, 3, 4]. 
Adapting such models to C2 has many challenges. One is that as the number of agents and 
number of decision-making cycles in a C2 setting increases, the set of potential outcomes that 
could be explored also increases exponentially. Therefore, to be as scalable as possible while still 
providing reliable results, agent-based models must at some point provide aids to guiding the 
exploration of the planning space in a manner that both explores as many potential worthy 
alternatives as possible, yet is still computationally efficient. 
 
Traditional agent-based models execute a single trajectory through the vast space of possible 
futures of the system that is spanned by the possible state changes of the agents and their shared 
environment. These state changes may occur probabilistically, especially when it comes to 
outcomes of interactions with the environment. Any such uncertain outcome in individual 
actions or local interactions in a non-linear model opens the possibility for the emergence of 
drastically different outcomes at the system level (“for want of a nail the battle was lost”).  
The analysis of the structure of this state space that may be full of complex attractors cannot be 
performed without exploring multiple alternative futures, which, in traditional agent-based 
modeling approaches requires the repeated execution of the model under varying initial 
conditions (e.g., different random seeds). In past research we have developed techniques for the 
automated generation and analysis of multiple runs of a multi-agent simulation model and the 
adaptive search for interesting features (e.g., phase transitions) in the emergent dynamics of such 
models [5]. The disadvantage of the “sweep” approach to the analysis of emergent multi-agent 
system dynamics is that it is an off-line analysis process. With the recently developed polyagent 
construct, such an analysis may be performed by the agents themselves on the fly, allowing them 
to select among all the upcoming attractors those with a desirable outcome.  
 
In the case where the agents happen to be doing incremental or local rather than global planning 
and the agents need to self-organize, exploring a variety of potential interactions during each 
decision cycle is even more important. What we seek is an agent-based modeling construct that 
allows us to do so. 

 
2. THE POLYAGENT CONSTRUCT 

 
The polyagent modeling construct [6] has been proposed as a mechanism for addressing some of 
the shortcomings of traditional agent-based models noted above.  An individual polyagent is 
composed of two key components, an “avatar” and its swarm of “ghosts”. The “Avatar” is a 
persistent agent who takes action in the virtual world, and uses results suggested by the activities 
of its “ghosts” (see below) to decide its next action.  The “ghost” is a transient actor in the virtual 
world that plays out alternative probabilistic scenarios over some “forecast horizon” of future 
timesteps2 in the simulation by interacting through pheromone fields (in the present example, the 
opposing ghosts and the target).   

                                                 
2 Note that in other applications (e.g., STRONG-ARM in DARPA RAID) we actually insert our ghosts in the recent 
past at an “insertion horizon” to observe their trajectory from the past to the present for evolutionary model tuning 
against real-world observations. 
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The ghosts effectively act as surrogates for the avatar, which allows the avatar to “play-act” 
different courses of action and integrate the results to decide the next step. “Play-acting”, in this 
context, refers to another layer of modeling and simulation executed by the ghosts taking place 
within the higher-level space inhabited by the avatar. It is important to note that ghosts do not 
have a narrower scope of responsibility than the avatar as in a typical commander – subordinate 
relationship; rather, the ghost generally has the same objectives and action alternatives that its 
corresponding avatar has, only in a different modeling space, where each ghost reacts to the 
actions of other ghosts, starting from the basis of the last known actions of the avatars. The 
avatar has full access to the ghosts’ virtual experiences and outcomes, and can plan its avatar 
actions accordingly in avatar space. While the avatar will generally wait until its ghosts have 
completed a full virtual cycle before acting, it can cut the ghosts’ cycle short to get the current 
virtual data if a avatar decision in avatar space is required sooner than this. 
 
A more significant difference between the avatar and its ghosts is the kind of reasoning 
technology used in the respective entity. We developed this polyagent construct to combine more 
complex, single-agent reasoning techniques as typically used in classical Artificial Intelligence 
based agent systems (e.g., Belief-Desire-Intention (BDI) Logic), with Swarm Intelligence 
reasoning techniques (i.e., many simple agents with emergent population properties) that derive 
from Artificial Life research. Thus, the avatar is the host for the complex reasoner while the 
ghosts are the simple agents with emergent population properties. 
 
Polyagent models have been used in a variety of settings, including factory scheduling, robotic 
vehicle path planning, and characterizing the behavior of other agents [6].  The collaboration of 
the avatars and ghosts offer the opportunity for the modeler to explore a great variety of planning 
alternatives in a single run of the model.   
 
We now discuss how we have adapted the polyagent construct in a specific command and 
control setting that employs incremental attack (and defense) planning. 
 

3. POLYAGENT MODEL DESCRIPTION 
 
Overview 
 
The polyagent model for this simulation is designed to implement a relatively simple 
attack/defense scenario, in which a Red (offensive) Force, a Blue (defensive) Force, and single 
or multiple fixed targets are arranged in a grid configuration.  The Red forces have the goal of 
reaching and destroying targets, while the Blue forces have the goal of eliminating Red forces. 
Figure 1 shows a snapshot of the model during a typical run.   
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Figure 1: Snapshot of Polyagent Model 

Target 

Red avatars 
and ghosts 

Blue avatars 
and ghosts 

 
In Figure 1 above, the large blue dots represent Blue force avatars, with the small blue dot 
clusters around each one representing that avatar’s ghosts.  The corresponding relationship holds 
for the red dots and the Red forces.  Green dots (in the center in the above figure) represent 
targets pursued by Red forces. Although the number of ghosts associated with each avatar is the 
same at the beginning of the ghost’s forecast horizon within an avatar timestep, as ghosts “die” 
over the course of the forecast horizon, they disappear from the display as expected. 
 
The modeling environment used to run the model and visualize simulations is a Java-based 
application.  Configuration points in the application (described below) that modify agent 
behavior and modeling environment variables are set in editable XML files. 
 
Initial Conditions 
 
As a simulation run begins, a specified (configurable) number of targets and Red/Blue forces are 
placed on a grid.  In our simulations, we explored both symmetrical (equal Red/Blue forces) and 
asymmetrical (greater Blue forces) scenarios.  In addition, the polyagents and targets can be 
placed at specified locations on the grid, or at random locations.  Our primary focus in the 
experiments we ran was to explore random initial placement of targets and forces. Random 
placement was chosen because we were more interested in “unpredictable” scenarios where the 
location of the enemy and the identity of the targets are not initially known, a situation closer to 
asymmetric conflicts and terrorism /counterterrorism scenarios than, say, traditional land combat.  
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Also, these scenarios present settings in which incremental or local planning is more heavily 
emphasized.   
 
Polyagent behaviors and interactions 
 
The goals of polyagents are relatively straightforward.  As stated above, the Red polyagents both 
seek out the target(s), while avoiding Blue forces.  Conversely, Blue polyagents are exclusively 
focused on seeking out and destroying Red forces.  All polyagent behaviors are derived from the 
above motivations.  Also note that the same objectives apply to both the avatars and their 
corresponding ghosts (though they have different decision-making procedures in pursuit of these 
goals, as outlined below). 
 
The polyagents interact with opposing forces and the target through pheromone fields. Red 
forces, Blue forces, and the target all emit different “pheromone flavors” or types [7] that can be 
detected by other players, as follows: 
 

• Green – Emitted by the target at a consistent rate, detectable by Red ghosts 
• Blue – Emitted by Blue forces, indicating threat to Red forces 
• Red – Emitted by Red forces, indicating threat to Blue forces 

 
Note that all pheromones propagate and spread, while also evaporating over time to provide an 
overall “pattern of relevance” to the polyagents detecting them. The detailed functions for the 
pheromone pattern behavior, for both propagation and decay, can be found in [8]. 
 
The key decision that the polyagents must make during each cycle is determining which square 
in the grid to which to move.  Each execution of the “move algorithm” (based on the polyagent’s 
goals) results in a vector that determines which adjacent square the polyagent (avatar or ghost) 
transitions to.  This calculation is designed to align with the polyagent’s goals, as follows: 

 
• Ghosts 

o Red ghost next move vector:   
Highest green pheromone concentration square – highest blue pheromone 
concentration square + weighted random factor3 

o Blue ghost next move vector:   
Highest red pheromone square + weighted random factor 

• Avatars 
o Red avatar next move vector: 

Highest green pheromone square that any ghost the current avatar timestep 
encountered during its lifetime4 – a vector is created by summing the components 
of ghost death locations + a weighted random factor 

                                                 
3 Random X and Y factors are generated over the uniform interval [0,1] and then scaled so that their magnitudes are 
each at most equal to 10% of the non-random X and Y components. 
4 Ghosts and avatars “die” with a certain probability when they are co-located on a square, as described in more 
detail below. 
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o Blue avatars next move vector: 
A vector created by summing the components of ghost death locations during the 
current avatar timestep + a weighted random factor 

 
The decision method implemented in this model is inherently stochastic. This represents the 
noise and randomness of the real world, and has the beneficial side effect of preventing agents 
from getting stuck in a corner or in a local pheromone optimum. 
 
Finally, there is the question of what occurs when the polyagents directly encounter opposing 
forces or the target (i.e., they are co-located on a particular square in the grid).  The outcomes in 
each of these cases are straightforward, and apply to both avatars and ghosts, as follows: 
 

• Red and Blue on same square:  Outcome is governed by a “kill probability” parameter 
that Red agent dies when encountering Blue, or vice-versa 

• Red and Target on same square:  Red destroys the target and “dies”; and a new target in a 
new location may then appear 

• Blue and Target on same square:  no change in state for Blue or Target 
• If two or more polyagents (ghosts or avatars) of the same type (Blue or Red) are in the 

same square, this merely has the effect of increasing the amount of that flavor of 
pheromone in the square 

 
A run of the simulation can continue running until all targets are eliminated or until all Red 
forces have been eliminated.   
 
Summary 
 
Informally, an interpretation of the structure and behavior of the two sides are as follows.  Red’s 
behavior pattern utilizes relatively independently operating “cells” (since there is no direct 
interaction between avatars) that avoid the enemy, but perform a “suicide attack” when reaching 
the target. Blue is primarily interested in “taking the fight to the enemy”, without directly 
knowing exactly what the enemy is targeting.  These conditions and behavior are similar to those 
found in many asymmetric warfare and terrorism / counterterrorism scenarios, in which the 
location of targets can be highly uncertain and the precise location and intentions of the 
adversary are primarily inferred indirectly and probabilistically.   
 
Also note that the model employs incremental attack planning because the polyagents 
continually adjust to local conditions “on the ground”, never looking more than one step ahead at 
a time, with no central command and control globally guiding their behavior. 
 
 

4. SIMULATION AND EXPERIMENTAL RESULTS 
 
The purpose of this initial round of simulations was exploratory rather than confirmatory; we 
sought to demonstrate that the polyagent modeling environment could be applied to attack 
planning and gain some understanding of the critical variables driving the results.  Subsequent 
experiments will test specific hypotheses about polyagent behavior.  
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Key parameters 
 
Following are the key parameters of the polyagent model simulations in the present study (for a 
listing of all configurable polyagent behavior parameters, see Appendix X): 
 
Parameter Description Range Default 
NA Number of Avatars per side Any non-negative 

number 
<none> 

NG Number of Ghosts per Avatar Any non-negative 
number 

5 (for both Red and 
Blue5) 

KP Kill Probability when 
encountering opposition (avatar 
or ghost) 

Decimal between 0 
and 1 

0.9 

FH Forecast Horizon (number of 
cycles the ghosts “play ahead” 
before reporting back to their 
avatar 

Integer between 0 and 
25 

<none> 

WR Weight of random factor in 
determining next move of 
polyagent 

Decimal between 0 
and 1 

0.1 

DG Dimension of grid Array 25 x 25 
TR Target Regeneration Target reappears in 

the Same location, or 
in a New (randomly 
chosen) location 

<none> 

Table 1: Key Parameters in Polyagent Simulation 
 
Metrics of Success 
 
We measured success in a simulation run for the polyagents in terms of relatively simple 
objectives relative to the goals stated above.  For Red, the objectives were to maximize the 
number of targets found and destroyed, and to maximize the number of its surviving avatars over 
time.  For Blue, the objectives were to minimize the number of targets destroyed and to eliminate 
all Red avatars. 
 
Experimental Results 
 
We executed a variety of exploratory runs of the model, focusing on two key variables, the 
relative strength of force for the Red / Blue polyagents, and the forecast horizon, which can be 
viewed as the number of steps into the future that the avatar’s ghosts “play ahead” to assess the 
likely outcome of different actions. For example, a forecast horizon of 10 means that the ghosts 
run up to 10 virtual time steps into the future. Relative strength of forces is an obvious variable 

                                                 
5 Most behavioral parameters can be set differentially for Red and Blue, but during the initial round of simulations 
the parameters were set to be equal for both sides unless otherwise specified. 
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to focus on, whereas the forecast horizon variable is particularly interesting from the standpoint 
of exercising the core capability and potential of the ghost component of the polyagent. 
 
To explore the relative force strength variable, we began by executing a variety of runs with 
equal numbers of various quantities (NA = 5, 10, and 15) and a fixed target.  For all of these 
scenarios, we found that the Red forces easily hit the target, in most cases multiple times, before 
the Red forces are eliminated.  This general result was consistent across changes in NA, NG, and 
FH. 
 
Figure 2 shows the results of a typical sequence of ten runs with NA=10, NG=5, FH=5, and 
TR=Same. For the ten runs performed with these parameters, the average number of Red avatars 
reaching the target was 7.9 (out of 10 possible), with a standard deviation of 1.66.  The total 
number of cycles needed to eliminate all Red avatars (either through reaching the target or being 
killed by Blue) was 399, with a standard deviation of 177. 
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Figure 2: Sample Equal Force Polyagent Run 
 
Each line in the above display represents the results of the Red force avatars over the life a 
particular run.  Note that a point dropping to the zero line represents a Red avatar that was killed 
before reaching the target.  So to take a specific example, in Run 2, the results of the avatars 
were as follows (Table 2): 
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Avatar Result 
1 Reached target (cycle 125) 
2 Reached target (cycle 254) 
3 Reached target (cycle 262) 
4 Reached target (cycle 329) 
5 Reached target (cycle 339) 
6 Reached target (cycle 354) 
7 Reached target (cycle 371) 
8 Killed by Blue (cycle 4346)
9 Killed by Blue (cycle 568) 
10 Reached target (cycle 788) 

Table 2: Run 2 Results 
 
Our intuition about Red’s high degree of success is that it arises primarily from the information 
asymmetry about the target:  simply put, Red receives signals directly about the location of the 
target (through the Green pheromone flavor), whereas Blue does not.  Another way of putting 
this is that Blue is perpetually in reactive mode, doing its best to respond to the presence of Red 
but not directly knowing what Red is targeting.  Therefore, it will seldom be successful in 
denying all (or even most) of the Red avatars access to the target. 
 
We next looked at scenarios in which Blue has a much larger force than Red (NA for Red = 5, 
NA for Blue = 25), while varying the forecast horizon FH.  Specifically, we looked at FH = 0, 1-
5, 10, and 15 and TR=New, while keeping other parameters constant at their default values.  
Figure 3 summarizes the results of the scenario runs (10 runs for each value of FH). 
 

                                                 
6 Cycles in which avatars were killed are not shown on the graph. 
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Figure 3: Polyagent Model Over Different FH Values 

 
Table 3 shows the summary statistics for number of target hits and number of cycles to eliminate 
all Red avatars across each value of FH: 
 

FH 
Value 

Avg # of 
targets hit 

Std Dev. of # 
of targets hit 

Avg # of cycles 
to eliminate Red 

Std Dev. # of 
cycles to 
eliminate Red 

0 0.2 0.42 212 112 
1 0.1 0.31 181 127 
2 0.6 0.69 369 212 
3 0.5 0.70 578 251 
4 0.8 0.42 494 257 
5 1.5 0.85 636 340 
10 0.9 0.73 490 281 
15 0.9 1.1 515 428 

Table 3: Summary Statistics Across FH Values 
 
In general, because of its asymmetric information advantage, Red was still successful at reaching 
at least one of the targets, even when vastly outnumbered. However, one of the more interesting 
results from this set of simulations is that Red success is an increasing function of FH, at least up 
to a point.   
 
Specifically, Red became more and more successful as it looked up to 5 cycles ahead (even as 
the Blue forces did also), but Red’s success dropped off when attempting to look further ahead 
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than that. One interpretation of this finding is that as the forecast horizon increases, the ghosts 
are exploring increasingly unlikely scenarios, so the extra information being fed back to the 
avatar is of limited value or is even misleading. For at least the application and set of conditions, 
this helps us address of the question of “how much forecast information is enough”?  
 
Looking at the average number of cycles needed to kill all Red avatars, note that this value also 
peaks at FH=5, and drops off significantly at larger forecast horizons.  This suggests that looking 
ahead further helps Red “stay in the game” longer, up to a point.  Again, our interpretation the 
drop-off in this value at FH > 5 is that looking ahead further at increasingly unlikely scenarios 
does not benefit the Red forces.   
 
Finally, although the standard deviation of the number of targets hit and the number of cycles 
needed to kill all Red avatars generally trends up as FH increases, the rate of increase is lower 
and the data is “noisier” than the data for the averages.  Therefore, it would be premature to 
suggest that this constitutes a significant relationship. Further investigation would be required to 
better understand this relationship. 
 

5. CONCLUSIONS 
 
This paper showed how the polyagent modeling construct can be used to implement a series of 
exploratory incremental attack planning scenarios.  This was achieved through the use of the 
pheromone fields and “next move” algorithms reflecting the goals and motivations of the Red 
and Blue forces. Polyagent modeling provides a novel way of exploring a great variety of 
probabilistic scenarios for command and control in a computationally efficient fashion. 
 
The initial simulations performed have suggested both the benefits of planning ahead in the 
modeled command and control scenarios as well as the limitations of attempting to plan ahead 
too far.  For the particular parameters and assumptions embedded in the present model, the 
benefits of planning ahead peaked at a forecast horizon of 5. 
 
More work is needed to understand the role of other variables in the polyagent model, and 
further refine it.  As noted in [6], the application of the polyagent construct is presently more art 
than science, and further investigation will help us to better understand its mechanics and “tune” 
these types of models.  Specifically, it would be interesting to run further simulations to better 
understand the potential influence of NG (number of ghosts), WR (the weight of the random 
factor) and KP (the kill probability) on the success of the Red and Blue forces.  As well, we have 
not yet explored the impact of varying any of the parameters across Red and Blue, apart from 
number of avatars per side.  Further applications of the forecast horizon FH could also be 
explored; for instance, the model could be modified to investigate how to set FH to best trigger 
when to call for reinforcements or change objectives. Finally, it would be useful to modify the 
model to enable the Blue forces to have some more explicit awareness of the target location, as 
this is clearly the case in many real-world security and counterterrorism settings.    
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Appendix 
 
Configuration Points in Polyagent Model 
 
Type Name Description Default 
Cell 
Coordinates 
(Grid) 

minLongitude, max Longitude Defines size of grid 25 x 25 

Cell 
Coordinates 
(Grid) 

stepLongitude, stepLatitude Defines units of grid 1 

Pheromone 
Flavors 

RedThreat Strength of Red 
pheromone 

0.9 

Pheromone 
Flavors 

BlueThreat Strength of Blue 
pheromone 

0.9 

Pheromone 
Flavors 

GreenThreat Strength of Blue 
pheromone 

0.9 

Agents maxGhostForecastHorizon Maximum Forecast 
Horizon that can be set in 
the model 

25 

Agents ghostForecastHorizon Forecast Horizon (FH) <None> 
Agents maxRandomWalkFraction The weight of the random 

factor in the next move 
vector (WR) 

0.1 

Agents avoidDeathThreat Does the polyagent avoid 
threats from the 
opposition? 

True for Red, 
False for Blue 

Agents killProbabilityByThreatEncounter Kill probability (KP) 0.9 
Agents InsertionDataConfig (count) Number of avatars (NA) <None> 
Agents ghostsPerTimeSlice NG <None> 
Agents recreateAfterDeath, 

ignoreInsertionCoordinates 
TR <None> 

Agents StepLength Max distance agents can 
travel per cycle 

0.5 
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