

12TH ICCRTS
“Adapting C2 to the 21st Century”

Supporting Chat Exploitation in DoD Enterprises

Track Session:

Network-Centric Experimentation and Applications

Authors:

Christopher D. Berube, The MITRE Corporation

Janet M. Hitzeman, Ph.D., The MITRE Corporation
Roderick J. Holland, The MITRE Corporation

Robert L. Anapol, The MITRE Corporation
Stephen R. Moore, The MITRE Corporation

Point of Contact:

Christopher D. Berube

The MITRE Corporation
MS M380

202 Burlington Road, Bedford, MA 01730
781-271-8303
cdb@mitre.org

 1

Abstract

The use of internet chat to support information exploitation in time-sensitive
environments has been explosive in recent military conflicts. During Operation Iraqi
Freedom, the widespread use of chat among operators and intelligence analysts provides
increased information flow which, when properly managed, provides increased
situational awareness in support of collaborative decision-making processes. However,
while the use of chat in military environments has a positive operational effect, it is also
difficult to effectively manage and exploit. Specifically, it has been noted among
operators that it is often difficult to maintain awareness of what is going on in and across
multiple chat rooms at the same time.

Our research focuses on the application of information extraction to the problem of
providing automated “chat alerts” of pertinent events to operators monitoring multiple
chat rooms. In particular, we demonstrate that information extraction allows accurate
pinpointing of tactical entity class data (e.g., air mission) in military chat. We also
describe a software prototype designed to support information extraction, and featuring
graphics for user-specified chat profiles and views of extracted chat entity and event class
data in real-time and retrospective processing.

 2

1 Introduction
The use of internet chat to support information generation and exploitation in time-
sensitive environments has been explosive in recent military conflicts, such as Operation
Iraqi Freedom (OIF). During OIF, the widespread use of chat among intelligence
analysts, planners and others from various disciplines provided improved “information
flow,” which in turn provided increased situational awareness and decreased response
times in collaborative decision-making processes.1 However, the ability to maximize the
benefit of chat in supporting aspects of situational awareness and decision-making is
limited by the volume of chat that may need to be monitored in a single chat room and
the great number of chat rooms that require monitoring. Therefore, there is need for an
automated means of extracting tactically relevant information from multiple chat rooms.

In this paper, we discuss the results of a research project that targets this need as part of
The MITRE Corporation’s Technology Program. This project, “Facilitating Sense
Making for Situational Awareness,” is an Air Force-sponsored Mission-Oriented
Investigation and Experimentation (MOIE) project currently in its second year. The
primary goal of this research project is to develop a software system to support
operators/analysts (i.e., “users”) monitoring multiple chat rooms by automatically
extracting entities and events in real time as they are being discussed. Here, information
extraction in chat is performed using MITRE’s Alembic information extraction tool.2
The overall system gives the user a template for indicating their areas of interest, such as
certain aircraft call signs associated with the conduct of air missions. Using this user
profile, appropriate chat “alerts” are generated and displayed to a user along with details
associated with the alert. The advantage for the user is that he is less likely to miss an
event or entity of importance to him, and this increases the ease with which he can track
entities and events in a large number of chat rooms at once.

2 System Design and Software
The design of our software system was guided by the desire to support chat exploitation
needs within Department of Defense (DoD) enterprises. Through course of our research,
and based on the work of other researchers, we noted that different classes of users of
chat require different capabilities to successfully manage chat. Specifically, we identified
three dimensions of support for chat exploitation, and designed our system to enable
them:

• Granularity of analysis – extraction of information in single chat rooms as
well as across multiple chat rooms; information extracted at the entity, event
and summary levels

• Focus – “what is being said in chat” versus “who is saying it”

• Time – real-time versus retrospective (“forensic”) analysis of chat.

1 “War Planners Talk in ‘Chat Rooms’ To Exchange Targeting Data, Tips,” 2 May 2003, Source: Defense Information & Electronics
Report
2 “Description of the Alembic System Used for MUC-6,” John Aberdeen, John Burger, David Day, Lynette Hirschman, Patricia
Robinson and Marc Vilain, Proceedings of the 6th Conference on Message Understanding, Columbia, MD, 1993, pp. 141-155.

 3

In our system, utterances in chat (i.e., chat “messages”) are provided either from a static
log or in real-time from a chat server. The entry point for every chat message into the
system is the Military Language Pre-Processor (MLPP) application. The MLPP provides
a first-level of information extraction for each chat message and acts as a pre-processor
for the Alembic information extraction application. The MLPP generates four classes of
Java objects: ‘ChatMessage,’ ChatAnalysis,’ ‘ChatAlert,’ and ‘ChatDocument.’ Figure 1
illustrates the relationship and flow of information between elements of the system.

User
profile

Java App: User
Display and
User Profile

Filtered ChatAlert presented
to user as DisplayAlert

Prototype system supports
multiple Chat rooms and
multiple user profiles

Database records
(UserProfile, ChatAlerts)

Display
Filter

GMTI Reports
SIGINT Reports

Structured data

Chat Database

MySQL

Just internal storage, not actual databases

: ChatAlert
: ChatMessage

: ChatAnalysis

Java App: MLPP

Analysis of a
single message

: ChatAnalysis

Something of potential interest -> “Alert”

: ChatMessage

Parse message and create Key

Dialog Manager

: UserProfile

Chat
• Log Files, or

• Server

One Chat message

Either a Chat message
and/or an indication of
“join” or “leave” from

the Chat room

: ChatDocument

: ChatAlert

Pre-processor (Java)

Post-processor (Java)

Callisto

Annotation tool to support

Alembic training

“Document” from a single Chat
room

Alembic

User
profile

Java App: User
Display and
User Profile

Filtered ChatAlert presented
to user as DisplayAlert

User
profile

Java App: User
Display and
User Profile

Filtered ChatAlert presented
to user as DisplayAlert

User
profile

Java App: User
Display and
User Profile

Filtered ChatAlert presented
to user as DisplayAlert

Prototype system supports
multiple Chat rooms and
multiple user profiles

Database records
(UserProfile, ChatAlerts)

Display
Filter

GMTI Reports
SIGINT Reports

Structured data
Database records

(UserProfile, ChatAlerts)

Display
Filter

GMTI Reports
SIGINT Reports

Structured data

GMTI ReportsGMTI Reports
SIGINT ReportsSIGINT Reports

Structured data

Chat Database

MySQL

Chat Database

MySQL

Just internal storage, not actual databases

: ChatAlert
: ChatMessage

: ChatAnalysis

Java App: MLPP

Analysis of a
single message

: ChatAnalysis

Something of potential interest -> “Alert”

: ChatMessage

Parse message and create Key

Dialog Manager

: UserProfile

Chat
• Log Files, or

• Server

One Chat message

Either a Chat message
and/or an indication of
“join” or “leave” from

the Chat room

Chat
• Log Files, or

• Server

One Chat message

Either a Chat message
and/or an indication of
“join” or “leave” from

the Chat room

Chat
• Log Files, or

• Server

One Chat message

Either a Chat message
and/or an indication of
“join” or “leave” from

the Chat room

: ChatDocument

: ChatAlert

Pre-processor (Java)

Post-processor (Java)

Callisto

Annotation tool to support

Alembic training

“Document” from a single Chat
room

Alembic

: ChatDocument

: ChatAlert

Pre-processor (Java)

Post-processor (Java)

Callisto

Annotation tool to support

Alembic training

“Document” from a single Chat
room

: ChatDocument

: ChatAlert

Pre-processor (Java)

Post-processor (Java)

Callisto

Annotation tool to support

Alembic training

“Document” from a single Chat
room

Alembic

 Figure 1: Chat Exploitation System Architecture

The ‘ChatMessage’ object contains the chat utterance as well as identifying information
such as user name, timestamp and the name of the chat room. This additional
information makes up part of the “key” used to store each ‘ChatMessage’ object in the
MySQL Chat Database. The ‘ChatAnalysis’ object contains the results of the
information extraction performed on a single chat message (i.e., they come in pairs). A
‘ChatAlert’ object contains a vector of ‘ChatAnalysis’ objects resulting from information
extraction performed on one or more chat messages (which is possible using the Alembic
application). ‘ChatAlert’ objects generated by MLPP are stored in the Chat Database.

The Dialog Manager within the MLPP application takes one or more pairs of
‘ChatMessage’ and ‘ChatAnalysis’ objects and combines them in a ‘ChatDocument’
object, which is the processed by the Alembic application. If Alembic extracts any
additional information beyond what it was provided from the MLPP, a ‘ChatAlert’ object
is generated by Alembic and stored in the Chat Database.

At this point, the Chat Database contains a set of ‘ChatAlert’ objects generated by both
MLPP and Alembic. Selection of these objects to support the interests of a particular

 4

user is carried out by a ‘DisplayFilter’ object (which is actually contained in the MLPP
application) by means of a ‘UserProfile’ object. Finally, the results of the information
extraction by either MLPP or Alembic are displayed as part of the ‘UserDisplay’ Java
application.

3 Causing ‘Chat Alert’ Generation
One weakness of using chat (or any other form of communication which requires the user
to multiprocess) is that important events discussed in chat may be missed if the user takes
a quick break or has his attention focused on another chat room. The purpose of
providing users with chat alerts is to point out important events in all chat windows,
reducing the possibility that an event is missed and thereby reducing the burden on the
user.

The system first checks each chat message for all events which may be of interest to any
user, and then filters the messages based on the particular user’s stated areas of interest.
The process of examining a message and annotating alert information within that
message is done in two phases: The military language pre-processor (MLPP) phase,
which looks for information using regular expression rules, and the Alembic information
extraction phase, which uses contextual information.

3.1 Military Language Pre-Processor (MLPP)
The MLPP application not only serves as the mechanism for parsing and distributing chat
messages to other parts of the system, but it also provides a first-level of information
extraction for a single chat message. Specifically, the MLPP provides the capability of
implementing regular expression processing within a single chat message. The result of
this processing provides a pre-processed chat message for the more complex information
extraction carried out by Alembic.

The use of regular expressions in the MLPP allows for the extraction of semi-structured
data types; that is, words or phrases recognized based on their “regularness” or format.
Currently, there are seven semi-structured data types implemented in the MLPP
application:

• Latitude and longitude – in decimal and degrees/minutes/seconds formats

• Basic Encyclopedia (BE) number – a military standard for geo-referencing

• Electronics Intelligence (ELINT) notation (ELNOT)

• Aircraft voice call sign – designator used for voice identification of an aircraft

• Military Grid Reference System (MGRS) – a military standard for geo-
referencing

• Zulu time – military standard time.

The MLPP application is implemented in Java, using Java’s regular expressions package
to provide the extraction of semi-structured data types. As an example of a regular

 5

expression implemented by Java, consider the extraction of the aircraft voice call sign
using the following format:

• Four to twelve letters followed by one to two digits
o The first letter must be upper-case
o There can be a white space between the last letter and the first digit.

Below is a string (Regex) containing an implementation of this Java regular expression:
• Regex = "(\\p{Punct}*)(([A-Z])[a-zA-Z]{3,11})(\\s?\\d{1,2})(\\p{Punct}*)".

3.2 Regular Expressions vs. Information Extraction
Given a list of words that fall into a certain category, searching within a text for a word or
phrase on such a list (i.e., keyword search) is the simplest way of detecting words which
fall into that category. For example, a word list containing surnames may contain the
word “Smith,” allowing us to easily tag the word with SGML as in

 <PERSON>Smith</PERSON>

Regular expressions are one step up from this simple search in that they recognize terms
which fit a pattern. Zulu time (i.e., military time) is a good example of an expression that
can be easily captured using the following description of a regular expression: One form
of a Zulu time expression (such as “2010Z”) must consist of a 5-character string ending
in “Z” or “z” and beginning with four integers. A more complex example is an
expression giving the latitude of some object, such as 0421322N. In this case, the “word”
must consist of a string of digits that satisfy the constraints for angular position in
degrees, minutes and seconds, followed by a single alphabetic character indicating the
quadrant in which the object is located (e.g., “N” for the northern hemisphere).

Regular expressions and keyword processing have their limitations, however. For
example, if a text refers to a name which is not on the surname word list or does not fit a
regular expression pattern, it will not be recognized; expressions such as “Mr.
Heemachandra” or “I’ll be home around 2-ish” will be passed over if not properly
accounted for by these methods. Overgeneralization can also be a problem, e.g., given a
name such as “Smith” on a word list of names, the keyword processing system will tag
the word as a name even in contexts such as “Smith & Co.” which refers to an
organization or to any reference of a blacksmith as a “smith,” which refers to an
occupation. Similarly, while regular expressions can capture unknown names of
diseases, such as “hyperendebulovirus,” the more powerful method of information
extraction can also capture unknown diseases expressed as multi-word phrases, such as
“precocycal hyperendebulous virus,” and can tag appropriate terms such as “vironuclear
plague” while excluding “a plague of terrorists.” It does this in part

• by looking for a word that ends in “virus,”

• by looking for a disease-related noun from a list containing words such as
“virus,” “plague,” and “flu” and then checks for an appropriate adjective in
the text which precedes that noun, and

• partly by looking for context that is typically used with disease terms, e.g.,
“…caught the ___,” “…died of the ___,” “…complications from the ___.”

 6

Information extraction also has the capability of propagating decisions made earlier in the
processing and in using context to disambiguate a word which can fit into more than one
category. For an example of how propagation works, consider a text containing the
phrase “Mr. Heemachandra” and a later reference to “Heemachandra.” The surname
“Heemachandra” doesn’t appear on a word list of names, but information extraction uses
the context of a title (“Mr.”) found to the left of the word as an indication that this phrase
refers to a person. That information is propagated as the text is processed, so that, when
the system encounters the phrase “Heemachandra” again but without a title, it will be
tagged as a PERSON based on the previous categorization.

Suppose that the system encounters the phrase “Heemachandra” for a third time in the
text, but this time in the phrase “Heemachandra, Inc.” One option is to propagate the
earlier decision that “Heemachandra” is a name, but in this context that would be
incorrect. However, the system may have another rule saying “In the pattern ‘X, Inc.’ the
phrase X refers to an organization.” Patterns always take precedence over word lists and
guesses based on propagation, thus allowing appropriate disambiguation in such cases.

While regular expressions are considered to have perfect Precision (i.e., when they tag a
phrase, they tag it correctly), they may suffer in terms of Recall (i.e., they may miss
phrases that should be tagged because they don’t exactly fit the regular expression).
Information extraction systems capture a much wider variety of phrase types, but must be
refined in an iterative fashion (i.e., run the system, fix errors, run it again) in order to
push towards better and better Precision and Recall. Even well-training information
extraction systems are not perfect; one example of an information extraction system using
rules but trying to be too clever comes from Andrei Mikheev. His system tagged the
phrase

 Dairy Queen Cheesecake Factory

as

 Dairy <PERSON>Queen Cheesecake</PERSON> Factory.

The reason for using information extraction in spite of its imperfect reliability is that it
can tag important information that cannot be tagged by regular expressions. For
example, our texts may contain a number (an integer, for example) that could fit into
several different regular expressions. Information extraction can choose the correct tag
by looking for context such as words like “bty” (here, this an abbreviation for an air
defense battery) or “mission number” (here, this refers to the mission number associated
with the conduct of an air mission) and can even use lack of relevant context to conclude
that the number is not of interest, as it is when the speaker is saying, “He’s starting on his
2nd shift.”

4 The Alembic Information Extraction System
4.1 The phraser and rules for combining phrases
Alembic is a modular system, and several modules must process the data before phrases
of interest can be tagged, such as tagging the part of speech of each word and

 7

determining where the sentences begin and end. The phraser module then chunks the
words into phrases such as noun phrases, verb phrases, prepositional phrases and the like:

 <S><NP>the dog</NP> <VP>drank <NP>water</NP> </VP></S>

These phrase labels allow the interpretation rules to relate actions to their agents, objects,
locations, times, etc. The relations between these roles are shown for two examples
below:

 [Agent The dog] [[Action drank] [Object water]] [PP in [Loc the yard]]

 [Agent John] [Action drank in] [Theme the beautiful view]]

The interpretation rules look for an agent for each action plus any appropriate
theme/object and any phrases indicating time, place, etc. More complex modifiers such
as relative clauses (“the soldier who shot the missile”) and appositives (“Diane Feinstein,
the former governor of California”) must also be chunked into phrases and then those
phrases must be interpreted according to their relationship with the main event described
by the verb.

An example of the type likely to be found in our chat data is shown below:

 radar active ivo 42 12 N 012 42 E

 [ELINT-type radar] [ELINT-state active] [PP ivo [Location 42 12 N 012 42 E]]

Here the interpretation rules expect ELINTs to have states and locations. The
prepositional phrase (PP) indicates an object phrase which is likely to describe a location.
A context rule then applies as described earlier, marking the Location phrase as an
ELINT-Location because it is near other entities which have been tagged as being in the
ELINT class.

4.2 Forming Eventlets
The final module used in the current version of this chat tool combines a set of entities
tagged as members of the same event class into an eventlet. Participants in the OIF chats
discuss events as they observe them. These chats are cooperative and focused, meaning

 8

that the participants want to communicate what they observe to the others, and, as a
result, they each describe the aspects of an event that they can observe from their position
and with their equipment.

We use a heuristic based on the nature of this type of chat, which is to assume that each
chat message contains a partial description of an event, or an eventlet. This heuristic
allows us to combine the different tagged entities belonging to the same event class into
one eventlet, via a template. For example, give the utterance

[Speaker 1] Al Azah spoonrest is active.

the system tags the entities as below:

[Speaker 1] <ELINT><Location><Name>Al Azah</Name></Location></ELINT>
<ELINT><Name>spoonrest</Name></ELINT> is
<ELINT><State>active</State></ELINT>

and places them into an eventlet template as follows:
<ELINT> <LOCATION><NAME>Al Azah</NAME></LOCATION>

 <NAME>spoonrest</NAME>

 <STATE>active</STATE>

</ELINT>

In future work, we will combine multiple messages which describe eventlets into one
larger description of an event. Consider the following example:

[Speaker 1] Al Azah spoonrest is active.

[Speaker 2] Al Azah spoonrest at 422812N 0711647W 1.3 x 0.2 164.4.

The eventlet creation module will first build one representation for each of the above
sentences. It will then look for similarities in the representations in order to determine
whether the same topic is under discussion. In this case, both the location name and the
ELINT class match. If we say that two representations match if a minimum of two slots
match, then these representations match our criterion and can be combined as below:

 9

<ELINT> <LOCATION> <NAME>Al Azah</NAME>

 <LATITUDE>422812N </LATITUDE>

 <LONGITUDE>0711647W </LONGITUDE>

 <ERRORELLIPSE> <SMAJAXIS>1.3</SMAJAXIS>

 <SMINAXIS>0.2</SMINAXIS>

 <ORIENTATION>164.4</ORIENTATION>

 </ERRORELLIPSE>

 <NAME>spoonrest</NAME>

 <STATE>active</STATE>

 </LOCATION>

</ELINT>

We can change the required number of matching slots required and then test which
number gives the best results.

5 Entity Class Development
The entity classes and their attributes whose instances in chat are subject to information
extraction by MLPP and Alembic applications were developed based on an analysis of
the chat logs collected over a period of time during OIF. This analysis involved the
computation of relative frequency of occurrence all for “non-trival” words (i.e., excluding
“the,” “and,” etc.) across all chat logs from a particular chat room. Once an entity class
was proposed, a set of attributes associated with this entity class was developed, again
using relative frequency of occurrence along with knowledge of the appropriate domain.
The more than 1000 individual chat logs covered roughly 100 different chat rooms,
spanning “themes” such as flight/mission operations, search and rescue, imagery reports
and un-manned aerial vehicle (UAV) operations.

Currently, we have defined nine entity classes: <AirDefense>, <AirTarget>,
<AirMission>, <ELINT>, <ErrorEllipse>, <GroundTarget>, <Location>, <MASINT>
and <Missile>. As an example, consider the <AirMission> entity class and its attributes
as illustrated in Figure 2:

 10

<AirMission>
<ACType>
<ACCallSign>
<MissionType>
<MissionNumber>
<ATONumber>
<Activity>
<State>
<Location>
<ZTime>

<Location>
<Name>
<BENum>
<MGRS>
<Latitude>
<Longitude>
<ErrorEllipse>

<ErrorEllipse>
<SMajAxis>
<SMinAxis>
<Orientation>

<State>
<State>
<Location>
<ZTime>

Figure 2: <AirMission> Entity Class

This class encapsulates information related to the conduct of a friendly air mission,
including such attributes as aircraft call sign (<ACCallSign>, mission number
(<MissionNumber>) and state (<State>). (This last attribute is actually a supporting
entity class, with attributes of its own.)

Word lists contain domain vocabulary which is relatively stable across time, users of
chat, and theaters-of-interest. In the case of the <AirMission> class, lists are
implemented for the following attributes: aircraft type (<ACType>, mission type
<MissionType>, activity <Activity> and state <State>. Below is an excerpt from the
<ACType> list:

Designator Name Nickname

AH-1 Super Cobra
A-4 Skyhawk
OH-6 Cayuse
AH-6 Little Bird
A-6 Intruder
EA-6 Prowler
A-7 Corsair
AV-8 Harrier
A-10, OA-10 Thunderbolt Warthog or Hog
A-12 Avenger

Table 1: Subset of Values for <ACType> Attribute

An example of a single chat message referring to an air mission might be:

 11

Honcho 06 has just launched – will be on CAP at 1815z.

Information extraction would then apply the following tags to this chat message:

<AirMission><ACCallSign>Honcho 06</ACCallSign></AirMission> has just
<AirMission><Activity>launched</Activity></AirMission> – will be on
<AirMission><MissionType>CAP</MissionType></AirMission> at
<AirMission><ZTime>1815z</ZTime></AirMission>.

This annotation requires Alembic to make use of a word list containing mission types,
such as CAP. MLPP will recognize the regular expressions Honcho 06 and 1815z as
<ACCallSign> and <ZTime> attributes, respectively. Finally, in order to determine
whether the expression launched indicates that an aircraft or a missile was launched,
Alembic uses the surrounding context containing <AirMission> tags to make the
educated guess that the launch activity is part of the same <AirMission> entity.

6 The Dialog Manager for Alembic
As chat comes into the system through the MLPP application, it has to be segmented into
“documents” that Alembic can process; The Dialog Manager fulfills this role. An object
of the Dialog Manager class, which is instantiated in the MLPP, collects chat messages
and the results of MLPP’s information extraction, then uses a Heuristic Class to
determine if a document has been completed. This document, which is a contiguous
collection of chat messages from a single chat room, is then formatted using HTML and
gets sent via HTTP to a Java servlet running in Tomcat. The servlet feeds the document
in the form of a ‘ChatDocument’ object through Alembic and sends its output back to the
Dialog Manager, which then parses it and forms a chat alert if certain conditions are
satisfied. The resulting ‘ChatAlert’ object is then placed in the database. Figure 3
illustrates this processing.

Windows PC Apple G5

MLPP

DialogManager

Apache Tomcat

Alembic Servlet

Alembic

Network

ChatMessage, ChatAnalysis

ChatDocument

ChatAlert

Database

ChatAlert

Windows PC Apple G5

MLPP

DialogManager

MLPP

DialogManager

Apache Tomcat

Alembic Servlet

Apache Tomcat

Alembic Servlet

Alembic

Network

ChatMessage, ChatAnalysis

ChatDocument

ChatAlert

Database

ChatAlert

 Figure 3: Interaction between MLPP and Alembic Processes

 12

6.1 Alembic Pre-Processor

The DialogManager class receives a ‘ChatMessage’ and ‘ChatAnalysis’ object for every
chat message that MLPP processes. The ‘ChatMessage’ objects are separated out by chat
room and stored. As each message comes in, the Heuristic class processes the vector of
chat messages for the chat room that the new message belongs to, and determines if a
document is ready or not. The Heuristic class then pulls out the messages for the
document, formats them for Alembic using the DocumentCreator class, and then updates
the vector of messages by removing messages that won’t be included in the next
document. This formatting includes the timestamp and user (i.e., speaker) ID that
accompanies the chat message.

6.2 Alembic Post-Processing
The DialogManager class handles processing the output from Alembic as well. When the
HTML response comes back from Tomcat, the DialogManager reads it message by
message. Each message has the necessary information to connect the newly tagged
message back with its original ‘ChatMessage’ and ‘ChatAnalysis’ objects. If any of the
messages in the document have tags added by the Alembic processing, a single
‘ChatAlert’ object is created containing all the ‘ChatMessage’ and ‘ChatAnalysis’ objects
for the document. The MLPP then checks to see if a new ‘ChatAlert’ object is available
from the Dialog Manager, and sends it off to the database if there is.

6.3 DocumentHeuristic Class
A class implementing the DocumentHeuristic interface is used to specify the rules for
determining if a document is available for processing. Swapping in a different
implementation of this interface changes how the system will determine new documents
for Alembic. The implementation we used provides a sliding window of variable width
(size) and advance increment. Advancement can be either by time (message times) or by
number of messages. Figure 4 illustrates a notional example of how the sliding window
creates a ‘ChatDocument’ object for Alembic processing.

[12:24] <EXEC_Dir> CCO-where’s Jake? He’s heading to Medford - and we swing him straight there?
[12:26] <EXEC_Dir > We’re thinking Jake’s going to be faster than pulling Trapper 11 from Gat D.
However, we are checking with TF-11 if we can pull Trapper.
[12:26] <CNTR_CCO> Yes. We can move Jake that way now.
[12:26] <CNTR _CCO> Rough estimate 20-30 min
[12:27] <ASOC_Dir> Great – Jake’s on the way.
[12:28] <MISS_OPS> We’ve got Trapper 11 in Gat d and GCAS ready for launch
[12:30] <EXEC_Dir > CCO/MISS –we got an airpower gap when Jake departs at 1300 for 1 hr. May need
GCAS to fill the GAP if this goes that long.
[12:30] <EXEC_Dir > CCO - 15 NM from the border – please call Bulldog.

Width

Advance
increment

Sliding window “creates”
a ChatDocument

Window parameters

Time-based or

Message-based

[12:24] <EXEC_Dir> CCO-where’s Jake? He’s heading to Medford - and we swing him straight there?
[12:26] <EXEC_Dir > We’re thinking Jake’s going to be faster than pulling Trapper 11 from Gat D.
However, we are checking with TF-11 if we can pull Trapper.
[12:26] <CNTR_CCO> Yes. We can move Jake that way now.
[12:26] <CNTR _CCO> Rough estimate 20-30 min
[12:27] <ASOC_Dir> Great – Jake’s on the way.
[12:28] <MISS_OPS> We’ve got Trapper 11 in Gat d and GCAS ready for launch
[12:30] <EXEC_Dir > CCO/MISS –we got an airpower gap when Jake departs at 1300 for 1 hr. May need
GCAS to fill the GAP if this goes that long.
[12:30] <EXEC_Dir > CCO - 15 NM from the border – please call Bulldog.

Width

Advance
increment

Sliding window “creates”
a ChatDocument

Window parameters

Time-based or

Message-based

Width

Advance
increment

Sliding window “creates”
a ChatDocument

Window parameters

Time-based or

Message-based

 Figure 4: Example of Dialog Manger’s “Sliding Window”

 13

The simplest case we used was a width of one message and an advance increment of one
message, but we also tried using a width of ten minutes with and advance increment of
one minute. The current version of the system uses the message-based approach with
both width and advance increment set to one for generating documents. These parameter
values were chosen since at present the scope of Alembic processing is restricted to a
single chat message. Future versions of the system will require that more than one chat
message be available to support the Alembic extraction of “events” in chat, as discussed
in Section 4.2.

7 Alembic Information Extraction Model Performance
In order to measure the performance of the Alembic information extraction model for
these chats, we required a gold standard set of chats which had been annotated by hand
for the different entity classes. Because annotating by hand is time-consuming, our initial
results are based on a small amount of data from two chat rooms. The development of
the gold standard is continuing, and we plan to have more data annotated and more
examples from a wider variety of chat rooms in order to show the applicability of this
system to different chat topics.

Chat Log Entity Class
Correct # of Tags % Correct # False Positive # False Negative Precision Recall F-score

CFACC 23
<AirDefense> 109 132 82.6 7 16 0.94 0.87 0.90
<AirMission> 2 4 50.0 2 0 0.50 1.00 0.67
<ELINT> 36 50 72.0 5 9 0.88 0.80 0.84
<Missile> 13 25 52.0 2 10 0.87 0.57 0.68

CFACC 28
<AirDefense> 102 167 61.1 24 41 0.81 0.71 0.76
<AirMission> 11 14 78.6 1 2 0.92 0.85 0.88
<ELINT> 54 62 87.1 0 8 1.00 0.87 0.93
<Missile> 9 13 69.2 2 2 0.82 0.82 0.82

CFACC 03
<AirDefense> 90 96 93.8 4 2 0.96 0.98 0.97
<AirMission> 1 9 11.1 3 5 0.25 0.17 0.20
<ELINT> 33 37 89.2 1 3 0.97 0.92 0.94
<Missile> 5 6 83.3 0 1 1.00 0.83 0.91

CFACC 04
<AirDefense> 35 42 83.3 3 4 0.92 0.90 0.91
<AirMission> 3 3 100.0 0 0 1.00 1.00 1.00
<ELINT> 6 8 75.0 0 2 1.00 0.75 0.86
<Missile> 4 4 100.0 0 0 1.00 1.00 1.00

All Logs
<AirDefense> 336 437 76.9 38 63 0.90 0.84 0.87
<AirMission> 17 30 56.7 6 7 0.74 0.71 0.72
< 129 157 82. 6 22 0. 0. 0.
< 3 4 64. 4 13 0. 0. 0.

ELINT> 2 96 93 94
Missile> 1 8 6 89 70 78

 Table 2: The CFACC Chat Logs

 14

The first chat room we looked at was Combined Forces Air Component Commander
(CFACC). We had four chats annotated by hand, and worked the data by writing rules
for the first chat log, training the system on that log (i.e., refining the rules to improve the
score), and then using the next chat log as the test case for the rules. This chat log would
give us an idea of how well the system performs on unseen data. We continued this
process, training on the first and second logs and testing on the third, etc., and then
moved onto the CFLCC chat room.

The results for the CFACC logs are shown in Table 2 above. The results are given in
terms of % correct, but the more interesting scores are the F-scores.

The F-score is a weighted measure which combines values for Precision and Recall.
Precision is the proportion of phrases which, when tagged, are tagged correctly; Recall is
the proportion of phrases which were tagged out of all phrases which should have been
tagged. An example of poor precision is observing a missile but tagging it as an airplane;
an example of poor recall is blinking when an airplane goes by and not tagging it at all.
For our application, it is more important to get high scores in Precision; the user does not
want a system that cries wolf, saying that it found an important airplane when it is a
missile of no importance.

The table of CFACC chats shows that there were more <AirDefense> and <ELINT>
entities present than <AirMission> and <Missile> entities. Given that there were more
data for Alembic to use for practice, it is not surprising that the <AirDefense> and
<ELINT> tags routinely received higher F-scores.

Chat Log Entity Class

Correct # of Tags % Correct # False Positive # False Negative Precision Recall F-score
CFLCC 14

<AirMission> 2 3 66.7 0 1 1.00 0.67 0.80

CFLCC 15
<AirMission> 9 14 64.3 1 5 0.90 0.64 0.75

CFLCC 17
<AirMission> 14 15 93.3 3 0 0.82 1.00 0.90

CFLCC 21
<AirMission> 43 50 86.0 2 6 0.96 0.88 0.91

CFLCC 22
<AirMission> 89 121 73.6 9 26 0.91 0.77 0.84

CFLCC 23
<AirMission> 5 8 62.5 5 1 0.50 0.83 0.63

CFLCC 25
<AirMission> 1 3 33.3 0 2 1.00 0.33 0.50

All Logs
<AirMission> 163 214 76.2 20 41 0.88 0.79 0.83

 Table 3: The CFLCC Chat Logs

 15

We then took the rules developed for the CFACC logs and used them for the Combined
Forces Land Component Commander (CFLCC) logs. The results are shown in Table 3
above.

The CFLCC logs contained only instances of <AirMission> entity classes. Given a
sudden abundance of data with which to train, the scores for the <AirMission> class
quickly became much higher in CFLCC than they were for CFACC.

As we move on to other chat rooms we are keeping an eye open for rooms in which our
entity classes are described using terms not previously seen in the current logs so that we
can make this system more and more adaptable to diverse chat rooms.

8 User Applications
8.1 UserProfile Java Application
The ‘UserProfile’ Java application allows a user of the system to specify their preferences
for information extraction and for the correlation of chat with structured data.
Specifically, the conditions set via these preferences will determine whether a ‘ChatAlert’
object that has been generated by MLPP or Alembic processing is converted to a
‘DisplayAlert’ object, which can then be viewed using the ‘UserDisplay’ Java
application. Figure 5 illustrates layout of this application’s screen.

 Figure 5: UserProfile Application Screen

 16

In addition to allowing the user to select chat rooms and entity/event class of interest, the
profile allows for the specifying the extraction of semi-structured data types based on a
list of values. In the case of aircraft voice call sign, BE number and ELNOT, a temporal
filter is applied in the extraction process. In the case of latitude/longitude, a spatial filter
(either rectangular or circular) is also applied as part of the extraction process. In the
case of chat “keywords” (basically, any word or phrase), a temporal filter is applied.

8.2 UserDisplay Java Application
The ‘UserDisplay’ Java application allows a user of the system to view the results of the
information extraction and the correlation of chat with structured data. What a specific
user is able to view depends upon how the individual’s user profile was set up. It is
important to note that an individual does not have to be involved in a chat session (i.e.,
using, for example, a Jabber chat client) to run the ‘UserDisplay’ application. All that is
required is that individual have a user profile established and stored in the system
database, and the user has access to this database.

 Figure 6: UserDisplay Application Screen

 17

Figure 6 illustrates layout of this application’s screen. It is divided into three sections.
The top third displays the occurrence of ‘DisplayAlert’ objects; that is, ‘ChatAlert’
objects from the Chat Database that satisfied this user’s profile (here, the user is “Chris”).
An indication of an alert is accompanied by the date, timestamp, chat room and a one-line
“summary” of the alert. The middle third displays the details of any selected alert
(selection of an alert using a mouse click is indicated in blue). The chat that was
extracted and resulted in the generation of this alert is highlighted in red. Lastly, the
bottom third of the display contains all chat generated in a selected chat room (here, the
name of the chat room is “CFACC”).

8.3 QueryDisplay Java Application
The ‘QueryDisplay’ Java application allows a user to access all ‘ChatAlert’ objects
generated by the system through the use of queries. These objects differ from the
‘DisplayAlert’ objects available through the ‘UserDisplay’ application (see Section 8.2)
in that they are not filtered by a user’s profile – as a group, these objects represent all chat
utterances extracted by the system based on all established semi-structured data types and
entity classes.

Figure 7: QueryDisplay Application Screen

Figure 7 illustrates layout of this application’s screen. The top half of the screen provides
the ability to construct queries for the retrieval of ‘ChatAlert’ objects. A query may be

 18

constructed by selecting any combination of entity/event class, class attribute, chat room,
user ID (i.e., the “name” of a person in a chat room) and start/end date/time. These
elements are “AND-ed” together to form a single query. More than one query may be
“OR-ed” by “vertically indicating” each one. The bottom half of the screen provides the
results of the query, with the ability to further sort the results by chat room, user ID and
date/time.

9 Ongoing Research
In addition to the continued development and testing of an Alembic information
extraction model for entity class data, we plan to combine the eventlets we find in a chat
into full events, as described in Section 4.2, above.

A second area of ongoing research concerns the correlation of entity and event class data
across multiple chat rooms. Correlation of entities or events extracted by Alembic will
be based on a measure of the pair-wise similarity. A modified form of Gower’s General
Similarity Coefficient (GSC)3 will be used as this measure of similarity. Figure 8
illustrates how Gower’s GSC in its standard form may be used to compute similarity
between two objects, “i” and “j”:

∑

∑

=

== n

k
ijk

ijk

n

k
ijk

ij

w

sw
s

1

1

n = number of class attributes
wijk = a weighting factor
sijk = similarity measure, dependent
on type of attribute, e.g.,

for quantitative attributes

)/(1 minmax
kkjkikijk xxxxs −−−=

∑

∑

=

== n

k
ijk

ijk

n

k
ijk

ij

w

sw
s

1

1

n = number of class attributes
wijk = a weighting factor
sijk = similarity measure, dependent
on type of attribute, e.g.,

for quantitative attributes

)/(1 minmax
kkjkikijk xxxxs −−−=

 Figure 8: Gower’s General Similarity Coefficient

This modified version of Gower’s GSC will take into account (among other things) the
notion of similarity between related entity classes. For example, instances <ELINT> and
<AirDefense> entity classes are at times related since the activity of radars associated
with air defense systems may be detected and reported by ELINT assets.

A similarity matrix will be computed based on a set of Alembic-extracted entities and
events from different chat rooms. As an example, consider four instances of entity and
event classes from chat room “A” (numbered 1, 2, 3, 4), and four instances from chat
room “B” (numbered 5, 6, 7, 8). Figure 9 illustrates a matrix containing Gower GSC
similarities between extracted entities or events (“objects”) in different chat rooms.

3 “A General Coefficient of Similarities and Some of Its Properties,” J.C. Gower, Biometrics, Vol. 27, No.
4, Dec., 1971, pp. 857-871

 19

1 2 3 4 5 6 7 8

1 1 0 0 0 0.9 0.3 0.55 0
2 0 1 0 0 0 0.85 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 0.9 0 0 0 1 0 0 0
6 0.3 0.85 0 0 0 1 0 0
7 0.55 0 0 0 0 0 1 0
8 0 0.4 0 0 0 0 0

.4
0
0

1
Figure 9: Example Similarity Matrix

From this similarity matrix, either distinct pairs or groupings (i.e., “clusters”) of
correlated entities and events will be identified and presented to the user. In the case
pairings of objects, a threshold value for minimum similarity will be used to prohibit the
weakest correlations from being presented to the user. In this simple example above, a
threshold value of 0.80 (i.e., 80% similarity) would result in a pairing of objects 1 and 5
and objects 2 and 6 using a greedy nearest-neighbor approach to pairing. In general,
however, the similarity matrix will be more complex, resulting in potential groupings and
not just pairings of objects. As such, an agglomerative hierarchical clustering algorithm
will be implemented and which, as a default, will be applied to the similarity matrix. The
dendrogram (i.e., tree structure) produced by this hierarchical clustering algorithm will be
automatically pruned based on heuristics and a minimum level of group similarity.
Therefore, it will not be necessary for the user to get involved in this process.

Lastly, while the above example is based on similarities between entities and events from
different chat rooms, there is no reason why the correlation process as described cannot
be carried out both within and across chat rooms.

10 Summary
The use of internet chat by operators, planners and analysts during recent military
conflicts, such as OIF, has provided improved “information flow,” which in turn has
provided increased situational awareness and decreased response times in collaborative
decision-making processes. However, as positive as these experiences have been, there
are still many challenges to the effective management and exploitation of chat in DoD
enterprises. A quote from an article discussing the DoD’s use of chat in Iraq4 is quite
revealing in this issue:

“(Navy Cmdr. Tim) Sorber said coalition forces found that the simplest
knowledge management tools, such as chat, worked best during the war, but they also
have built-in limitations. These include:

• They are unable to effectively handle large amounts of information.

• They lack automation tools that can turn information into knowledge.

• The procedural controls delay the automation tools' capabilities.”

4 “DOD chat use exploded in Iraq,” Dan Caterinicchia, FCW.com, June 23, 2003

 20

The first two bullets above (emphasis provided) underscore the need for technologies to
deal with various aspects of the “information overload” problem that inevitably comes
with an easy-to-use (and near ubiquitous) tool like chat. In our research, we have
demonstrated the accurate extraction of entity class data (e.g., data pertaining to air
mission, air defense and missile entities) from military chat rooms using MITRE’s
Alembic information extraction system. Basically, performing (textual) information
extraction in this manner allows for the indexing of individual chat utterances across
multiple chat rooms, which can then be retrieved and further processed. Furthermore, the
entity class approach to modeling supports the extraction of knowledge from chat, and
not just the individual “bits and pieces.”

The success of our entity class-based information extraction approach is due to two
factors: First, our use of a rule-based approach to information extraction (i.e., use of lists
and context rules for each entity class of interest) makes it possible to capture much of
the jargon, abbreviations and acronyms present in military-style chat. Second, the nature
of the chat itself, which was cooperative and focused, thus allowing us to use the
heuristic that one chat message would be focused on describing a single event.

We have developed a Java-based research prototype that supports chat exploitation by
providing a capability to store, process and display chat and the results of performing
information extraction on chat. A basic set of entity classes have been developed which
have proven useful in gathering information concerning events of interest, and we plan
both to expand this set of entity classes and to make use of them in finding related events
in other chat rooms.

This research prototype has been designed to serve a broad range of chat exploitation
needs:

• Alerts/Monitoring – The system can generate real-time alerts on data types of
interest, tailored by a set of user-specified preferences. The advantage of having a
list of these alerts automatically generated is that the user is less likely to miss an
important event while taking a quick break or having his attention focused on
another chat room.

• High-level Reporting/Summaries – The ability of the system to easily query its
organic database containing indexed chat utterances by entity class and class
attributes provides the mean to generate summaries of chat sessions by topic
(entity class), chat room or user.

• Forensics – The ability of the system to correlate extracted chat utterances across
multiple chat rooms as well as the ability to query extracted chat utterances in a
variety ways provides a platform to conduct “forensic” (retrospective) analysis of
chat.

Our current research was performed with a specific set of Air Force programs in mind:
Air Operations Center (AOC) Weapons System; US Strategic Command (STRATCOM)
operations centers; and the Airborne Warning and Control System (AWACS) airborne
platform. In addition to providing situational awareness through chat for these (and
other) programs, our prototype can be used in support of training operators who use

 21

chat. For example, discussions with the 505th Training Squadron at Hurlburt Field,
Florida revealed a potential role for our system in supporting the training of AOC
operators. Specifically, the ability to query the indexed and stored chat utterances from
training sessions would allow for an easier and more complete evaluation of individual
and group operator performance.

Note that while we have developed entity class models (i.e., “business class” models) for
information in chat based on the entities and events of greatest interest in air and ground
operations, our approach is extensible to other DoD enterprises. For example, the
development of information extraction models for logistics, space, and various
intelligence enterprises is possible given access to their types of chat and relevant domain
expertise. In particular, elements of the Army, Marines, Navy and Coast Guard can find
utility in our research (and an appropriately tailored version of our prototype or
analogous capability) in bringing tailored views of chat to the “tactical edge.”

Finally, we will continue refining this tool based on user comments until the research
project’s end date, in October 2007.

 22

	1 Introduction
	2 System Design and Software
	3 Causing ‘Chat Alert’ Generation
	3.1 Military Language Pre-Processor (MLPP)
	3.2 Regular Expressions vs. Information Extraction

	4 The Alembic Information Extraction System
	4.1 The phraser and rules for combining phrases
	4.2 Forming Eventlets

	5 Entity Class Development
	6 The Dialog Manager for Alembic
	6.1 Alembic Pre-Processor
	6.2 Alembic Post-Processing
	6.3 DocumentHeuristic Class

	7 Alembic Information Extraction Model Performance
	8 User Applications
	8.1 UserProfile Java Application
	8.2 UserDisplay Java Application

	
	8.3 QueryDisplay Java Application

	
	9 Ongoing Research
	10 Summary

