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Abstract 
We address the problem of optimizing instructional strategy for team command and control training 
exercises in simulator environments.  

In the first phase of this work, we developed model-generated, near-optimal solutions to complex C2 
scenarios, as well as animations and presentation techniques that supported their use as feedback. 
Experimental results demonstrated a reliable advantage for the group receiving this treatment, an advantage 
that could theoretically halve training time.  

In the second phase of this work, we are combining three computational models to optimize the order of 
presentation of DDD C2 practice scenarios. The team developed (1) a communications model, used to 
assess communications content; (2) an optimization agent that generates near-optimal solutions to scenarios, 
used as a benchmark for human solutions; and (3) a POMDP model that recommends the next practice 
scenario (among many available) to accelerate team performance towards mastery of three competencies. 
Experimental validation is underway to validate this multi-model approach to optimizing team learning. 

This work advances the science of training by developing models to assess and guide team learning. In 
addition, this work is producing training content for air command and control teams, specifically those in 
AWACS and the Air Operations Center (AOC) Dynamic Targeting Cell (DTC).  

Introduction 
Expertise is a function of the amount of deliberate practice plus feedback.  This simple formula derives 
from research concerning the genesis of expertise in exotic and everyday domains – from chess, music, and 
medicine to typing (Ericsson et al. 1993, Ericsson 2002, 2004), and it guides the design of training systems 
in three ways. First, training systems should be highly accessible, to promote frequent practice. Thus, 
training simulations should be delivered on the most portable, commonly available platform on which the 
targeted knowledge and skills can be trained. Second, practice scenarios in simulations should be 
systematically ordered and structured to address training objectives efficiently, that is, to promote deliberate 
practice. Third, performance assessments should be relevant to training objectives, and systematically 
delivered to train and maintain competencies through feedback. 

In the research presented here, we address these challenges by (1) implementing a portable training and 
research environment, (2) ordering scenarios so that they most rapidly advance teams towards expertise, 
and (3) delivering model-based feedback concerning teamwork and experimentally assessing its impact. We 
call this package of solutions the Benchmarked Experiential System for Training (BEST).  

A Training and Research Environment: The DDD 
We tested the impact of the BEST solutions using a typical, military command and control task – air 
mission command and control – and we implemented this environment in the Distributed Dynamic 
Decision-making simulator.  

The DDD supports rapid implementation of diverse task environments, and provides particularly rich 
support for defining the structure, resources, and communication capabilities of teams. This form of 
functional fidelity has made the DDD a standard tool in more than 25 laboratories concerned with team 
performance.  

The BEST simulation was implemented in the DDD (see Figure 1) to train skills required by an Airborne 
Warning and Control System (AWACS) team. Cognitive task analyses of AWACS in operational settings 
(Fahey et al. 2000) guided the simulation’s design. The AWACS team operates on board an E-3 Sentry 
aircraft (Elliott et al. 1999) equipped with a radar system that is capable of detecting airborne targets in 
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excess of 200 miles. The crew usually has at least a Mission Crew Commander (MCC), Senior Director 
(SD), and several Air Weapons Controllers (AWC) (Formerly known as Weapons Directors or WD; Fahey 
et al. 2000). The AWCs have the primary responsibility for directing friendly aircraft. Each AWC may have 
oversight of a particular location, or ‘lane,’ or they may be assigned specific functions such as controlling 
High Value Assets (HVAs) such as intelligence gathering aircraft. The MCC and SD leave decisions in the 
AWC’s hands and intervene only if there appears to be an oversight. Working under high workload, these 
teams make decisions in current, military operations that take or spare the lives of enemies as well as 
preserve the lives of our own warfighters and non-combatants. The training testbed trains an AWACS team 
in key skills required to execute air C2 missions. It does so in a manner that achieves a high degree of 
ecological validity, which improves the odds that findings of this research will generalize to this and other 
operational environments. 

Feedback Solution 
The learning task requires participants to defend a no-fly zone from enemy intrusion by taking one of three 
actions against enemy aircraft to maximize team scores: (a) attacking the enemy when it entered the no-fly 
zone (which yielded the training team a reward of 50 points less penalties for time spent in the no-fly 
zones); (b) preemptively attacking the enemy before it entered the no-fly zone (which was penalized 
because it violated the Rules of Engagement); or (c) ignoring the enemy, so that the target completed its 
intended path (which accumulated penalty points for the entire time the target spent in the no-fly zone).  
 
We developed near-optimal solutions to the task assignment and scheduling problem (described above) to 
use as feedback to teams. The optimization problem was made tractable by requiring that: (a) each asset 
could strike only one enemy target before returning to base for reload/refuel; (b) each target could be 
attacked by only one asset (i.e. coordinating multiple assets to simultaneously attack a target was outside 
the scope of the problem); (c) complete target path parameters were known a priori. 
The optimization algorithm has several interdependent phases.  

• In Phase I, we find the allocation of targets to assets. Initially, each target is assigned to the closest 
asset whose capabilities are adequate to prosecute the target.   

• In Phase II, we obtain a target sequence – the order in which the targets will be attacked.   
• In Phase III, we find a task schedule – the exact times when the tasks will be prosecuted by assets, 

and specific actions taken by assets against the tasks (detection, identification, attack, etc.). The 
algorithm to find the optimal task times and associated launch schedule of the asset is based on a 
dynamic programming problem and accounts for influences of each task allocation on the execution 
of consecutive tasks in the task sequence.   

We use a feedback among Phases I through III to iteratively improve the task schedule until a near-optimal 
solution is reached. When the schedule is obtained in Phase III and rewards and penalties for the schedules 
are calculated, we utilize an annealing approach to modify the allocation of the tasks to assets (Phase I) and 
then repeat Phases II and III to reliably raise the score of the schedule. 

Feedback Experiment 
The use of optimized solutions as feedback was evaluated in an experiment involving 120 graduate students 
in 30 teams of four. The teams executed defended two no-fly zones in the command and control task (see 
Figure 1). Each team member, or decision maker (DM), controlled a base centered within one of four 
quadrants and four other assets, an AWACS, jet, helicopter, and tank. The bases were inside the corners of a 
green no-fly zone and outside the corners of a red critical no-fly zone. Six boxes in a blue report area 
displayed offensive scores (top three boxes) and defensive scores (bottom three boxes). The left, middle, 
and right boxes displayed scores for individual; groups for the North or South regions; and teams, the total 
score of all four DMs, respectively. The defensive scores dropped at the rate of one point per second for 
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each enemy target in the green no-fly zone and two points per second for each enemy in the red critical no-
fly zone. The offensive scores increased for every successful attack on an enemy target in the no-fly zones 
(individual + 5, group + 10, team + 25). The offensive scores decrease by 25 points each when an enemy 
target was destroyed outside the no-fly zones or when a friendly asset was destroyed anywhere. All these 
scores were displayed, but only the Team Defensive score, which started at 50,000, was used in the present 
analysis of team mission performance, because this score relates to the most important part of the mission, 
defending the no-fly zones.  
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Figure 1: User interface to BEST scenarios on the DDD 

The BEST experimental group received an animation of a near-optimal, BEST audio/video during debrief 
(described above). The solution presented was selected by a domain expert for its similarit  to known 
expert solutions. (Thus, the BEST optimization engine reduced the task of developing expert solutions from 

enerating th eral strategies. The 
two groups had equal time to review these debriefing materials and reflect on the previous mission during 
debriefing. The groups were treated the same in all other respects.   
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Offensive score, the BEST and Control groups were similar at baseline, but the BEST group performed 
significantly better throughout training (F(1,28) = 6.47, p < .05) with the final Offensive score be
for the Control Group and 1177 for the BEST group.  

A similar pattern is shown in Figure 2 for the Team defensive score on the mission assessm
seline) and 1, 2, and 3 for the BEST and Control groups. (We focus here on the scores for defending

ones, because it
e analyzed with a split-plot ANOVA, with training protocol (BEST versus Control) as the bet
ticipant variable and mission as the within-participant variable. There was a significant main effect of 
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  Figure 2: Performance effects of BEST group vs. control group  

 implemented on the BEST testbed. Three models have 
been developed to adapt the scenario order to the performance exhibited by a given team: 

(3) 

rain on), 
c. a finite set of observations (performance/process measurements outcomes), 
d. a state transition function (team expertise in relation to scenarios), 

Scenario Ordering Solution 
The effectiveness of training is a function, in part, of its structure. In our current research, we focus on the 
order of practice events, one aspect of structure. The practice events used here are 50 scenarios, 
systematically scaled along several dimensions and

(1) A communications model is used to assess the content of written communications in the DDD 
environment;  

(2) An optimization agent generates near-optimal solutions to the C2 scenarios. This model 
incorporates probabilistic resource to task allocation, probabilistic path planning, scenario based 
heuristics and logic, an objective function to maximize scores on a DTC scenario. Its output is used 
as ht e standard against which measured human performance on the DDD is assessed.  

A POMDP model recommends the next practice scenario (among many available) to accelerate 
team performance towards mastery of three competencies.  Markov decision process models in 
general have proven to be effective in a variety of sequence and planning applications that involve 
elements of uncertainty in the process (Cassandra, 1998). The POMDP model takes input from the 
co ons ana s measu emmunicati lysi  model, other DDD r ment instrumentation, and the performance 
standards generated by the optimization agents. It applies an algorithm that represents the following 
to generate a table that enables the trainer to specify the next optimal scenario given its 
performance on the most recent scenario. That model represents: 

a. a finite set of states (team expertise), 
b. a finite set of actions (scenarios to t
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e. an observation function (how accurately measurement captures team expertise 
state), and 

f. an immediate reward function (capturing scenario cost and expertise state score to 
be used for scenario selection) 

These models function in a coordinated manner to enable trainers to capture performance measures in a 
largely automated manner and guide the trainer to select the next scenario from a simple lookup table. 

Scenario Ordering Experiment 
Experimental validation is underway to validate this multi-model approach to optimizing team learning. 

Conclusion 
The present work is important in that it applies computational modeling techniques to the problem of 
improving instruction.  In addition, this work is producing training content for air command and control 
teams, specifically those in AWACS and the Air Operations Center (AOC) Dynamic Targeting Cell (DTC). 
Thus, the BEST research program is designed to advance the state of instructional science and the resources 
available to train Air Force operational personnel. 
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