
12th ICCRTS

“Adapting C2 to the 21st Century”

Paper: I-032

Title: Executable Architecture of Net Enabled Operations: State Machine of

Federated Nodes

Topics: Modeling and Simulation
 C2 Metrics and Assessment
 Network-Centric Experimentation and Applications

Authors: Mark Ball
 Joint Studies Operational Research Team

Centre for Operational Research and Analysis
 Ottawa, Ontario, Canada

Ronald Funk
 Joint Studies Operational Research Team

Centre for Operational Research and Analysis
 Ottawa, Ontario, Canada

 Richard Sorensen

Principal Systems Engineer
Vitech Corporation
Vienna, Virginia, USA

Point of Contact:

Mark Ball
Centre for Operational Research and Analysis
National Defence Headquarters
101 Colonel By Drive
K1A 0K2
Office: (613) 992-4539
Fax: (613) 992-3342
Email: ball.mg@forces.gc.ca

1 of 17

Executable Architecture of Net Enabled Operations:
State Machine of Federated Nodes

By

Mark Ball, Ronald Funk and Richard Sorensen

The Defence Research and Development Canada (DRDC) Centre for Operational
Research and Analysis (CORA) is developing capability-engineering analysis tools to
support the building, demonstration, and analysis of executable architectures. Our paper
to 11th ICCTS [1] described how to model workflows within an Operations Centre
(OPCEN) employing a Net-Centric architecture. It used a State Machine (SM) model to
simulate how multiple jobs can proceed in parallel when operators use Task, Post,
Process, Use (TPPU) cycle to organize their work.

This paper extends the OPCEN SM model to track the interaction of work between
OPCENs. The State Machine of Federated Nodes (SMOFN) model is organized around
networked nodes that produce and consume products held in a virtual Repository. The
data-driven simulation uses files to build customized job workflows and configure any
combination of nodes without affecting the business logic. SMOFN also accounts for the
following overhead activities:
 (1) Tracking consumer perception of product utility as it accrues and decays;
 (2) Consolidation of products into higher-level aggregated products; and
 (3) Triggering new jobs where needed whenever relevant products become available.

Customization of SMOFN is underway to account for the data and product flows between
OPCENs in new Canadian Forces Command structure.

Introduction

Background

The Defence Research and Development Canada (DRDC) Centre for Operational
Research and Analysis (CORA) is developing capability-engineering analysis tools to
support the building, demonstration, and analysis of executable architectures. Our paper
to 11th ICCTS [1] described how to model workflows within an Operations Centre
(OPCEN) employing an executable Net-Centric architecture. It used a State Machine
(SM) model to simulate how multiple jobs proceed in parallel when operators use a Task,
Post, Process, Use (TPPU) cycle to organize their work. Further descriptions of previous
SM work can be found in [2], [3], [4], and [5].

2 of 17

The OPCEN SM has been extended to account for Net-Enabled interactions between
several OPCENs. In essence, the OPCEN SM accounted for the work done by a single
OPCEN to produce several products based on data analysis. In the State Machine of
Federated Nodes (SMOFN), not only are such production jobs tracked within several
OPCENs, but the products they create are uploaded to a common, networked, Repository
so that all products can be accessed and used by any OPCEN. The SMOFN is an attempt
to capture the essential logic that governs the way work is conducted anywhere, but with
particular emphasis on ensuring that it can be fully applied to networked OPCENs.

Primer on TPED vs. TPPU

Task, Process, Exploit, Disseminate (TPED) logic implies that each job is a serial
process: jobs are worked on from start to finish without being interrupted. Flowchart
diagrams (ie. in CORE) can simulate TPED by putting the job processes in a loop and
repeating for each job. TPPU, on the other hand, allows jobs to be interrupted by higher
priority jobs. As illustrated in Figure 1, updates of jobs processed through TPPU are
posted at regular intervals and the utility of the job increases as more posts are made.
This accrued utility is saved even if the job is interrupted. TPPU leads to concurrent
behaviour (several partially processed jobs at a time) that is too complex to model using
classical flowchart diagrams. The SM overcomes this by stopping time and executing the
logic to assign operators to jobs in order of priority. It then steps forward in time and
repeats the process. Progress within each job is tracked by recording the job’s state and
updating it at each time step.

Figure 1: Task, Post, Process, Use (TPPU)

3 of 17

Conceptual Basis for SMOFN

Figure 2 illustrates the concept of SMOFN as a Department of Defense Architecture
Framework (DoDAF) OV-1 (high-level operational concept graphic). It is a scale-free
design in the sense that it is equally valid for representing interactions between nodes, or
within a node, or even within a single operator’s perspectives. The dashed lines show the
transfer of Products, Questions, Queries, Results, and Responses, while the solid lines are
a reminder that all of the transactions actually occur through the Repository, the interface
to which is achieved using a Portal. This conceptual OV-1 diagram was also used as the
basis for describing the logic that controls the interactions between the various nodes in
the SMOFN. More specifically, it was used to define the interactions between each node
and the Repository.

Figure 2: Scale-free OV-1

Producer-Repository-Consumer Model Logic

Figure 3 illustrates the ways in which Producer and Consumer nodes can communicate
with each other and interact with the Repository. The most direct way for content to be
transferred is for the Producer to push products directly to the Consumer. Note that
during the actual execution the transfer will most often occur over a network with the
Repository acting as the medium for accomplishing this. Alternately, the Producer may
post content to the Repository where it waits to be pulled by interested Consumers. The
logic options include allowing the Producer to notify the Consumer that content is
available, or the Repository to use its business rules to decide when to notify the
Consumer, or leave it for the Consumer to find when searching for new information.

4 of 17

Figure 3: Producer-Repository-Consumer Paths

Operational Decision Making Logic

Extensions of OPCEN SM to SMOFN

In terms of the Producer node, very little has changed in the SMOFN model compared to
the OPCEN SM described in [1]. Instead, the work concentrated on allowing users to
create customized job threads. The OPCEN SM assumed every job involved 10 steps,
and fewer steps were handled by assigning zero time to unneeded steps. Instead, SMOFN
builds its job threads dynamically by assigning each step a unique name and linking any
number of them together until it reaches a final step called “COMPLETE”. This ability
to assemble building blocks also allows for a wider range of logic constructs to be used.

Producer Logic

The focus of the OPCEN SM was the coding of the logic controlling Producer threads.
The SMOFN focus is to check for the arrival of new jobs at each OPCEN. Each OPCEN
then uses the OPCEN SM logic rules to assign operators to jobs. First the jobs are
examined in order of priority and assigned to available operators with the skills necessary
to perform the job. Some jobs that are in progress from the previous time step can be
interrupted if a higher priority job requires the same operator, or a job step considered to
be generic can be interrupted to free a skilled operator so they can move to a job
requiring their skill, leaving the generic job for someone else. Consumers determine the
utility of any product, but Producers estimate the utility of jobs as they are worked upon.
Jobs are abandoned when their utility decays faster than the operators can increase it.
Jobs are also abandoned if they cannot be completed by their drop-dead time, which is
specified separately for each job. If a job’s drop-dead time is omitted in the input files, it
will instead be calculated based on the job’s arrival time at the queue and a standard
allowable idle time for each job type.

Consumer Logic

In terms of SMOFN execution, the Consumer node’s job is very straightforward. Each
time a product is received by the Consumer, there is a chance, based on the type of

5 of 17

6 of 17

product received, that a question will be generated. The Consumer starts by reviewing
each product type and then generates questions after a certain delay time. These
questions are sent to the Repository to be passed on to the Discover node.

Discover logic

The Discover node is responsible for answering questions generated by the Consumer. In
real life terms, this tends to be done through a search for existing data. In modelling
terms, it is handled through job threads similar to those used by the Producer. In fact,
most of the logical scripting used by the Producer threads is shared with the Discover
threads except for a few important differences. First, the Discover logic does not account
for Utility because the Consumer has set the utility by asking the question. Similarly, the
Discover thread always returns either a product that has some use to the Consumer or it
tasks External Sources to collect it.

External Sources Logic

The External Sources node receives Requests for Information (RFIs), or Queries, from
the Discover node. Exactly how the requested information is found is not within the
scope of SMOFN. What is important is how much information is found (in terms of file
size) and how long it takes to find it. The found information will typically be in the form
of raw data, which is then sent to the Producer to trigger a new analysis job.

Repository Logic

The repository is the medium between all of the other nodes. Its job is to transfer
products from Producers to Consumers, questions from Consumers to Discoverers, RFI’s
from Discoverers to External Sources, results from Discoverers to Producers, and
responses from External Sources to Producers. The scripts to handle the logic of these
data transfers are all similar, with nuances to account for differences between types of
data or nodes, but more particularly for what type of information is relevant for the
receiving node to execute its logic appropriately.

Implementation in COREsim

SMOFN Top Level Description

Figure 4 is the top-level diagram that controls SMOFN execution. It is colour-coded so
each activity can be cross-referenced with the appropriate node in Figure 2. Unlike most
diagrams in CORE, time does not increase as CORE steps through the process from the
left to the right. In the case of SMOFN, time is actually stopped and the displayed left-to-
right sequence represents the decision making process that takes place at each time step.
Once the decision logic is completed SMOFN increments time another step and repeats
the process.

7 of 17

Figure 4: SMOFN Top-level Model

The Figure 4 diagram is also segmented into five phase of activity within each time step:

1. Simulation Control handles the process of incrementing the clock at the
beginning of each time step and checking for the end of the simulation. It also
includes the input of scenario data at the beginning of the simulation, before
entering the time step loop;

2. Input simulates the delivery of information from the Repository to OPCENs
(Producers, Consumers, and Discoverers) and to External Sources. Activity refers
to the activity within those nodes, that is the generation of Questions by
Consumers, the processing of jobs by Producers and Discoverers, and the
production of new data by External Sources;

3. Output simulates the uploading of information from OPCENs and External
Sources to the Repository; and

4. Simulation Output saves pertinent information to output variables at the end of
each time step and saves variables to output files at the end of the simulation.

A key difference between Figure 4 and typical CORE behaviour diagrams is that the
logic is not completely defined simply by the diagram itself. As mentioned earlier, the
non-serial behaviour of TPPU logic is not scalable when modelled by classical flowchart
diagrams, so SMOFN uses scripting embedded within each activity in the diagram to
track the state of each job.

Logic Within Branches

The SMOFN elements logic shown as white boxes in Figure 4 is the simulation control
and simulation output phases. When the simulation starts, the setup activity runs, reading
data from input files and setting up global variables used to track data throughout the
simulation. The SMOFN then enters a loop, which repeats for each time step. First the
Run-to-End Check executes to see if the end of the simulation has been reached (this will
occur at a pre-set time or when there are no jobs left to do). If the end of the simulation is
reached then the loop exits and the SMOFN skips ahead to the End-of-Run Reporting
which outputs the data that was tracked through the simulation. If the end is not reached,
the clock increments a time step and each node’s logic is again executed. Afterwards, the
current state of every task and every operator is saved to the global variables that are the
basis of the simulation output.

The simulation of the operational nodes is divided into three phases. Each node’s activity
is triggered by input received from the Repository, and that activity leads to an output
that is sent back to the Repository.

Consume activity of OV-1 is represented by the yellow boxes in Figure 4. Each time
step, the Consumer node begins by receiving products sent by the Repository. The
Generate Questions activity then goes through all the products that have just been
received and may generate questions based on those products. If any questions are
generated, the delay before they are actually sent is determined and the time to send them
is added to a schedule.

8 of 17

Produce and Discover logic elements of OV-1 are displayed by the blue boxes in Figure
4. The activity within both of these nodes is based on job threads where much of the
scripting is the same. First a list of OPCENs is built and a loop is entered that is repeated
for each OPCEN. The loop begins by choosing a new OPCEN and the Schedule
Processing activity then looks at the job arrival schedule and then adds to the queue any
job that arrives during this time step. Utility Decay then goes through all the jobs and
checks to see how old their original data is. If the age of the data is such that the utility
should decrease this time step, that is handled here. Thread & Queue Processing then
goes through all jobs and assigns available operators to jobs in order of job priority.

It is here that the utility of jobs can increase as work progresses, or jobs can be
abandoned if they cannot be completed on time. Produce and Discover jobs are allowed
to draw from the same pool of operators so when the SMOFN sorts jobs in order of
priority, it ignores whether the job is related to Production or Discovery. After these
activities have executed, the Capture Localized Status element saves any data that must
be tracked into the next time step. After each OPCEN loop has executed, the OPCEN
Processing Complete element signals to the Repository that it can now execute its logic
for receiving products and RFIs.

The pink boxes represent the work done by the Repository during each time step. First of
all, the global variable tracking the bandwidth between the Repository and each OPCEN
must be reset, as it is decremented whenever bandwidth is used to send or receive data.
Bandwidth is tracked in terms of how much data can be transferred during each time step.

Next, the Repository checks for the arrival of new raw data. This check is based only on
parameters read into the model during setup; raw data received from External Sources in
response to RFIs is handled separately. Send From Repository contains the logic used to
send products to the Consumer, jobs to the Producer, questions to the Discoverer, and
RFIs to External Sources. This activity takes place before each of these other nodes
executes during the time step so they can incorporate data as they receive it. Similarly,
Receive At Repository waits until each node has completed their execution for the time
step so it can receive data as soon as it is ready. This activity receives questions from
Consumers, products from Producers, RFIs from Discoverers, and RFI responses from
External Sources.

Finally, External Sources are simulated with the red boxes. They receive RFIs from the
Repository, respond to those RFIs, and send the responses back to the Repository. As
with the Consumer, the process required to respond to RFIs is not tracked in detail, only
the amount of time required and the type of raw data returned are currently handled
within the simulation. It is possible to model External Sources in more detail but it must
be done in a way that does not detract from the OPCEN processes.

During each time step, items sent from the Repository must occur before any of the other
nodes can execute their logic. Only after those nodes have executed can the Receive at
Repository activity run. It should be noted that the Receive and Send activities of the
Consumer and External Sources have no embedded logic scripts. Their logic is actually

9 of 17

handled within the Send and Receive activities of the Repository. They are shown to
illustrate the Consumer and External Source perspectives of what is taking place.

Input Data Files

One advantage of the SMOFN is that the model itself is only concerned with the
execution of the logic. All operating parameters, such as the number of operators at an
OPCEN and their skill sets, or the number of jobs to be done, are read from data files
during the setup stage of the simulation. This allows a single version of the model to be
used across a wide spectrum of scenarios.

Simulation Setup

The first data file read into the SMOFN points to the data path where that scenario files
reside. These files include a list of OPCENs and the data paths containing their setup
information, a time at which the simulation will stop, and a switchboard to allow the
analyst to select values for a list of generic business rule settings.

OPCEN Inputs

The parameters for each OPCEN is defined by five different files that are read into the
SMOFN model:

1. An events list;
2. A summary of thread types;
3. A matrix of operator skills;
4. A set of utility decay curves; and
5. The step-by-step definitions of each thread.

Events List

The purpose of the events list is to define what jobs will be added to the OPCEN job
queue, and when. The main entries for each job are the thread name, priority, and the
time at which the job will be added to the queue. In the OPCEN SM, this list would
include all jobs that the OPCEN would process over the course of the simulation. In the
case of the SMOFN it only includes jobs that are based on OPCEN operating procedures.
Other jobs, based on the arrival of new data are more appropriately listed in the schedule
of new jobs that the Repository will send to each OPCEN (described in the next section).

The utility of the job will typically begin to decay the moment the job is added to the
queue. To accomplish this, the file includes a field to specify when the data was collected
so that the decay of utility can be calculated from that point in time. Finally, each job has
a standard slack time for the particular job type is valid; there is also a field to set a
specific deadline time.

10 of 17

Thread Types

The thread types file defines the overall characteristics of each job type that is processed
at the particular OPCEN. The details specified here reflect the job as a whole, whereas
the characteristics of each step within the job thread are specified in a separate file. Each
entry is identified by thread name and priority (entries in the events list will have their
priority rounded to those identified here if necessary). The data used to describe a thread
includes the following fields to tailor the business rules to each job thread as appropriate:

1. Percentage of job will be declared as Nothing Significant To Report (NSTR);
2. Default slack time for the job;
3. Number of steps an operator can look ahead to estimate the expected utility

gained over time spent on the job;
4. Whether the job is redundant with other jobs of its type (jobs that are redundant

will be ignored if another job of the same type is in progress when a new one
arrives in the queue); and

5. Utility of a job that returns NSTR, and the details of aggregating other jobs into
this one.

For the SMOFN to properly account for the aggregation of several completed products
into one new job, the following details need to be specified for the aggregating job
thread:

1. Name of the job step where aggregation will take place,
2. Types of completed jobs to aggregate,
3. Amount of time added to the aggregation step for each job aggregated; and
4. Percentage of utility that carries over from the aggregated job to the aggregating

job.

The time added and utility carried over can be different for each job type that is
aggregated.

Operator Skills

The SMOFN refers to the operator skills matrix to assign operators in an OPCEN to
queued jobs. Once assigned, this matrix also identifies how effectively operators do their
work. The operator skills matrix identifies each operator in an OPCEN by a “name” that
is a string containing only letters and numbers. The information tracked for each operator
includes:

1. Their speed and quality of work (both expressed as percentages where 100%
speed means jobs are done in the standard required time, and 100% quality means
the operator adds the expected utility to jobs they work on);

2. Order in which they are assigned to generic work;

11 of 17

3. Percent chance they are able to take on generic work when they are not already
assigned any specific job; and

4. List of their skills, beginning with their primary skill and allowing up to ten
entries. When a queued job requires a particular skill, the SMOFN will look to
each operator’s first skill, then each operator’s second skill, and so on until an
available operator with the required skill is found.

Utility Decay Curves

The utility decay curves are used by the SMOFN to describe how the utility of products
decreases as they age. Each line begins with a thread name and priority (the combination
of which must match those in the thread types file) and a time expressed in units of the
simulation’s time steps (so far, we have used minutes for our simulations). Each line then
ends with three numbers representing the lower bound, peak value, and upper bound of a
triangular distribution. The logic of the utility decay is that after the product of a
particular thread type has aged by the specified amount of time (age is counted from the
moment the raw data was taken), its potential utility can be calculated by the specified
triangular distribution. The SMOFN logic is defined so that potential utility never
increases as products age, even if the distribution is constructed to allow it. The actual
utility is calculated by multiplying the utility accrued from work done on the job times
the potential utility based on product age.

Thread Definitions

The last file is used to describe the threads, in terms of how the SMOFN should handle
each step within each job. This file uses one line of data for each step of each thread type
(thread types must be the same, by name and priority, as those in the thread types file).
The data for each line includes 12 fields covering the thread type, the name of the step,
the time and skill required to complete it, the number of posts (utility updates) during the
step, whether or not it can be interrupted, the lower bound, peak, and upper bound
defining a triangular distribution used to calculate the utility achieved by the end of the
step, the file size of the resulting product (used to track uploading to the Repository and
subsequent distribution to Consumers), the type of step (in terms of which logical script
to execute within the SMOFN) and the name of the next step to move to after the current
one.

Seven types of steps are currently available to be used by SMOFN. The first three of
which previously existed in the OPCEN SM:

1. No decision logic as to the following step, once the current step is complete the
job will simply move on to the next;

2. NSTR decision: if the job is marked NSTR, it happens at the beginning of this
step, after which all subsequent steps are skipped; and

3. Final step of any Production job, after which the job is marked complete and
removed from the queue.

12 of 17

There are also four additional steps that are unique to Discovery jobs:

4. Decision as to the results of the Discovery process and has three possible exits.
a. No product exists,
b. Desired product is found, and
c. Some data is found but it is insufficient.

5. In the case that no product exists, the Discovery job will create a request for new
data that will be sent to External Sources;

6. If the product is found, it must be analysed and put in the context of the
originating question, so a new Production job is added to the appropriate
OPCEN’s schedule.

7. If insufficient data is found, then the Discovery will do a combination of the
previous two steps. IT starts by sending a request to External Sources for more
data, and in the mean time, a new Production job is added to the OPCEN schedule
to analyse whatever data already exists.

Repository Inputs

A separate set of data files is used to describe the operating parameters of the Repository
after the OPCEN initialization data. These files are:

1. Schedule for the arrival of new data;
2. Schedule for the arrival of new products created outside the simulation;
3. Matrix organizing the delivery of products to the appropriate Consumers;
4. List of each OPCEN’s bandwidth; and
5. List controlling the generation of questions.

Data Arrival Schedule

The data arrival schedule is similar to the events list for each OPCEN. This file is used to
simulate the fact that many jobs within an OPCEN are triggered by the arrival of new
data in the Repository, rather than by the OPCEN’s own operating procedures. Each line
specifies the time that the new data was created, the time at which it will arrive at the
Repository to be delivered to the Producer, the source of the data (such as a recce unit),
the type and priority of the job thread that will be generated, the deadline for the data
analysis job, the Producer OPCEN to which the data will be sent for analysis, the delivery
method (i.e. push or pull), and the size of the file that must be delivered.

New Product Arrival Schedule

The schedule of outside products defines the arrival of products from Producers that are
not tracked by the model. Product arrival is an important consideration for the SMOFN
so we can simulate how one OPCEN (or several) reacts to products created by other
OPCENs, without having to model those other OPCENs and their own product creation
processes in detail. These products can then be forwarded to Consumer OPCENs as
though they were created within the simulation. The required data includes:

13 of 17

1. Name of the producing OPCEN;
2. Type of job (including the priority rounded to the nearest appropriate thread

type);
3. Specific priority;
4. File size to be transferred;
5. Time at which the original data was collected;
6. Time at which the product will arrive at the Repository;
7. Status of the job producing the product (i.e. complete, or the end of a specific job

step, in which case the product corresponds to the most recent update);
8. Utility achieved due to work on the producing job; and
9. Decayed utility due to the data’s age.

Delivery Matrix

The SMOFN uses the delivery matrix to identify what products are sent from specific
Producers to specific Consumers. This applies equally to products created within the
SMOFN simulation as well as to products identified in the new product arrival schedule.
This file is the main source of information for the SMOFN to account for data sharing
between OPCENs. A line of data contains the product type, the name of the Producer
and Consumer OPCENs (one of each, products sent from one Producer to multiple
Consumers must have one line for each Consumer), the percent probability that a product
of the given type will be sent to the specified Consumer when created by the specified
Producer, and the method of delivery (push or pull).

Bandwidth

The bandwidth file is very simple, containing only a list of OPCENs that connect to the
repository along with their bandwidth. This identifies to the SMOFN the amount of data
that can be transferred between each OPCEN and the Repository during a single time
step. Aside from the Producer and Consumer OPCENs, the Discover and External
Sources nodes should also be included here. Units are at the discretion of the analyst, but
must be consistent with the file sizes for products identified in the thread definitions and
the new product arrival schedule, as well as raw data in the data arrival schedule.

Question Generation

The questions file draws from the combinations of product types and Consumers that
come out of the delivery matrix. This information is referred to whenever a product is
sent to a Consumer so that questions are generated as appropriate. For each such
combination, the questions file identifies to the SMOFN the percent chance that the
Consumer will generate a question, the file size required to contain that question, and the
amount of time that the Consumer will take between receiving the product and sending
out the question.

14 of 17

Way Ahead

Work on the actual SMOFN model is nearing completion. The major issue now is to
collect the data required to populate all of the initialization files described above. This
data must be representative of the operating parameters of the OPCENs, as the goal is to
accurately simulate data flow between these. Particular emphasis is being placed on
describing job threads that involve multiple OPCENs, such as the process to report and
respond to events in theatre or the preparation of high-level daily briefs. Another major
component is the composition of various OPCENs, as far as the number of operators on
shift and the skills they are trained in. Although much of this data will be classified, the
intent is to keep the model unclassified as it only reads the data upon execution.

The planned process for building the future operational architecture of the Canadian
Forces (CF) command structure with the help of SMOFN is illustrated in Figure 5. We
begin by examining current C2 practices to capture them as executable threads, in light of
the capabilities definition knowledge gained through previous work with the SMOFN
model. These threads can then be converted into input to the SMOFN model. This, along
with any developments of the SMOFN execution capability, leads to a more complete
version of the SMOFN. The first payoff from the operator’s perspective is that the
practices captured as threads are documented and can be used to validate the Standard
Operating Procedures (SOPs) in use. The second is that the inclusion of these threads into
the SMOFN allows them to be analysed and used to potentially improve the SOPs. The
payoff from the modeller’s perspective is the creation of a more complete definition of
C2 processes and lead to a better articulation of the target operational architecture.

Figure 5: Planned Operational Architecture Creation Process

15 of 17

The above process is also an important part of the Verification, Validation, and
Accreditation (VV&A) of the SMOFN model. If the executable threads captured from the
operators are correctly transformed into inputs to the SMOFN, then the model should be
able to replicate representative results of what is observed during operations. Once the
VV&A process is complete for individual threads is it reasonable to start analyzing the
SMOFN model parameters for cumulative effect of interactions between threads.

Results of Initial Trial

The process of capturing executable job threads in COREsim has recently been
demonstrated as the final phase of SMOFN development. It started with capturing
information about two job processes in the form of executable models:

1. The first case was an undocumented C2 practice used by the strategic level
OPCEN night watch to prepare the daily electronic briefing for senior
commanders. The data collection involved an operator subject matter expert
(SME) describing process steps with personnel resources, timings and duration
distributions while the analyst built and corrected the model logic. It took two
days work to build a model of this C2 process that highlighted the effect of
several process and resource bottlenecks; and

2. The second case started by building a quick model from a standard operating

procedure (SOP) matrix that lists the actions required by several nodes when
handling serious casualties during deployed operations. The analyst updated and
tested the model logic with an operator SME while entering the associated data.
It took five days part-time effort to build an executable model that works the way
the process is made to work instead of what the existing SOP would suggest.

Both trial cases successfully demonstrated how to quickly build and validate detailed
models with operator SMEs. The result was a much better articulated C2 process than
existed before and it provided a means to test a broad range of process options. The
added bonus of using COREsim was that formatted DoDAF product documents could be
automatically generated for whatever data was entered into the model.

The final step in the modeling involves converting the C2 process threads to SMOFN
data input file format. A portion of this has already been demonstrated using the above
trial cases by decomposing the threads into simple sub-jobs and then linking them
together. The project was still sorting out some technical aspects of this conversion
process but it is anticipated these will be overcome in the near future.

The greatest challenge in implementing SMOFN will come from the need to have assured
access to operator SMEs. They are the key to collecting, collating and validating the full
range of C2 process threads. These operator SMEs are also the resource in greatest
demand for ongoing operations. The staffs are investigating how to support the review
their existing SOPs in order to document the C2 processes needed to support the future
operational architecture.

16 of 17

Conclusions

A few significant conclusions have been drawn from the SMOFN modelling experience,
as described in detail in this paper. The SMOFN has achieved its goal of extending the
detailed OPCEN SM model logic across multiple nodes, each with their own jobs and
resources but also with the ability to share information. The Net Centric virtual
Repository business logic successfully controls the interaction of information between
operator perspectives (i.e. producer, consumer and discovery) as well as between
different OPCENs within the SMOFN. The SMOFN focus on business logic driven by
data files for an instantiated C2 structure allows it to be both scalable and flexible.

The process of gathering data for process threads is both quick and effective; the major
limitation noted so far is the availability of SMEs to provide the operational context.
This is expected to continue to be the biggest implementation hurdle to building a faithful
simulation and executable CF Command Structure operational architecture.

References

[1] Funk, R.W., M.G. Ball, and R. Sorensen, “Building Executable Architectures of Net
Enabled Operations Using State Machines to Simulate Concurrent Activities”, presented
to 11th ICCRTS, Cambridge, UK, September 28, 2006
http://www.dodccrp.org/events/11th_ICCRTS/html/papers/014.pdf

[2] Funk, R.W. and Sorensen, R.L., “State Machine Modelling of TPED and TPPU”,
NDIA Proceedings, Oct 2005,
http://www.dtic.mil/ndia/2005systems/thursday/sorensen.pdf

[3] Funk, R.W., Ball, M.G. and Sorensen, R.L., Building Executable Architectures to
Simulate Concurrent Activities of Net Enabled Operations - Case of a Single Operations
Centre, DRDC Technical Report TR 2006-24, Nov 2006.

[4] Gauthier, S.M. and Funk, R.W., Estimating Partial Utility of Interim Products, DRDC
CORA Technical Note TN 2006-02, April 2006.

[5] Sorensen, R.L., Funk, R.W. and Ball, M.G., “Exploring Concurrent Activities:
Using State Machines to Understand Net-Enabled Operations”, Seventeenth Annual
International Symposium of the International Council On Systems Engineering
(INCOSE) 24 - 28 June 2007.

17 of 17

http://www.dodccrp.org/events/11th_ICCRTS/html/papers/014.pdf
http://www.dtic.mil/ndia/2005systems/thursday/sorensen.pdf

	Introduction
	Background
	Primer on TPED vs. TPPU

	Conceptual Basis for SMOFN
	Producer-Repository-Consumer Model Logic

	Operational Decision Making Logic
	Extensions of OPCEN SM to SMOFN
	Producer Logic
	Consumer Logic
	Discover logic
	External Sources Logic
	Repository Logic

	Implementation in COREsim
	SMOFN Top Level Description
	Logic Within Branches

	Input Data Files
	Simulation Setup
	OPCEN Inputs
	Events List
	 Thread Types
	Operator Skills
	Utility Decay Curves
	Thread Definitions

	Repository Inputs
	Data Arrival Schedule
	New Product Arrival Schedule
	Delivery Matrix
	Bandwidth
	Question Generation

	Way Ahead
	Results of Initial Trial

	Conclusions
	References

