
Paper Submission

12th ICCRTS
“Adapting C2 to the 21st Century”

Paper title: Evolving Control Logic Through Modeling and Simulation

Topic: Modeling and Simulation, C2 Technologies and System

Name of Authors: Khee-Yin HOW, Victor TAY, DSTA, Singapore
 Ye-Chuan YEO, Qing SUI, DSO NL, Singapore

Point of Contact: Victor TAY

victor_tay@dsta.gov.sg

Organisation: Defence Science & Technology Agency (DSTA)
DSO National Laboratories (DSO NL)

Complete Address: Defence Science & Technology Agency (DSTA)

Directorate of Research and Development
 71 Science Park Drive, #02-05
 Singapore 118523

 DSO National Laboratories (DSO NL)
 Cooperative Systems and Machine Intelligence Lab (CML)
 20 Science Park Drive

Singapore 118230

Phone: 65-68795077

Email: hkheeyin@dsta.gov.sg, victor_tay@dsta.gov.sg
 yyechuan@dso.org.sg, sqing@dso.org.sg

Abstract

One of the C2 paradigm shifts in the Information Age is Power to the Edge1.
Unmanned vehicle operations are increasingly based on this new paradigm,
i.e. from manual and centralized tele-operation to autonomous and de-
centralized operation, such that there is shared awareness, effective
collaboration and action synchronization amongst the unmanned vehicles.

Traditionally, the control logic for unmanned vehicle operations is manually
handcrafted. However, as the nature of operations becomes more complex
and diversified, this manual approach of logic programming becomes
extremely difficult. Therefore, a more efficient method to program the control
logic is required.

In this paper, we describe how Modelling and Simulation (M&S) can be
leveraged to provide a learning environment to evolve control logic for an
unmanned vehicle team to enable autonomous operation. Our approach
coupled a rule learning system based on Genetic Algorithm and
Reinforcement Learning to an M&S system. We call this Simulation-based
Rules Mining (SRM). The idea is that control rules can be learned from an
M&S environment (i.e. simulated robots and simulated environment), and then
transferred onto real robots in a real environment. In this paper, we describe
our work where we successfully applied SRM to evolve the control logic for a
robotic team to carry out search and locate mission in an urban environment.

1Alberts and Hayes, 2003, CCRP Publications

1. Introduction

As we move into the 21st century, the role that unmanned vehicles play in
civilian and military operations is becoming more prominent. For example, in
urban operations, unmanned vehicles can augment the sensing capability and
firepower of the human soldier. At the same time, the C2 paradigm for
unmanned vehicles is also shifting from manual and centralized tele-operation
to autonomous and de-centralized operation. To achieve full autonomy, we
need to tackle the problem of programming the logic to control and coordinate
the unmanned vehicle team to achieve the given task. Traditionally, the logic
is manually handcrafted with the aid of M&S tools [1]. However, as the nature
of the operations undertaken by unmanned vehicles becomes more complex
and diverse, this approach of control logic programming becomes extremely
difficult. Hence, more efficient methods are required.

In this paper, we describe how M&S can be used to provide a learning
environment to evolve the control logic for the unmanned vehicle team. The
approach we used coupled a rule learning system based on Genetic
Algorithm (GA) and Reinforcement Learning (RL) to an M&S system. We call
this hybrid approach Simulation-based Rule Mining (SRM) (Fig. 1).

The idea is that control rules learned from the M&S environment (simulated
robots and simulated environment) can then be transferred onto real robots in
real environment. Compared to direct learning on the physical robots, SRM
has the advantage of ease in repeating trials, while mitigating risks of damage
to the hardware.

Fig. 1 – Outline of SRM process

In the SRM approach, the control logic for a robotic platform is encoded in the
form of IF-THEN rules. Such rules are easy for humans to understand and
this makes it easy for a priori knowledge to be incorporated into the system to
bootstrap the learning process. A hybrid learning approach of RL and GA is
proposed as the individual algorithms complement each other by tackling
different aspects of the learning problem.

GA can perform a distributed search through the rule space for sets of ‘good’
rules. However, the rule bases generated by GA usually contain non-mutually
exclusive rules. RL complements by differentiating the ‘good’ rules from the
‘bad’. RL can incrementally tune the priority of individual rules according to
their performance so that better-than-average rules have higher priorities than
others in the long run.

We tested the SRM approach to evolve the logic for controlling a robotic team
to carry out search and locate mission in an urban environment. In this test,
each robot needs only be equipped with sensors for navigation and target
detection. There is no need for the robot to know its own position or to have
the means to communicate with other robots. The learned control rules were
shown to generalize well across similar room layouts, with the robots
demonstrating similar performance in simulation and in the real environment.

2. Task Description
Multi-robot systems are commonly classified as follows:
• Composition: Whether the individuals in the team are homogenous or

heterogeneous in terms of roles, capabilities etc.
• Control logic design: Deliberative vs. reactive
• Communication: Whether communication is enabled between robots in the

team.

In this experiment, the aim was to design the logic for a reactive, homogenous
robotic team with no communication between individuals. The task for the
robot team was to find and clear targets in an unknown urban environment.
This generic task can be translated into practical applications such as bomb
disposal, waste clearance and search and rescue.

To reduce the computation load on each robot, the robots did not have
localization capabilities, nor did they communicate with each other explicitly.
Considering that the trade-off of using such ‘simple’ robots is that a complete
solution cannot be guaranteed given finite time, we established an
experimentation baseline of 70% of the targets found within the limited time
given as basis for comparing our results. This baseline balanced the
completeness of the solution with the time constraint. To design the control
logic by hand for such a task would be very time consuming. Hence, this

problem was well suited for testing our proposed approach of multi-robot auto-
programming.

3. Evolving Control Logic for a Robot Team
This section describes the SRM system that was used to automatically
generate the control logic for a homogenous robot team to cooperatively
accomplish the task described above.

3.1 System Architecture
The system architecture is illustrated in Fig. 2. There are 3 major components
in the system:
• The rule engine of each robot that decides what actions to take, given the

current local perception of the environment

• The evaluator that monitors the performance of the robot team towards

achieving the given task and provides feedback in the form of a reward
signal.

• The learning system, based on the hybrid approach of GA [2, 3] and RL [4,

5], that incrementally improves the performance of the robot team using
the reward signal and the pooled experience of the robots.

Fig. 2 – The SRM system architecture

Note that in the simulation, each robot was driven by its own rule engine. This
means that the control of the robot team was distributed. To create a
homogenous robot team, a common rule base was used to drive all the

robots. The components are described in greater detail in the sections that
follow.

3.2 Control Logic Representation and Inference
In the SRM system, the control logic is represented as a set of IF-THEN rules.
The advantage of using such a representation is that knowledge of the human
expert can be easily incorporated into the learning process as such
knowledge is naturally expressed as IF-THEN rules. An example of a rule in
our system is given below.

RULE AvdFrontRobot (strength = 0.85)
IF (Stall = false AND
 No_of_tracks > 0) AND
EXIST (Range < 2.5 AND
 Bearing = [-15, 15] AND
 Identity = Robot)
THEN Action = TurnLeft (Speed = 0, Turn_rate = 30)

This rule is interpreted as: If (a) I’m not stalled and (b) I sensed an object and
(c) this object is a robot in my front sector very near to me, then my reaction
will be to turn left on the spot and at the maximum turn rate to avoid the other
robot.

The strength of a rule, a value between 0 and 1, is related to its priority. Its
role will become apparent when we explain how the rule engine works below.

Given a rule base and the current perceived state of the environment, the rule
engine decides what action should be taken. The inference process of the
rule engine can be summarised as follows:

1) Given the current state s, create the active set A(s), which is the set of

rules with conditions matching the current state;

2) If |A(s)| > 1 (because the rules are not mutually exclusive), select the rule

with the highest strength. If there is more than 1 rule with the highest
strength, then randomly pick one among them;

3) Execute the action of the selected rule and transit to the new state. Go to

step 1).

3.3 Learning Algorithm
Our learning approach combines GA [2, 3] and RL [4, 5], with each technique
tackling two different aspects of the solution to be learned.

The first aspect is to learn the set of rules that makes up the solution. This
will involve searching through the rule space for good rules and GA, a
stochastic search procedure based on the principles of natural evolution, is

suitable for tackling this aspect. However, during the search process, GA
does not guarantee that the rules in the solution are mutually exclusive. In
this situation, the strength of the rule can be used to distinguish the ‘good’
rules from the ‘bad’ ones. The strength of a newly created rule may be set to
a default value, but this should be modified according to its performance,
which in turn is measured by the reward from the evaluator. RL is suitable for
strength learning as it can incrementally tune the strength of the rule with
respect to the series of rewards it received. A rule that receives a reward
higher than its current strength will have its strength increased and vice versa.
The individual approaches in our proposed algorithm complement each other
to form an elegant overall solution. The skeleton of the algorithm is given
below:

Algorithm LearnRules
1 Generation t := 0, Experience pool e:=NULL, done:=false
2 Initialize population p(t)
3 WHILE (!done) DO
4 FOR each rulebase r in population p(t)
5 e := Evaluate(r)
6 r := CreateAndDeleteRules(r, e)
7 FOR i: 1 to MAX_EPISODES
8 e := Evaluate(r)
9 r := DistributeReward(r, e)
10 END FOR
11 Evaluate(r)
12 END FOR
13 done := CheckStoppingCondition(p(t))
14 IF (!done)
15 p(t+1) := Select(p(t))
16 p(t+1) := Crossover(p(t+1))
17 t := t + 1
18 END IF
19 END WHILE

Algorithm Experience pool e := Evaluate(Rulebase r)
20 e :=NULL
21 Duplicate r across all simulated robots
22 FOR t= 1 to MAX_STEPS
23 Make Decision for all simulated robots
24 Record experience for each robot i as <s, A>i,t (s is current state, A is the set

of active rules)
25 END FOR
26 e := ∑i,t<s, A>i,t (Pool experience from all robots across all time steps)
27 e := e + Get team reward from Evaluator

In the algorithm, there is an outer GA loop and an inner RL loop. The GA
maintains a population of rule bases. Each rule base is a potential solution to
the problem and has a fitness value associated with it. The fitness value
measures the performance of the rule base at solving the problem. For every
iteration of the GA loop (also called a generation), the population undergoes 3
GA operations:

RL loop

GA loop

1) Each rulebase in the population is modified by the rule creation and delete
operations (line 6). A new rule is derived from the parent rule by modifying
the condition and/or action part of the parent, and the process is driven by
the pool of experience collected from a previous evaluation episode (line
5). The delete operation prevents the rulebase from getting too large by
periodically removing low strength rules or subsumed rules with similar
strengths from the rulebase.

2) The fitness value of each rule base is computed after all modifications to

the rule base are completed (line 11). A new population is then created
from the old population (line 15) by selecting rule bases from the old
population according to their fitness values. The higher the fitness value,
the higher the probability of a rule base being selected for the new
population.

3) Every pair of rule bases in the new population exchange unique high

strength rules through crossover (line 16).

Within the RL loop, the rulebase undergoes an evaluation episode (line 8).
RL is then used to distribute the reward received at the end of the episode
among the rules that were active, thereby updating the strength of these rules
incrementally (line 9). The update rule is

)],([),(),(acSracSacS iii −+← η (1)

Here η is the learning rate, r is the payoff, Si is the strength of an active rule i,
c is the rule condition and a is the rule action. The list of active rules is
extracted from the common experience pool.

The Evaluate() function, used in both the GA and RL loops, takes in a
candidate rule base as input, simulates the robot team executing the task
(lines 22 to 25), gathers the experiences of the individual robots into the
common pool (line 26) and requests the reward from the Evaluator module
(line 27). Recall from earlier that the common experience pool is used in the
GA rule creation/delete functions and the RL strength update function. The
use of the common experience pool can be viewed as allowing some form of
experience sharing among the robots. This can help to accelerate the
learning process as each robot now has a richer set of experiences (its own
and others’) to learn from.

3.4 Evaluator
This module computes a team reward r after each evaluation. The reward is
computed differently for different tasks. For the target search and clearance
task, we design the reward function to be

]
*5.0

),*5.0max(/[]*5.0[
max

max

t
tt

n
nnr

total

dc += (2)

where nc is the number of targets cleared, nd is the number of targets
detected (but not cleared), t is the actual time taken, ntotal is the total number
of targets, tmax is the maximum time allowed. This formulation considers both
the completeness (in terms of proportion of targets found) and efficiency (in
terms of time taken) of the solution.

4. Experiment Setup

4.1 Objectives
The aim of the experiments is twofold:
(a) To evaluate the effectiveness of the SRM approach in developing a

solution to our problem in a synthetic environment.

(b) To investigate the generalization and transfer properties of the learned

rules.

Generalization refers to the performance change when the learned rules are
tested in an environment different from the one during learning. For our
problem, learning is usually conducted using a small number of robots (e.g.
10) or a subset of the full range of environment layouts; otherwise it quickly
becomes computationally intractable. The generalization value will indicate
how well the learned rules can adapt to different operating conditions such as
an increase in robot number or change in environment layout.

Transfer refers to the difference in performance when the learned rules are
tested in simulation and in hardware using the same environment setup.
Because we are using a low fidelity noiseless simulator, the transfer value will
be a good gauge of the sensitivity of the learned rules to noise in the actual
operating environment.

4.2 Experiment Design
We designed multiple setups to meet the experimental objectives. A
summary of the various setups that are used for the experiments is given in
Table 1.

Learning is conducted using Setup 1 (see Fig. 3a for the layout), using a mix
of random and a priori rules as the starting point. The target positions were
varied during the learning process to simulate noise. Each learning
experiment ran for 15 generations. The learned rule base with the highest
average team reward over the set of target positions in these 15 generations
is selected as the final rule base. The generalization and transfer properties
of the final rule base are then investigated using Setups 2 to 6. Figures 3b
and 3c illustrate the layout of a generalization and transfer test respectively.
For each test setup, 5 to 10 trials were conducted using different random

seeds and slightly varying target positions. The average team reward over all
the trials is used as the test performance.

To determine if the SRM approach was effective, or how well the learned
solution generalized and transferred to hardware, we compared the
performance of the learned rules against our baseline of 70% of targets found
in the limited time given (see section 2). Using equation (2), this translates to
a metric value of 0.35.

Setup Purpose Layout (Area) No. of

robots
No. of
targets

Environment

1 Learning 8 room (252 m2) 10 10

2 Generalization test
(different target positions) 8 room (252 m2) 10 10

3 Generalization test
(different no. of robots only) 8 room (252 m2) 20 – 35 10

4a 6 room (209 m2) 10

4b
8 room with

narrower doors
(252 m2)

10

4c

Generalization test
(different layouts only)

10 room (382 m2)

10

12

5a 12 room (408 m2) 20 15

5b 16 room (441 m2) 20 15

5c

Generalization test
(different no. of robots and
layout)

30 room (910 m2) 35 30

Synthetic

6 Hardware transfer test 5 room (106 m2) 5 4 Synthetic and
real

Table 1: The different setups used in the experiment.
Note that for all the setups, tmax= 1000.

Fig. 3a – Plan view of the 8-room learning layout

 Simulated
robots

Target

Walls

Fig. 3b – Plan view of the 10-room generalization test layout. Note the

increase in complexity of this layout over the learning one.

Fig. 3c – Plan view of the hardware transfer test layout. The physical

robot team is highlighted in red.

4.3 Implementation Details
We simulated the Pioneer 3AT equipped with a laser range finder (effective
range 4 m, 180° field-of-view) and a fiducial sensor (effective range 2m). The
processed sensor information available to the robot comprised: 1) Whether a
target is in its gripper, 2) Whether it has stalled, 3) The number of tracks
detected, 4) For each track, the range, bearing, orientation and identity. The
list of robot actions comprised: 1) Consume target, 2) Avoid obstacle, 3)
Approach target, 4) Approach opening, 5) Turn and 6) Move straight.

The actual Pioneer 3AT robots used were equipped with commercial off-the-
shelf laser range finders (SICK LMS200). To enable the robots to recognise
each other and the targets, reflective strips were attached to both sides of the
robots and the targets. Each robot was controlled by a laptop running the
rule engine (Fig. 4). This meant that the control of the physical robot team,
similar to that in the simulation, was distributed.

Fig. 4 – The Pioneer 3AT robot used for hardware testing

5. Results and Discussion
This section presents the results of the experiments. Refer to Table 1 in the
previous section for more details of the experiment setup.

5.1 Generalization across Different Target Positions
Based on Fig. 5, the learned rules performed better than the baseline on both
the learning setup and test setup. This meant that the learned rules a)
constituted a viable solution to the multi-robot search and locate problem and
b) were robust to changes in target positions (The t-test result suggests that
the means are similar at the 95% confidence level). This robustness
suggested that varying target positions during learning helps to improve
generalization in this case.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Learn Test
target positions

te
am

 re
w

ar
d

Fig. 5 – Results with different target positions (mean ± std dev).The

baseline is indicated by the red line.

 SICK200 LMS
laser range finder

Laptop with
rule engine

Reflective
beacon

SICK LMS200
laser rangefinder

5.2 Scalability across Different Robot Numbers
The trend obtained (Fig. 6) was typical of general scalability experiments:
more significant increase in performance with initial increase in robot numbers
(20, 25) followed by saturation for larger number of robots (30 and above).
Given a fixed layout, increasing robot number would initially increase the
efficiency of the search process until a point where this improvement is
negated by the increase in inter-robot interferences due to overcrowding.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10 (Learn) 20 25 30 35

No. of robots

te
am

 re
w

ar
d

Fig. 6 – Results with increasing robot numbers (mean ± std dev). The

baseline is indicated by the red line.

5.3 Generalization across Different Layouts
The complexity of a layout was determined by its structure, e.g. the number of
rooms and the average accessibility of the rooms. From Fig. 7a, it was
observed that generalization decreased, as the test layouts became more
complex and different from the learning layout. This was to be expected, as
generalization was dependent on the similarity of the test layout relative to the
learning layout. In fact, we identified the main bottleneck in the 10-room case
to be the single doorway leading to the rooms (see Fig. 7b). This feature,
which greatly decreased the accessibility of the rooms, was not present in the
other two test layouts or the learning layout. To improve generalization on the
10-room case, we could enrich the feature set in the current learning layout
with prominent features present in the 10-room test layout. This would have
the effect of reducing the difference between the learning and test layout.
However, the trade-off of doing so was a possible increase in learning time,
as the new learning layout was more complex.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

8-room
(Learn)

6-room 8-room
(narrow)

10-room

Layout

te
am

 re
w

ar
d

Fig. 7a – Results with different room layouts (mean ± std dev). The

number of robots is fixed at 10 throughout. The baseline is indicated by
the red line.

Fig. 7b – Illustration of bottleneck in the 10-room layout (in red). There
are no alternative paths to the targets in the rooms other than through

this doorway.

5.4 Generalization across Different Layouts and Robot
Numbers
The trend observed (Fig. 8a) suggested that the expected performance on a
complex problem was correlated to a scaled-down version of the problem.
This result was encouraging as it suggested that it was not necessary to
tackle a rather complex problem head on. Instead the better alternative might
be to formulate a smaller scale problem by identifying the salient features in
the complex problem, and then learning on this simplified problem, which
would be faster and easier. The learned rules could then be applied on the
original complex problem, given sufficient number of robots. In our case, the
identification process was straightforward, since the layouts were simply
aggregations of basic units (12-room ≈ 2 × (6-room), 16-room ≈ 2 × (8-room)
(see Fig. 8b), 30-room ≈ 3 × (10- room)).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

[8,10] [16,20] [6,10] [12,20] [10,10] [30,35]

Layout,no. of robots

te
am

 re
w

ar
d

Fig. 8a – Results with different room layouts and robot number (mean ±
std dev). The x-axis labels are in the form [a, b], where a is the number
of rooms, b is the number of robots. The baseline is indicated by the

red line.

Fig. 8b – Plan view of the 16-room testing layout. The 8-room learning

layout is highlighted in red.

5.5 Hardware transfer testing
From Fig. 9, it was observed that the performance of the learned rules on
physical robots was comparable with that in simulation (the t-test result
suggests that the means are similar at the 95% confidence level). This
implied good transfer i.e. it was quite robust to noise in the actual
environment. Although the result was based on limited number of trials, it
demonstrated the potential of our proposed approach of auto-programming
the robot team using simulation, as the learned rules worked well on the
physical robots.

(Learn)

0.00

0.20

0.40

0.60

0.80

1.00

Simulation Hardware

Experiment

te
am

 re
w

ar
d

Fig 9 – Performance of best learned rules in simulation and hardware

(mean ± std dev). The baseline is indicated by the red line.

6. Conclusion and Future Work
In this paper, we presented a hybrid learning approach combining GA and RL,
which exploit the complementary strengths of both approaches, to develop the
control logic for individuals in a multi-robot system. We successfully applied
this approach to develop the control rules for individual robots in a team
tasked to locate targets in an urban environment.

The results showed that:
• The learned rules generalized well to different target positions.

• Good generalization was observed for test layouts of similar or lower

complexity to the learning layout. As the layout became more complex
and different, generalization naturally decreased. However, this effect
might be reduced by using a learning layout with richer set of features.

• The performance of the learned rules improved with increasing robot

numbers, but with diminishing returns as inter-robot interference
unavoidably set in with larger number of robots.

• It was possible to overcome the difficulty of learning straight on a complex

problem by formulating a simpler problem based on the salient features of
the more complex problem, and learning on the simpler problem.

• The performance on physical robots was shown to be similar to that in

simulation, illustrating the potential of our approach of auto-programming
the robot team using simulation.

Future work will mainly focus on improving the learning performance of the
system, particularly on the design of distributed individual payoff schemes for
multi-robot systems. We will also examine more systematic approaches to
“scale down” a complex problem so that learning becomes more tractable.

Acknowledgements
The authors would like to thank our colleagues Chee-Wee Wong, Liang-Ping
Tan and Chee-Kong Cheng for insightful discussions and help in the
implementation of the simulator and hardware.

References
[1] C. K. Cheng, G. Leng, “Cooperative search algorithm for distributed autonomous robots”,

in Proceedings of IEEE International Conference on Intelligent Robotics and Systems,
2004.

[2] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, ed.

1989, Addison-Wesley.

[3] K. A. De Jong, “Using Genetic Algorithms for Concept Learning”, Machine Learning, vol

13, pp 161-188, 1993.

[4] L. P. Kaelbling and M. L. Littman, “Reinforcement Learning: A survey”, Journal of Artificial

Intelligence Research, vol 4, pp 237-285, 1996.

[5] C. J. C. H. Watkins, “Learning from delayed rewards”, Ph.D. diss., King’s College,

Cambridge, 1989.

