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Abstract: A commonly believed axiom in signal detection theory is that "more information is 
good" [1]. That is, when attempting to determine the state of a partially observable system the 
addition of correct information monotonically improves the correctness of the state assessment. 
When diagnosing static systems the assertion that "the effect of information is to increase the 
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increases in uncertainty generated by the dynamic forces within the system being observed.  A 
similar effect occurs when controlling dynamic, stochastic systems. The act of exercising control 
requires a finite amount of time, during which uncertainty enters into the system reducing the 
efficacy of the control policy. The impact of information processing delays increases in relevance 
as the complexity and pace of both the system and control apparatus increase. This paper defines 
a mathematical framework describing the effect of information and information processing on the 
diagnosis of dynamic systems. 
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Introduction 
 
Regardless of the command and control 
structure, the quality and speed of 
information flow between team members 
directly impacts the performance of a team. 
In all structures, latencies are caused by each 
hop in the communications chain. 
Communication limitations have been a 
topic of growing popularity since Shannon 
[2]. The importance Shannon's information 
entropy has on command and control has 
been studied by Perry [3], Moffett [4] and 
Caves [5]. However, these studies are time 
insensitive and do not attempt to measure 
and account for the dynamic forces 
associated with complex, changing 
environments. In this paper we take a step 
toward filling that gap after initially laying 
the technical and conceptual foundations of 
abstract systems and information theory. 
 
Systems and Worlds 
 
An understanding of the information 
required to represent a system begins with a 
formal definition of that system.  We refer to 
a system being diagnosed or controlled as a 
world (W). Worlds are defined in terms of 
elements, attributes, events, and state 
transitions, as follows.   
 
Definition:  A world W = (K, E, A, Att, Val, 
f ), where 

 
K = {k1, … kn} is a finite set of elements 

 
E = {e1, … er} is a set of events 
 
A = {a1, … ap} is a finite set of 

attributes, each applicable to one or 
more elements. 

 
Att ⊆  K ×  A ∪ A2 ∪ . . . ∪ AP is an 
element-attribute relation in which  

)),...,(,(
1 mii kki aak ∈Att if and only if 

( )
jikamii ≤≤∀ 1 are those and only 

those attributes that “apply to” element 
ki.  

 
[Notation: Ak denotes the set of k’s 
attributes; i.e.,  

},...,{
1 mii kkk aa=A ↔ )),...,(,(

1 mii kki aak ] 

 
[Notation: 

iji kka A∈∀
jkiaV  is the range 

of values for attribute
jika ] 

 
∈∀ ik K, Val

ik mkiki aa VV ××⊆ ...
1

 is a 

valuation relation for ki’s attributes. 
 
Val = U

Kki∈

Val
ik is the collection of 

valuation relations for all elements in 
W.  
 
f : K ×  Val ×  E →  Val is a state 

transition function. 
■ 

 
Elements represent real or simulated objects, 
e.g., baffles, thermostats, switches, and 
ducts—or their representations—in a real or 
simulated HVAC world. Attributes provide 
descriptions of elements, such as location 
and orientation. These are finite, constrained 
values which collectively define the scope of 
the world.   
 
The state of an element is an assignment of 
values to all its attributes; i.e., the state 
space (Pk) of element k is Valk. 

 kk alVP =  (1) 
An individual state of k is represented by 
x k or equivalently by the list 

( )
mkk xx ,,

1
K  of values of k’s attributes. 

 
Elements change states via events. Laws that 
govern state transitions are mapped through 
the function f . 
 
PW denotes the state space of W and is 
defined as the power set of the state spaces 
for all ∈k K, i.e.;  



3 

 
nkkk P...PPP

21w ×××=  (2) 
Each element of PW is called a state of the 
world, or world state, some of which are 
feasible (Pf) and others are infeasible (Pi). Pf 
and Pi are mutually exclusive and 
comprehensive:  

 Øif =∩PP  (3) 

 ifw PPP ∪=   (4) 

 
 
Information and Entropy 
 
The information content (I) of message is 
the amount of information required to 
uniquely identify a state. At this point we 
only consider messages whose information 
content is ideally coded for the set of 
possible values that could be stored in the 
message. That is, the representation scheme 
uses the minimum number of bits to 
completely represent the set of possible 
values. Information content relative to state 
space P is defined by Brillouin [6] as: 

 Pc lnI =  (5) 
Here, c is a constant associated with the size 
of the language used to represent a world 
state. In modern computers and 
communications this language is binary 
allowing us to define information content as: 

 P2logI =  (6) 
Through Brillouin the number of feasible 
states that exist for a world after message m 
describing that world has been received (and 
processed) is 

 
)2 (log I

2

I
2

m
w

m

P
fP −=  (7) 

or, alternatively, 

mm

w
f

P
P I2I

=  (8) 

The feasible space represents disorder, lack 
of knowledge, or information entropy (h) 
[7]. Shannon defines information entropy of 
a piece of information, a, as 

 
)Pr(

1log)( 2 a
ah =  (9) 

in which Pr(a) is the general probability of  
a. In a world of fixed size, the post-message 
entropy of that world is: 

mwf IPPH −== 22 loglog   (10) 

Information entropy is a useful construct 
that we will extend to collections of 
information and information exchanges. 
 
Information entropy and uncertainty are 
frequently used interchangeably. While both 
are used to measure disorder in a system we 
distinguish them by the units in which they 
are measured. Information entropy, being a 
form of Shannon information, is measured 
in bits. Uncertainty is measured in natural 
units for the system being described (e.g., 
meters). 
 
Equation (10) shows how new information 
can be used to reduce entropy within the 
representation of a world. In static worlds 
the information content of a message that 
contains positive information (Im>0) 
decreases information entropy. For ideally 
coded messages, providing information 
about a previously unknown world (worlds 
in which H = log2|Pw|) the decrease in 
information entropy is equal to the size of 
the message.  

 ⎪⎩

⎪
⎨
⎧

<
≥−

=Δ
m

m

I
ww

I
wm

PP
PI

H
2;log

2;

2
 (11) 

If some knowledge of the world exists prior 
to receipt of a message, a portion of the 
message may be redundant, reducing the 
message's information content. The 
information content of a message about a 
world for which a priori information is 
available is expressed as: 

mmf IIpPH −=Δ |)(|log2 I     (12) 
where p(x) is a decoding function that 
produces a set of feasible states from x.  
 
Uncertainty Due to Fidelity 
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In practical terms worlds are represented as 
abstractions. In modern communications, 
semantics for encoding attributes (and 
elements, in this paper) are defined and 
encoded in bits. Some real-world 
information is naturally discrete. Some, 
though, is naturally continuous and can only 
be approximated with binary 
representations. The amount of uncertainty 
associated with a discrete representation of 
continuous attributes (εr) is limited (i.e., 
bounded from below) by the number of bits 
used to encode the data and the 
dimensionality of the data. For example, 
when communicating attributes describing 
positions in Cartesian space, a message must 
be transmitted digitally at some point, 
limiting the fidelity by the least precise 
representation used in the communications 
path, which is the unit distance )ˆ(r  of the 
representation. In this discussion we assume 
that a normalized representation scheme is 
used and all states are equally probable. 
MacKay [8] showed that a normalized 
representation scheme maximizes the 
information content per transmitted bit. 
Since we are primarily interested in 
expressing the limits of communication we 
can assume optimal, normalized encoding is 
used and one bit of transmitted data equals 
one bit of un-decayed Shannon information. 
The unit distance defines the minimum 
uncertainty of our knowledge such that the 
minimum amount of error is: 

 
n

r Zrrn
∈= ;ˆ

2
ε   (13) 

where r is the unit size of representation and 
n is the dimensionality of the space. 
 
For a world of fixed size, the size of the 
state space is derived from the range of 
attributes within the system and the unit 
distance of each attribute.  Specifically, 

 ∏
∈

−
=

Xx x

i
k r

xxP
ˆ

0    (14) 

where x0 and xi are the minimum and 
maximum values of an ordered attribute and 

ar̂ is the unit distance of the attribute. When 

attribute dimensions are equivalent (e.g. 
Cartesian coordinates), then  
 

 
n

i
k r

xxP
ˆ

0−
=   (15) 

 
and the size of the state space of the world is  
 

 
nK

i
w r

xx
P

⋅−
=

ˆ
0   (16) 

 
The information content of a regular world 
(i.e. a world in which transitions between 
states are Markovian) can now be shown as 
a function of dimensions of the world and 
the unit distance: 
 ( )( )rxxnKI iw ˆloglog 202 −−⋅=  (17) 

 
Entropic Drag 
 
So far we have limited our discussion to 
static worlds, in which information entropy 
is decreased by each successive message 
that describes the world. On the other hand, 
in dynamic worlds the decrease in entropy 
achieved by a message can be offset by an 
increase in entropy due to the world's 
dynamic forces. We call this entropic drag 
(Γ), as the increase in entropy creates a drag 
on an observer's ability to understand the 
world. Entropic drag is derived from the rate 
at which the dynamic forces create 
unpredictable change. To define these 
dynamic forces recall that a world's state 
space Pw is divided into feasible and 
infeasible states and that the transition 
between these states is Markovian, defined 
by the transition function ƒ, defined above.  
For any set of infeasible states there exists a 
boundary layer between it and feasible 
states. The rate at which infeasible states 
transition to feasible states is the driving 
force behind entropic drag. We formally 
define entropic drag as the log2 of the rate at 
which previously infeasible world states 
become feasible: 

dt
dxxP

dt
dIIHt fww )(||log)()( 2==Γ    (18) 
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The impact of entropic drag on information 
is shown as a decrease in the information 
content on a world after an observation such 
that: 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ Γ−⋅+= ∫

mt

mw dttIII
0

10     (19) 

where tm is the time required to process the 
message, I0 is the information content on the 
world prior to processing the message and Im 
is the information content of the message. 
The forces of entropic drag continuously 
degrade information on a world whether 
messages continue to arrive or not. Only 
through the continual acquisition of new 
information can a state of knowledge of a 
dynamic world be maintained. If a 
commander's objective is to make a decision 
with maximal information he must be 
cognizant of the rate of entropy and the 
value of new information. An important 
feature of equation (19) is that, if the time 
required to process a message is sufficiently 
long, the loss of information associated with 
entropic drag will exceed the information 
content of the message and the net result of 
processing the message will be an 
information loss! 
 
Obtaining and using information takes some 
finite amount of time. The process of 
obtaining and using information was 
described by Boyd as the Observe, Orient, 
Decide and Act (OODA) loop. The first part 
of this loop consists of a sensor observing 
the environment and transmitting a message 
to an information sink where it is fused with 
additional information to create a consistent 
model of the world. The delay (δ) between 
an observation (beginning) at time to and the 
incorporation of the observed data at t' is the 
sum of the sensor processing (δs), 
communications (δc) and data fusion (δf) 
delays.   

fcsttt δδδδ +++=+= 00'  (20) 
We assume there are no additional delays, 
for instance placing on hold a message 
between the completion of processing and 
the onset of communications.  

The sensor processing and communications 
channels are assumed to process information 
at a fixed rate measured in bits per second 
( β ). The data processing profile for data 
fusion varies by technique, with some 
techniques, such as nearest-time 
replacement, operating at a fixed rate, and 
others, such as search-based techniques, 
incurring exponential increases in latency as 
the number of observations increase. For the 
purpose of this paper we will assume that 
each element in the observe-orient chain 
operates at a fixed rate in bits per second.   

 δ
β mI
=   (21a) 

or  

β
δ m

m
I

t ==             (21b) 

By applying this definition to (19) we can 
express information content in terms of 
message size and bandwidth. 

 ( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Γ−⋅+= ∫ β

mI

mw dttIII
0

10 (22) 

and 

( ) dttIIII
mI

mmw ∫ Γ+−=Δ β
0

0 )(   (23) 

From (18) we can see that information is 
only gained from a single message if the rate 
of information entropy is less than the 
bandwidth. 

 0>Δ wI  iff Γ>β           (24) 
Information entropy progresses along a 
frontier between the feasible state space and 
the infeasible state space. The frontier (S) is 
set of piecewise smooth surfaces (si∈S) 
within Pw that are defined as the boundaries 
between infeasible states x`∈Pi that are 
reachable from a feasible state x``∈Pf 
through an event in accordance to the 
transition function. Each piecewise smooth 
surface is either a member of a set of 
surfaces that  form a closed n-dimensional 
surface that encapsulates positive or 
negative information, or a member of a 
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semi-closed surface whose edges abut limits 
of Pw space.  S changes at a rate that is 
defined by the entropic drag with the 
boundary perpetually growing the amount of 
feasible space and shrinking the infeasible 
space.  
 
The entropic drag for a surface si  is: 

dt
dxvs

dt
dhtHt iss ii

r
⋅==Γ 2log)()(    (25) 

where v
r is the n-dimensional vector of 

unpredictable  change normalized to si. The 
entropic drag for the entire world is the sum 
of the entropic drag for each surface. 

 ∑
∀

=Γ
i

i
s

sw dt
dhtHt )()(  (26) 

 
Positive and Negative Information  
 
Positive information (P+) is a set of 
assertions that one or more states are true.  

 }x,..,x,x{ n21=+P  (27) 
Positive information usually represents 
highly improbable states, so messages 
containing positive information provide a 
large amount of information content. For 
example, a message stating that an ant was 
observed at a given location at time t0 is 
positive information that, through inference, 
ensures that that specific ant was not at any 
other location at t0. 
 
Negative information (P-) is a set of 
assertions that one or more states are false; 
i.e., that the negation of each state holds.  

}x,..,x,x{ n21 ¬¬¬=−P   (28) 
 

 
Figure 1 – A negative observation in Pw 
projected onto Z2 space 

 
For example, a message stating that an 
observation at time t0 found that an element 
did not exist at a specific location is negative 
information. Information partially describing 
a world state can be expressed either 
through positive information or negative 
information. In practice, observations 
frequently produce a mixture of positive and 
negative information. Positive and negative 
information both create infeasible regions in 
the state space and the information gain 
from a message is proportional to the 
reduction in feasible states.  
 
This can be visualized as If message m 
encodes negative information, the 
information gain from m is 

 
−− = PIm 2log  (29) 

information describing a hole of infeasibility 
in the state space [Fig. 1].  
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Figure 2 – A positive observation of a unique 
object in Pw projected onto Z2 space 
 
The information gained from positive 
information given in message m is equal to 
the size of the space outside of the positive 
information set: 

 
++ −= PPI wm 22 loglog  (30) 

This can be visualized as a feasibility 
volume surrounded by infeasibility [Fig. 2]. 
 

 
Figure 3 – Reducing infeasible state space 
after a positive observation 

 
As information from positive observations 
entropies, information is increasingly lost at 
a rate that increases in proportion to the 
dimensionality of the original messages. The 
loss of positive information can be 

envisioned as the feasibility frontier growing 
outward from a clustered set of feasible 
states [Fig. 3]. Information content 
decreases until eventually all states become 
feasible. 
 
As negative information entropies, 
information is decreasingly lost in 
proportion to the dimensionality of the 
world. This can be envisioned as the 
feasibility frontier growing inward, 
removing a diminishing set of clustered 
infeasible states [Fig. 4]. 
 

Figure 4 – Reducing infeasible state space 
after a negative observation 
 
Each closed surface either grows (I+) or 
shrinks (I-) due to entropic drag until it: (i) 
terminates in a singularity; (ii) terminates 
against other surfaces; or (iii) terminates 
against the boundaries of the state space. 
The information loss for the world is a 
piecewise linear surface that is the sum of 
the information loss for each surface [Fig. 
5]. In Fig. 5, si is the border between the 
shaded feasibility state space and the 
unshaded infeasible state space.  
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Figure 5 – Piecewise linear state space 
resulting from I+ and I- messages 

 
Information Channels 
 
Information channels (C(t)) are streams of 
information, with information flow—
measured in bits per second—being the 
bandwidth of a channel (β). We use 
“information channel” as an abstraction 
representing the aggregate ability of a 
system to acquire and process new 
information although information can be, 
and often is, a traditional communications 
channel. The maximum capacity of an 
information channel defines the rate at 
which a system is capable of acquiring new 
information. In ideal conditions where 
C(t) = max β, information on a static world 
increases linearly until the information 
capacity of the world is reached [Fig. 6]. 
 

  
Figure 6 – Information accumulation 
from ideal communications 

 
When the information in a channel describes 
a dynamic world, the rate of information 
gained from a constant information channel 
is reduced by the entropic drag on 
information within the channel and the 
entropic drag on previously acquired 
information.  The amount of information 
accumulation on a world from an 
information channel is: 

 ( )∫ Γ−+= β
mI

dtttCII
00 )()(  (31) 

As mentioned briefly above, edge effects 
can play an important role in the rate of 
entropic drag. We highlight two basic cases 
here. In the first case the information 
gathering bandwidth is sufficient to 
exhaustively describe the world before the 
information content of the first message has 
vanished in a singularity or against an edge. 
In this case the information bandwidth 
exceeds the maximum entropic drag and the 
information content will become maximized 
when the information space has been 
transmitted. 

 β
)(log2

max
wP

t ≥  (32) 

 
Figure 7 - Information accumulation with 
entropic drag  
 
Once again assuming our ideal continuous 
channel where C(t) = max β, the information 
accumulation for a dynamic system with 
sufficient bandwidth is shown in Fig.  7. In 
this figure the maximum information is 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ−=

β
)(loglogmax 2

2
w

w
PPI  (33) 

In this case information monotonically 
increases until time tmax after which further 
messages can only maintain the current 
amount of information, as the information 
gained by successive messages cannot 
exceed the combination of information lost 
due to entropic drag and the information loss 
through redundancy with prior information. 
 

 
Figure 8 – Information accumulation 
 
In the second case the bandwidth is less than 
the maximum entropic drag on the entire 
world and, as the entropic drag increases in 
proportion to the information known about 
the world, a stable point will be reached 
when the entropic drag equals the 
bandwidth. This point of informational 
stability is the maximum feasible 
information for the system [Fig. 8]. 
 
Note that in both cases the maximum 
information reached is less than the 
information space of the world. This gap is 
the minimum information loss associated 
with describing a dynamic world. 
 
Uncertainty Redux  
 
A key design decision for the construction 
of command and control systems is the 
selection of the fidelity of information being 
communicated. Fidelity is adjustable as the 
designer can arbitrarily decide the unit 

measure for each dimension in the world 
within sensor limitations. For example, a 
designer can choose to send positions in 
which the lowest bit of information 
represents a millimeter, meter or kilometer. 
Typically the fidelity, or bit accuracy, of a 
measurement is set to be slightly less than 
the resolving power of the sensor. This is a 
useful heuristic when the uncertainty 
associated with sensor fidelity is much 
larger than the uncertainty associated with 
information entropy. However, when the 
speed of that which is being observed 
increases, or the complexity of the world 
being observed increases, or the number of 
recipients of the observed information 
increases the uncertainty related to 
information can become an important design 
criterion for the command and control 
system. It is these cases that we are most 
interested in understanding. 
 
Earlier we showed how a minimum amount 
of uncertainty (ε) is associated with the 
choice of representation. The minimum 
uncertainty of a system (U) at some time t is 
the aggregation of the system's 
representational uncertainty (Ur) and the 
feasible state space translated from bits to 
real world units. 

 fr PrUU ⋅+= ˆ  (34) 

If a system designer wanted to design a 
system to obtain the maximum amount of 
information possible, and an ideal sensor 
capable of observing the entire world was 
available, what level of fidelity should be 
used? At observation time our ideal sensor 
would reduce the feasible state space to a 
single state: |Pƒ |= 1. The representational 
uncertainty is the product of the size of the 
information frontier and the informational 
error: 

 rtr SU ε⋅=  (35) 
where si∈St is the set of piecewise smooth 
surfaces that define the boundary between Pf 
and Pi at time t. By substitution in (34), 
uncertainty becomes 
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 frt PrSU ⋅+⋅= ˆε  (36) 

Both terms of the uncertainty equation (34) 
vary as a function of size unit vector. 
However, the rate at which they vary differs, 
with the uncertainty due to representational 
error becoming predominant as the unit 
representation grows and the uncertainty due 
to entropy becoming predominant as the unit 
representation shrinks. This duality allows 
us to identify the optimal unit representation 
for maximizing uncertainty. 
 
To explore this relationship let us examine 
the simple case in which a C2 designer has 
an omniscient camera capable of completely 
viewing the entire world at any level of 
fidelity. From (16), the amount of time 
required to communicate the camera's 
observation is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅== ∏

∈Xx x

iw

r
xxKP

ˆ
log

log 0
2

2

ββ
δ  (37) 

For a regular world in which all n 
dimensions are equal, this evolves to 

 ( )ra
nK

22 loglog −⋅
⋅

=
β

δ   (38) 

in which a is a constant proportional to the 
size of a dimension. If we assume 
independent entities, the feasibility space 
will be 

 ∫=
δ

0
)( dttvKPf

r
 (39) 

where v
r is again the n-dimensional vector of 

unpredictable change normalized to St. In 
this case St is a set of K unit possibilities. 
The perimeter of this space is 

 ∫=
δ

dttvKSt )(r  (40) 

By applying (39) to (36) we obtain a 
representational uncertainty of 

 ∫=
δ

dttv
nrK

U r )(
2
ˆ r

 (41) 

and by (36), the overall uncertainty is 

∫ ∫⋅+=
δ

δ

0
)(ˆ)(

2

ˆ
dttvKrdttv

nrK
U vv

(42) 

This is a somewhat messy equation that 
expresses minimal uncertainty as a function 
of the unit representation (because the time 
δ over which the functions are now 
evaluated in terms of the unit 
representation). This equation can be 
evaluated when the exact dimensions of the 
world are known and a model of the entropic 
forces is available. When evaluated it shows 
minimal uncertainty for a given unit length. 
An example evaluation for a simple two-
dimensional world is shown in Fig. 9, in 
which the graph of uncertainty diminishes 
rapidly as fidelity increases (moving from 
right to left in the figure) until it reaches the 
optimal resolution at the local minimum 
after which uncertainty begins to increase as 
entropic drag takes hold.  

 
Figure 9 – Uncertainty as a Function of Unit 
Resolution 

 
Observation Inefficiencies 
 
We have been assuming that messages are 
ideal, with each observation bit translating 
to a single bit of information. This is true if 
and only if no a priori knowledge exists. 
This includes infeasible states derived from 
prior observations as well as probability 
distributions across the state space. When a 
priori knowledge exists, the actual 
information gained is the product of the 
efficiency (γ) of an observation and the 
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maximum capacity of the communications 
channel. 

 )(tCIactual ⋅= γ  (43) 

( )∫ Γ−⋅+= β γ
mI

dtttCII
0

0 )()(  (44) 

Koopman showed that optimally efficient 
search patterns can exist for regular worlds 
[9], yet the majority of real-world 
intelligence, surveillance and reconnaissance 
(ISR) systems are fundamentally inefficient 
because, over time, sensors will traverse an 
area over which some a priori knowledge 
exists. The rate of observational 
inefficiencies over time can be highly 
nonlinear as moving sensors cross feasibility 
frontiers.  However, inefficiency rates for 
observing a regular environment can be 
approximated by decaying the information 
achieved with each successive observation 
such that 

 )1( λ−= II&  (45) 
 
where the rate of decay (λ ) is proportional 
to the probability that a state deemed 
infeasible by the observation was previously 
known as infeasible times information 
bandwidth. 
 )|(

ao ii ppP⋅= βλ  (46) 
In order to explore entropic relationships 
within inefficient systems we notionally 
describe this efficiency loss as a decay 
function. The loss in efficiency is highly 
dependent upon the system and its current 
use the use of a decay function to represent 
loss of efficiency is a useful approximation 
of real-world ISR [10]. Inefficiency results 
in a reduction in channel capacity, C(t). 
 
Because it reduces the amount of knowledge 
accumulated over time, the forces of 
entropic drag increase the utility of re-
searching previously observed areas. We 
measure this effect by replacing the constant 
information value in equations (19) with a 
decay function λ(I,t)→I to show the 
relationships between information variant 
messages and information entropy.  

 ( )∫ Γ−=
t

mm dttItII
0

)),((),( λλ  (47) 

 
When deploying a sensor motion strategy 
that searches the complete range of the 
world the entropic drag can become so large 
that it overcomes information gain. This 
effect is shown in Fig. 10 which shows the 
effect of a linear entropic drag on the 
observation environment shown in Fig. 9. 
Fig. 9 shows that the maximum amount of 
information is found after an ideal number 
of observations have occurred. If the goal of 
a command and control system is to make 
decisions based upon the most complete 
information possible, decisions would be 
made immediately after these observations 
as the entropic drag effect causes 
degradation beyond this point.  
 

 
Figure 10 

 
While we use a linear function in our 
example, we recognize that the information 
function may be highly non-linear. 
However, non-linearity does not negate the 
principle shown here.  
 
Entropic Drag and Network Topologies 
 
Simulation experiments were conducted to 
examine the effect of entropic drag on a 
simple command and control network 
infrastructure. These experiments examined 
the flow and relevance of information 
throughout the network. The bulk of the 
simulation’s requirements lie in the terms 
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“C2 network infrastructure” and 
“information.” 
 
A command and control network 
infrastructure consists of a set of 
communicating entities (or nodes) whose 
communications topology forms an acyclic 
tree. The lines of communication between 
nodes (edges) also correspond to the chain 
of command. Thus, a node’s authority in the 
network is inversely proportional to its depth 
in the communications tree (i.e., the root 
node of the tree has the highest authority and 
leaf nodes have the least). An additional 
property of the communications/command 
tree is that all nodes at the same depth in the 
tree have the same number of directly 
reporting subordinates (child nodes). This 
mapping of rank to number of immediate 
subordinates is the property that 
distinguishes alternate C2 infrastructures in 
the simulator.  
 
Within the simulator, information consists of 
data gathered from the environment by leaf 
nodes in the C2 infrastructure. Each piece of 
information is an abstract quantity that is 
independent of other pieces of information 
(e.g., information does not overlap or 
correspond to multiple measurements of a 
known target in the environment as might be 
the case in a filtering problem). Information 
can be generated by leaf nodes periodically 
or stochastically, depending on the simulator 
configuration. The value of each piece of 
information is a number in the interval [0,1], 
where 1 corresponds to maximum value and 
0 corresponds to no value.  
 
Another property of information is that it 
only becomes useful to an entity after the 
information has been fused into the local 
world model. Thus, information is subject to 
two primary sources of latency before it can 
increase the knowledge of a network entity: 
latency due to network communications and 
latency due to the local information fusion 
algorithm.  
 
Simulation Structure  

The C2 network information simulation is a 
modular, discrete time-step-based simulation 
whose primary components are network 
entities, communications links, and 
information processing algorithms. In 
addition, the simulation tracks a number of 
metrics for each piece of information. Two 
key metrics are information area (the 
number of nodes that finished fusing the 
information in the current time step) and 
information volume (the number of nodes 
that have fused the information at or before 
the current time step). These metrics are 
taken from the literature on the performance 
of real-world networks. The overall value of 
a piece of information is derived by 
multiplying the information volume by the 
associated entropic drag. Since these area 
and volume metrics are affected by the 
number of nodes in the network, when 
comparing different C2

 
topologies we 

typically consider topologies with the same 
number of leaf nodes and then restrict the 
results to leaf node areas and volumes.  

The simulation has a number of variable 
input parameters including simulation 
duration (time steps), C2

 
topology, entropic 

drag (value lost/time step), latency along a 
network communications link (time 
steps/observation), and latency due to 
fusion. Unlike other simulation parameters 
which are constant, fusion latency can 
optionally be a function of the number of 
prior fusion operations (allowing for 
nonlinear fusion complexity).  

Simulation Outputs  

Fig. 11 shows a sample information volume 
plot for a single simulation run. These plots 
generally contain three pieces of 
information: the ideal information volume 
(red line), the information volume without 
accounting for entropic drag (blue line) and 
the information volume with entropic drag 
(green line). The ideal information volume 
depicts the spread of information throughout 
the network assuming no latency due to 
communications or fusion and hence no 
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entropic drag. Thus, it provides an 
(admittedly unrealistic) upper bound on the 
amount of information in the network. 
Nonetheless, it provides a strong indication 
that an upper bound exists. The un-decayed 
information volume depicts the network 
information volume that would result when 
considering latency but not entropic drag. 
The decayed information volume takes into 
account both the effects of latency and 
entropic drag, and represents the main result 
of interest. One expects both the ideal and 
un-decayed information volumes to 
monotonically increase, with the entropic 
drag volume trailing behind the ideal 
volume. The entropic drag volume shows 
that there exists a maximum information 
volume (time=175) for the system. Further, 
it shows that this peak occurs prior to the 
complete distribution of information across 
the network across the network (time=240). 

 
Figure 11 – Information volume in ideal static 

worlds, latent static worlds and dynamic 
worlds 

A key feature of the simulation output is the 
ability to compare one or more simulation 
runs. Fig. 12 is a plot comparing multiple 
runs of the simulation where the rate of 
entropic drag was varied while the other 
simulation properties were held constant. 
The upper lines in the plot have 
progressively lower decays. In Fig. 12 one 
the existence of maximum information 
volume prior to full dissemination of 
information across the network is again in 

evidence. We can also see that the time at 
which the information maximum occurs 
varies with respect to the entropic drag. The 
information maximum occurs at time step 
230 for the runs with lower information drag 
(lines at the top of the graph), at time step 
175 for the runs with higher entropic drag 
(lines at the bottom) and equally across time 
step 230 and 175 for the lines in the middle. 

 
Figure 12 – Information volume as Γ varies 

 

Future Efforts 

This paper is a first step in the application of 
information theoretic entropy to command 
and control. Large bodies of work in 
information management, particularly data 
fusion, networking, and the pantheon of 
group control strategies need to be looked at 
though the lens of entropic drag. Our 
forward looking hypothesis is that an 
understanding of the entropic effects of 
information will allow C2 designers and in-
the-field decision makers to employ 
command and control strategies that are 
optimized for any given situation.  

The next significant step will be to extend 
the study of entropic drag into the latter 
portion of the OODA loop, that portion 
which involves decisions and actions; Fry 
[11] makes the case that the information 
entropy impact on the "DA" portion of the 
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loop is the dual of the "OO" portion of the 
loop. This view is also reflected by Alberts 
& Hayes [12]. We concur that the impact of 
entropic drag on control, when viewed 
independently of observation, is equivalent 
to the impact of entropic drag on 
observation. However, control is dependent 
upon observation and the impact of entropic 
drag is likely to be exacerbated in the 
control portion of the OODA loop.  

Another area of investigation involves an 
application of these formalisms to real-
world scenarios. The state of a dynamical 
system changes according to the rules 
specified by the transition function f .  The 
nature of this transition function can have a 
dominant effect on what set of states can 
become feasible in the future. The laws that 
govern the transition function are a priori 
information, reducing the state space of the 
system. In this paper we assumed ideal 
coding of information describing the state 
space. In practice it is more common (and 
practical) to encode information generally 
and to use inference based upon a priori 
information to reduce the working feasibility 
space. The investigation of these 
relationships will be a key part of the 
scenario-specific investigation. 

Another important aspect of this 
investigation must be the entropic effects of 
the communications infrastructure. We 
divide communications infrastructures into 
channel communications and topologies.  

Further work will also be required to 
improve the metrics that are used to measure 
the dynamism within an environment. 
Environmental dynamics are driven by 
complexity and the pace of environmental 
change; however, is not well understood 
how complexity and pace should be 
measured in real-world environments. These 
further advancements should enable the 
pursuit of our long-range objective, namely 
the construction of an adaptive command 
and control system that autonomously 
observes the environment and changes the 

network topology and information and 
decision-making strategies to optimize C2 
performance.  
 
Conclusion 
 
We have shown that the loss of information 
due to dynamic forces within an 
environment can have a substantial impact 
upon the information content of one or more 
messages about the environment.  This 
effect, called entropic drag, fundamentally 
impacts the effectiveness of command and 
control systems. The principles outlined in 
this paper can be used provide a better 
understanding of the utility of existing 
command and control systems and to 
improve the design of future ones.  
 
Entropic drag impacts C2 systems in several 
important ways. First, entropic drag enforces 
a fundamental limit to the amount of 
information that can be known about a 
dynamic system. This limit can be used by 
C2 designers to identify the maximum 
useful fidelity of C2 semantics. Second, by 
expressing the relationship between 
information and time entropic drag allows a 
decision maker to identify when the optimal 
amount of information has been acquired. 
Third, entropic drag provides a framework 
for understanding the flow of information 
across a networked community, providing 
insight into the utility (or lack thereof) of 
sharing information with each member of 
the community as well as providing insight 
into the utility of alternative network 
topologies. Fourth, entropic drag provides 
tools to better understand the tradeoff 
between information and latency in control, 
allowing decision makers to select the 
optimal amount of information to use for 
performing a specific task or set of tasks. 
Fifth, entropic drag provides tools to 
understand the utility of collaboration in 
shared decision making, allowing decision 
makers to correctly scope the degree of 
collaboration for optimal performance of a 
task. Finally, entropic drag provides a 
framework for the development of next 
generation, adaptive C2 infrastructures, 
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infrastructures that autonomously adapt 
information and decision sharing strategies 
and networking topology at run time in 
response to an environment's changing 
dynamic forces.  
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