
12TH ICCRTS “Adapting C2 to the 21st Century”

Modeling and Simulation

C2 Concepts, Theory, and Policy

Network-Centric Experimentation and Applications

A Real-Time Dynamic Programming Approach for the

Resource Allocation of a Frigate

Pierrick Plamondon∗, Brahim Chaib-draa
Laval University Québec, PQ, Canada, G1K 7P4

(418) 656-2131 x3226
Computer Science Department

{plamon; chaib}@damas.ift.ulaval.ca

Abder Rezak Benaskeur
Defence R&D Canada — Valcartier

2459 Pie-XI Blvd. North, Val-Bélair PQ, Canada, G3J 1X5
(418) 844-4000 x4478

Decision Support Systems Section
abderrezak.benaskeur@drdc-rddc.gc.ca

∗ Point of contact and student author

Abstract

This paper contributes to solve effectively stochastic resource allocation prob-
lems known to be NP-Complete. To address this complex resource man-
agement problem the Labeled Real-Time Dynamic Programming (lrtdp)
approaches is applied in an effective way. lrtdp concentrates the planning
on significant states of the environment only, as the search is guided by an
initial heuristic. As demonstrated by the experiments, lrtdp permits to

1

obtain a very high survivability for the frigate, when compared to two other
well known techniques.

1 Introduction

The Combat System of a typical Frigate includes above water warfare
(aww) weapon systems for hardkill. Increasing complexity in threat tech-
nology, and increasing speed and diversity in open-ocean and littoral threat
scenarios makes efficient and effective planning for weapons resources more
and more difficult. To counter these problems, research is ongoing to de-
sign and implement resource management decision aids, based on intelligent
agent technology to perform aww hardkill resource allocation scheduling for
a Frigate.

In general, resource allocation problems are known to be NP-Complete
Zhang [2002]. In such problems, a scheduling process suggests the action (i.e.
resources to allocate) to undertake to accomplish certain tasks, according to
the perfectly observable state of the environment. When executing an action
to realize a set of tasks, the stochastic nature of these actions induces prob-
abilities on the next visited state. The number of states is the combination
of all possible specific states of each task and available resources. In this
case, the number of possible actions in a state is the combination of each
individual possible resource assignment to the tasks. The very high number
of states and actions in this type of problem makes it very complex.

A common way of addressing this problem of large Markov Decision Pro-
cesses (mdps) is based on heuristic search where many algorithms have been
developed recently. The idea of heuristic search is to start from the initial
state, and given an admissible heuristic for the value of unvisited states, a
huge part of the state space may be omitted from the search. For instance
Real-Time Dynamic Programming (rtdp) by Barto et al. [1995], lrtdp by
Bonet and Geffner [2003b], hdp by Bonet and Geffner [2003a], and lao⋆

by Hansen and Zilberstein [2001] are all state of the art heuristic search ap-
proaches used in a stochastic environment. Because of its anytime quality,
an interesting approach is rtdp introduced by Barto et al. [1995] which up-
dates states in trajectories from an initial state s0 to a goal state sg in a
very efficient manner. Then, Bonet and Geffner [2003b] proposed a labelling
procedure to accelerate the convergence of rtdp in their l(Labeled)rtdp
algorithm. This paper proposes a model of lrtdp for the resource allocation

2

of a Frigate.
We have compared our lrtdp implementation to a tabu search by Blod-

gett et al. [2003] and a reflex approach through the Ship Air Defence Model
(sadm1) simulator in Section 3. The implementation of tabu search by Blod-
gett et al. has been made on a similar problem of resource allocation for a
Frigate. The reflex approach is a rule based algorithm which engages the top
two priority threats whenever it is possible. The problem is now modelled.

2 Problem Formulation

Our problem of interest is military naval operations which are known to
be very complex. In this context, a ship’s Commanding Officer needs to set
his resources to maximum efficiency in real-time where he is in face to multi-
threats situations. An efficient resource allocation can increase the chance of
survival of the ship. In the case of Above-Water Warfare (aww), the list of
main operations are as follows :

• Threat detection: Based on data from several sensors.

• Resource allocation: Resources are assigned to engage each threat.

• Engagement control : The process by which decisions in the two pre-
ceding steps are executed in real-time.

Here, the focuss is on the Resource allocation and engagement control
processes. To this end, the threat detection is considered as a black box. Not
working on threat detection reduces the large volume of data that needs to
be processed, which helps reducing the system’s complexity to focuss on the
resource allocation and execution parts.

The aww hardkill weapons are weapons that are directed to intercept a
threat and actively destroy it through direct impact or explosive detonation in
the proximity of the threat. The range of different types of hardkill weapons
varies, and the effectiveness of these weapons depends on a variety of factors,
like distance to the threat, type of threat, speed of the threat, environment,
etc. The aww hardkill weapons for a typical Frigate include surface-to air
missiles (sams) that have the greatest range, an intermediate range Gun, and
a Close-In Weapons System (ciws) that is a short-range, rapid-fire gun. The

1https://www.sadm.biz

3

Gun has a blind zone of ±35 deg at the back of the Frigate. Closely allied to
these weapons are two Separate Tracking and Illuminating Radars (stirs)
that are used to guide a sam to a threat, and to point the Gun. There is
one stir to the front and one stir to the back of the ship. In his case, both
stirs can be used simultaneously at ±30 deg to both sides of the Frigate. In
all other areas, only one stir can be used. The ciws has its own pointing
radar which has a blind zone of ±15 deg to the front of the ship.

2.1 Markov Decision Processes (MDPs) in the Con-
text of Resource Allocation

A Markov Decision Process (mdp) framework is used to model our
stochastic resource allocation problem. mdps have been widely adopted by
researchers today to model a stochastic process. This is due to the fact that
mdps provide a well-studied and simple, yet very expressive model of the
world.

An mdp in the context of a resource allocation problem with limited
resources is defined as a tuple 〈Res, Ta, S,A, P,W,R, 〉, where:

• Res = 〈res1, ..., res|Res|〉 is a finite set of resource types available for a
planning process. This paper consider the sam and the Gun as possible
resources.

• Ta is a finite set of threats with ta ∈ Ta to be countered.

• S is a finite set of states with s ∈ S. A state s is a tuple
〈tstart, tend, Ta, alloc〉. In particular, tstart is the start time of the state,
tend is the end time of the state. alloc is a set of allocations which are
already in execution at time tstart. Also, S contains a non empty set
sg ⊆ S of goal states. A goal state is a sink state where an agent stays
there forever. A goal state could be when all threats are countered or
when the Frigate has sunk.

• A is a finite set of actions (or assignments). The allocation a ∈ A(s)
applicable in a state are the combination of all resource assignments
that may be executed, according to the state s. In particular, a is
simply an allocation of resources to the current threats, and ata is the
resource allocation to threat ta. The possible actions are limited by
the stirs and blind zones constraints.

4

• Transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s).

• State rewards R = [rs] :
∑

ta∈Ta

rsta
← ℜsta

. The relative reward of the

state of a threat rsta
is the product of a real number ℜsta

. For our
problem, a reward of 1 is given when the state of a task (sta) is in an
achieved state, and 0 in all other cases.

• A discount factor γ, which is a real number between 0 and 1. The
discount factor describes the preference of an agent for current rewards
over future rewards.

A solution of an mdp is a policy π mapping states s into actions a ∈ A(s).
In particular, πta(s) is the action (i.e. resources to allocate) that should be
executed on task ta, considering the global state s. In this case, an optimal
policy is one that maximizes the expected total reward for accomplishing all
tasks. The optimal value of a state V (s) is given by:

V ⋆(s) = R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′) (1)

Furthermore, one may compute the Q-Values Q(a, s) of each state action pair
using the following equation:

Q(a, s) = R(s) + γ
∑

s′∈S

Pa(s
′|s) max

a′∈A(s′)
Q(a′, s′) (2)

where the optimal value of a state is V ⋆(s) = max
a∈A(s)

Q(a, s). The policy is sub-

jected to the local resource constraints {π(s)} ≤ Lres∀ s ∈ S , and ∀ res ∈
Res. Heuristic search may reduce the complexity of a stochastic resource
allocation problem by focussing on relevant states. To this end, the Labeled
Real-Time Dynamic Programming (lrtdp) heuristic search algorithm is now
introduced.

2.2 LRTDP

Bonet and Geffner [2003b] proposed lrtdp (Algorithm 2.1) as an im-
provement to rtdp by Barto et al. [1995]. lrtdp is a simple dynamic pro-
gramming algorithm that involves a sequence of trial runs, each starting in
the initial state s0 and ending in a goal or a solved state. Each lrtdp

5

Algorithm 2.1 The lrtdp algorithm by Bonet and Geffner [2003b].

1: Function lrtdp(S)
2: returns a value function V

3: repeat
4: s ← s0

5: visited ← null

6: repeat
7: visited.push(s)
8: V (s) ← R(s) + max

a∈A(s)
γ

∑
s′∈S

Pa(s
′|s)V (s′)

{where V (s′) = h(s′) when s′ is not yet visited}
9: s ← s.pickNextState()

10: until s is a goal
11: while visited 6= null do
12: s ← visited.pop()
13: if ¬ checkSolved(s, ǫ) then
14: break
15: end if
16: end while
17: until s0 is solved

18: return V

trial (Line 6 to 10) is the result of simulating the policy π, through the
pickNextState(Resc) function, while updating the values V (s) using a
Bellman backup (Equation 1) over the states s that are visited. h(s′) is a
heuristic which defines an initial value for state s′. This heuristic has to
be admissible — The value given by the heuristic has to overestimate (or
underestimate) the optimal value when the objective function is maximized
(or minimized). For example, an admissible heuristic for a stochastic short-
est path problem is the solution of a deterministic shortest path problem.
Indeed, since the problem is stochastic, the optimal value is lower than for
the deterministic version. Then, the new set of tasks to accomplish is pro-
duced in Line 9. In brief, the pickNextState() function randomly picks a
none-solved state, containing a new set of tasks to realize, by executing the
current policy.

It has been proven that lrtdp, given an admissible initial heuristic on
the value of states cannot be trapped in loops, and eventually yields optimal

6

values as proved by Bonet and Geffner [2003b]. The convergence is accom-
plished by means of a labelling procedure called checkSolved(s, ǫ) (Line
13 of the algorithm). This procedure tries to label as solved each traversed
state in the current trajectory. When the initial state is labelled as solved,
the algorithm has converged. The next section describes how the lrtdp
algorithm in the context of resource allocation for a Frigate.

2.3 LRTDP for Resource Allocation

The lrtdp-res function (Algorithm 2.2) specializes lrtdp to our re-
source allocation problem. This algorithm is called whenever a new threat
is perceived by the Electronic Support Measure (esm) radar. Lines 3 and 4
of the Algorithm set the start time tstart and allocation alloc of the initial
state s0. Afterwards, if the the action set of state s is empty, it is generated
in Line 11 by the generateAction function (Algorithm 2.3).

2.4 Complexity of lrtdp for aww

To measure the complexity of the Qdec-lrtdp algorithm for resource
allocation, a comparison with the lrtdp algorithm is made for a state value
update. Indeed, since both algorithms have the same expectation of having
the same behavior, comparing both algorithms on a single value update seems
fair. A Bellman backup iteration of a standard lrtdp approach for resource
allocation has the following complexity:

O(|A| × |STa|) (3)

where |STa| = |S| is the number of joint states for the tasks, and |A| is
the number of joint actions. lrtdp is compared with other approaches and
discussed in the next section.

3 Discussion and Experiments

The experiments have been performed on the Ship Air Defence Model
(sadm2) simulator. We have compared our approach to a tabu search by
Blodgett et al. [2003] and a reflex approach. In a tabu search , an initial policy

2https://www.sadm.biz

7

Algorithm 2.2 The lrtdp-res algorithm for resource allocation.

1: Function lrtdp-res(S)
2: returns a value function V

3: s0.tstart is the current time of the simulation
4: s0.alloc are the actions which are currently in execution
5: repeat
6: s ← s0

7: visited ← null

8: repeat
9: visited.push(s)

10: if A(s) = NULL then
11: A(s) ←generateAction(s)
12: s.tend ←firstKillTime(A(s))
13: end if
14: V (s) ← R(s) + max

a∈A(s)
γ

∑
s′∈S

Pa(s
′|s)V (s′)

{where V (s′) = h(s′) when s′ is not yet visited}
15: s ← s.pickNextState()
16: until s is a goal
17: while visited 6= null do
18: s ← visited.pop()
19: if ¬ checkSolved(s, ǫ) then
20: break
21: end if
22: end while
23: until s0 is solved

24: return V

is improved through the removal or addition of defence actions, followed by
update operations aimed at maintaining the consistency of the plan. It is
based on an iterative neighborhood search method where modifications to
the current solution that degrade the solution value are admissible. The
latter move allows the method to escape from bad local optima (as opposed
to a pure local search approach). To avoid cycling, a short-term memory,
known as the tabu list, stores previously visited solutions or components of
previously visited solutions. It is then forbidden or tabu to come back to
these solutions for a certain number of iterations.

8

Algorithm 2.3 The lrtdp-res algorithm for resource allocation.

1: Function generateAction(s)
2: returns a set of possible actions.

{here we determine possible actions against each threats}
3: action ← NULL

4: for all ta ∈ S do
5: for all res ∈ Res do
6: if !(res is a Gun ∧ isBlindZoneGun(ta) = true) then
7: determine the interception range and time of res with ta

8: if isInRange(FIT(res), LIT(res) then
9: pk ← getPk(ta, res)

10: if STIRA(ta) = true then
11: action.insert(stirA, ta, pk, res, time)
12: end if
13: if STIRB(ta) = true then
14: action.insert(stirB, ta, pk, res, time)
15: end if
16: end if
17: end if
18: end for
19: end for

{here we determine the possible joint actions}
20: for all a1 ∈ |action + 1| do
21: joint ← a1

22: for all a2 ∈ |action + 1| do
23: joint ← joint ∪ a2

24: if verifyStir(a2, s.alloc) = true then
25: A(s) ← A(s) ∪ joint

26: end if
27: end for
28: end for

return joint

The reflex approach simply launches a sam, or a gun if it is not possible
to fire a sam to the two nearest threats to the Frigate whenever they are not
engaged.

9

4 Conclusion

The experiments have shown that lrtdp provides a potential solution to
solve efficiently stochastic resource allocation problems.

Other future work of lrtdp would be to reduce the action space. In
particular, the action space can be reduced by merging mdps using a lower
and higher bound on the value of states as done by Singh and Cohn [1998]
and McMahan et al. [2005]. Using these bounds, if an action has its upper
bound lower than the lower bound of a state, it can be pruned from the
action space for this state. In the case of lrtdp, this pruning would enable
omitting a large part of the action space when computing the maximal global
Q-value of a state.

References

A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1):81–138, 1995.

Dale E. Blodgett, Michel Gendreau, François Guertin, Jean-Yves
Potvin, and René Séguin. A tabu search heuristic for resource
management in naval warfare. Journal of Heuristics, 9(2):145–169, 2003.

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning
with uncertainty and full feedback. In Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-03), August
2003.

B. Bonet and H. Geffner. Labeled lrtdp approach: Improving the con-
vergence of real-time dynamic programming. In Proceeding of the 13Th
International Conference on Automated Planning & Scheduling (ICAPS-
03), pages 12–21, Trento, Italy, 2003.

E. A. Hansen and S. Zilberstein. lao⋆ : A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

H. B. McMahan, M. L., and G. J. Gordon. Bounded real-time dynamic
programming: rtdp with monotone upper bounds and performance guar-
antees. In ICML ’05: Proceedings of the 22nd international conference on
Machine learning, pages 569–576, New York, NY, USA, 2005. ACM Press.

10

S. Singh and D. Cohn. How to dynamically merge markov decision pro-
cesses. In Advances in neural information processing systems, volume 10,
pages 1057–1063, Cambridge, MA, USA, 1998. MIT Press.

W. Zhang. Modeling and solving a resource allocation problem with soft
constraint techniques. Technical report: wucs-2002-13, Washington Uni-
versity, Saint-Louis, Missouri, 2002.

11

