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Abstract 

This paper describes a method for the recognition of constraints in network-based command and 
control, and illustrates its application in a command and control microworld. The method uses 
Hollnagel’s functional resonance analysis to extract the essential variables that describe the behavior of 
a command and control team. It juxtaposes these variables in state space plots that explicitly represent 
constraints and defines regions associated with alternative opportunities for action. Examples show 
how state space plots of experimental data can aid in the description of behavior vis-à-vis constraints. 
We discuss how state space representations could be used to improve control in network-based 
command and control settings. 

1 Introduction 
Command and control is in a phase of change. Both civilian emergency managers and military 
commanders seek to implement network-based organizations. The drive for network-based command 
and control stems from the identification of coordination problems in complex environments that 
resist solution by traditional hierarchic command structures (Cebrowski & Garstka, 1998). For 
example, civilian agencies want to improve inter-agency coordination (W. Smith & Dowell, 2000) and 
the military wants to overcome problems with combat power and speed. Moreover, joint operations by 
a growing number of civilian agencies (e.g. rescue services, local and national governments, and private 
sector agencies) and military services are often required to resolve emergency or conflict situations.  
The international nature of these emergencies, disasters, and conflicts impels civilian and military 
services to cooperate across traditional organizational and cultural boundaries.  The prospect of having 
to coordinate activities across agencies, nations, and cultures suggests that a whole new range of 
technical and social problems may be waiting to emerge that can only be addressed by a network-based 
command-and-control structure. 

The concept of network-based command and control is envisioned to enable forces (civilian or 
military) to organize in a bottom-up fashion and to self-synchronize in order to meet a commander’s 
intent (Brehmer & Sundin, 2000; Cebrowski & Garstka, 1998). This concept steps away from the 
traditional ‘platform-centric’ hierarchical command structure where power is inherently lost in top-
down command-directed synchronization. Network-based command and control envisions a high-
performance information grid that makes sensor information available to the entire network. Part of 
this vision is that filtering, aggregation, and presentation of data will be done by computer systems. 
Nodes in the network are foreseen to be able to communicate with any other node, so that informed 
and appropriate action can be taken locally. The vision relies heavily on emerging information 
technologies. 

The unit of analysis for studies of network-based command and control is much larger than for studies 
of traditional hierarchical control. In traditional organizations, the chain of command is orderly. The 
network-based vision entails a much greater flexibility in the implementation of communication and 
action. Large parts of the network necessarily become the unit of analysis. This situation presents a 
challenge to studies of network-based command and control. Two of the challenges are (1) how to 
describe and model joint behavior, and (2) how to design information technology that supports 
network-based command and control.  

In this article we address these challenges by outlining a method for analysis of joint behavior using 
constraints and opportunities for action represented in state spaces. The method is meant to inform 
the design of information technology to be used in network-based command-and-control centers.  Our 
research goal is to develop and verify a methodology to identify constraints generated by the actions of 
distributed collaborative decision makers. By addressing this goal, we aim to provide insight in 
distributed collaborative command and control in dynamic network-based settings. Understanding how 
constraints shape action of joint cognitive systems contributes to the science of network-based 
command and control and to the design of systems that support command and control. In this paper 
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we restrict our analysis to the management of emergency situations in distributed collaborative 
command and control.   

1.1 Command and control and decision making 
The design of any support system is necessarily based on the model that the designers have of the task 
that is to be supported. Sometimes this model is only a chimera in the designers’ minds. It would be 
distinctly preferable if  they were to analyze the task they mean to support in detail, so that their design 
of their tool could be based on an explicit and well-informed model. Moreover, their design would 
benefit if they were to envision how their design will change the task and whether it will serve the 
actual purpose of the joint system that it is designed for (Hollnagel & Woods, 2005). The modeling of 
command and control and decision making is therefore a critical precursor of the design of support 
systems.  

Diverse research traditions including, but not limited to, cognitive systems engineering, and decision 
making address the modeling of command and control. Here we offer a selective review of several 
models linking control, command and control, and decision making.  

1.1.1 Joint command and control systems 
We adhere to the paradigm of cognitive systems engineering (Hollnagel & Woods, 1983, 2005). 
Cognitive systems engineering addresses questions such as how to make use of the power of 
contemporary technology to facilitate human cognition, how to understand the interactions between 
humans and technologies, and how to aid design and evaluation of digital artifacts. Related to 
distributed cognition (Hollan et al., 2000) and macrocognition (Klein et al., 2003), CSE takes an 
ecological view regarding the importance of the context when addressing cognition. It focuses on 
constraints that are external to the cognitive system (present in the environment) rather than on the 
internal constraints (memory limitations, etc.) that are foci of the information processing perspective.  
For CSE, it is these external  constraints that determine behavior.  

The unit of analysis in cognitive systems engineering is the ‘joint cognitive system.’  A cognitive system 
(Hollnagel & Woods, 2005) is a system that can control its goal-directed behavior on the basis of 
experience. The term ‘joint cognitive system’ (Hollnagel & Woods, 2005) means that control is 
accomplished by an ensemble of cognitive systems and (physical and social) artifacts that exhibit goal-
directed behavior. In the areas of interest to cognitive systems engineering, typically one or several 
persons (controllers) and one or several support systems constitute a joint cognitive system which is 
typically engaged in some sort of process control in a complex environment.  

An early account of modern command and control centers is provided by Adelson (1961), who 
describes decisions in what he called ‘command control centers’. He states that “command centers are 
typically nodes in networks constituting command control systems” (Adelson, 1961, p. 726), where the 
word ‘center’ means ‘a place where decisions are made’, and does not imply centralization of decision 
making. This suggests that the network-based environments envisioned today are not as conceptually 
revolutionary as one may think. Adelson emphasizes that both the complexity and urgency of 
command in 1961 had increased compared to earlier times. Two outcomes of this were a need for a 
higher rate of information handling and more severe consequences of decisions. Adelson goes on to 
enumerate a large number of important factors that the “decider” must know about including the 
recent history of relevant variables’ behavior, the present state of the world, predicted future states, 
including the opponents’ behavior, the own system’s and environment characteristics, alternatives for 
action, predicted outcomes, and objectives. Adelson (1961) even mentions war games and business 
games as tools to simulate and predict processes. Furthermore, he demonstrates problem-driven joint-
systems thinking in that he emphasizes the importance of the objectives of technological improvement 
of command centers based on the real needs of “the assemblage of men and machines that constitute 
the system” (Adelson, 1961, p. 729).  
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1.1.2 The dynamics of decision making and control 
Researchers often associate command and control with decision making. The term ‘decision making’ 
refers to a mental process that precedes the execution of action. The classical prescriptive model of the 
decision making process is expected utility theory. According to this theory, decision making includes 
four sequential steps:  the generation of all possible options for action, independent assessments of the 
probability and utility of each option, and the selection of the option with the highest expected utility 
(see e.g. Von Neumann & Morgenstern, 1953).  

Although expected utility theory has proven to be difficult to apply to dynamic, complex environments 
like command and control (Brehmer, 1992; Hollnagel, 1986, 1993, 1999; Klein & Calderwood, 1991), it 
has dominated the ‘expert system’ paradigm for decision support systems.  Like expected utility theory 
generally, decision support systems based on the option generation and evaluation paradigm can 
perform well only in limited, well-defined and predictable domains.  Predictably, they are typically 
inappropriate for network-based command and control, because the underlying model of ‘decision 
making’ does not fit the distributed nature of the task. The literature is replete with reports about the 
pervasively negative consequences of  support systems based on decision theoretic designs including, 
but not limited to,  lack of user acceptance, brittle performance when faced with unanticipated novelty, 
users’ over-reliance on the machine’s ‘expertise,’ and biasing users’ cognitive and decision processes 
(Bainbridge, 1983; Dekker & Woods, 1999, 2002; Hollnagel, 1999; Hollnagel & Woods, 2005; Roth et 
al., 1997).  

Fortunately, alternative models have emerged that are more appropriate for command and control 
applications. Numerous studies of decision makers in so-called ‘naturalistic’, high-stakes, time-critical, 
and complex settings have lead Gary Klein and his colleagues to propose a model they call 
‘recognition-primed decision making’ (e.g., Klein & Calderwood, 1991). Their critical insight is that 
‘decision makers’ in naturalistic settings actually don’t make decisions and only rarely consider more 
than one option. The recognition-primed decision making model states that decision makers generate 
one, and only one, option based on recognition of familiarity, evaluate whether that option will work 
(using ‘mental simulation’), and implement if it will. If it will not work, they generate another option 
and evaluate it. The process cycles until a satisfactory option is found. Adequate recognition and 
simulation of the situation are thus the keys to successful ‘decision making’ according to this model.  

A second approach is called ‘dynamic decision making’ (Brehmer, 1992). This approach focuses on the 
functions served by decision making in order to gain control, or to achieve some desired state of 
affairs, rather than on the decisions themselves. As its name implies, dynamic decision making involves 
tasks with a dynamic character. This implies that a series of interdependent decisions in real-time is 
required to reach the goal, and that the state of the decision problem changes both autonomously and 
as a consequence of the decision maker’s actions. This approach describes decision making as the 
intersection of two control processes:  (1) the system that the decision maker aims to control and (2) 
the means for achieving control. The second process is used to control the first (Brehmer & Allard, 
1991). The DOODA loop (Brehmer, 2005) is a contextualized model of this control loop approach, 
integrating a loop of (1) sensemaking, decision making, action, and information collection, with (2) 
more military-specific concepts such as command, order, mission, and sensors into a comprehensive 
model of command and control. 

The third approach to modeling that we review are the models that form the foundations of cognitive 
systems engineering (CSE, Hollnagel & Woods, 2005): (1) the cyclic model of action as it is performed 
by joint cognitive systems, (2) a contextual control model (COCOM), and (3) the extended control 
model (ECOM) of cognitive systems engineering. The cyclical model of human action is the heart of 
cognitive systems engineering, and is based on Neisser’s (1976) perceptual cycle. This model, also 
called CAEC loop, basically states that an operator’s current understanding (or construct, C) directs the 
operator’s next action. This action (A) produces some information or feedback. This information (or 
event, E) modifies the operator’s current understanding, etc. This does not mean that these concepts 
always occur in this order: Event evaluation and action often occur in an intermingled or iterative 
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fashion. The control principle is based on the idea that behavior towards goals, and thereby control, is 
a combination of feedback (compensatory) and feedforward (anticipatory) control. The four 
simultaneous control loops in ECOM range in their character on a gradual scale from short-term 
compensatory control to long-term anticipatory control. 

1.2 Control support through the recognition of constraints 
These reflections result in the cognitive systems engineering view that states: “From the joint cognitive 
system perspective, the intelligence in decision support lies not in the machine itself (the tool), but in 
the tool builder and in the tool user.” (Woods, 1986, p. 173). The cognitive systems engineering view 
on intelligent decision support for process control is highly influenced by the principle that a joint 
cognitive system controls its behavior to achieve its goals. Any analysis of the performance of joint 
cognitive systems should rely on directly observable phenomena. The unit of analysis is therefore not 
decision but action. Rather than supporting decision making, cognitive systems engineering aims to 
support actions directed at gaining and maintaining control. In this view interaction between the 
various parts of the joint cognitive system has to be designed to enable the joint cognitive system to 
cope with complexity and to handle disturbances on the way to retaining control. This view recognizes 
that process control environments are often fundamentally complex and that oversimplifying the 
interaction would likely reduce the joint cognitive system’s ability to maintain control. Supporting 
control means supporting the evaluation of the situation and anticipation of future events, the selection 
of action, and the performance of action, as well as ensuring that the time available for actions is 
sufficient (Hollnagel & Woods, 2005).  

In the many tasks where the option generation and evaluation paradigm of intelligent decision support 
systems seems inappropriate, other ways of supporting the joint cognitive system to gain and maintain 
control may be found. For the domain of air traffic control, Dekker & Woods (1999) mention an 
alternative form of supporting controllers: “In one situation, controllers suggested that telling aircraft 
in general where not to go was an easier (and sufficient) intervention than telling each individual where 
to go” (p. 94). This statement suggests that operators may necessarily and sufficiently be informed 
about the constraints on their actions, rather than all possible actions. Fundamental similarities 
between the air traffic control and command and control tasks indicate that this idea may transfer well 
to the command and control domain. 

Similarly, the approach to decision support that we are currently investigating is to support control 
through recognition of constraints. The theoretical basis for this has been outlined in the sections on 
the rationale for looking at constraints to analyze behavior, and to support goal-directed behavior. 
Particular models of command and control however also encourage the investigation of a constraint-
based approach to the analysis and support of joint systems behavior in command and control. 

Dynamic decision making research in Brehmer’s view “is concerned with people’s formulation of goals 
and models as a function of the observability and action possibilities of the system to be controlled” 
(Brehmer, 1992, p. 218). Thus the question what constitutes observability and action possibilities is a 
research problem. The discussion of constraints above is exactly concerned with this problem. 
Constraints influence the action possibilities. Hence, it is important that people’s model of the system 
to be controlled is adapted to the possibilities for action and therefore the constraints on action to be 
able to control. To be able to know the possibilities for action, they need to be observable. As 
mentioned above, exhaustive option generation is not meaningful in many complex environments with 
conflicting goals and multiple ways to achieve these goals. Therefore, to be able to adapt one’s model 
to the possibilities for action, it may be more useful to be able to clearly and more directly observe the 
constraints on action. This is the perspective on command and control support investigated in this 
paper, in the form of visualization of constraints. 

The constraint concept has recently been discussed in a command and control context. As a result of a 
study employing grounded theory, Persson (1997) defines command and control as “the enduring 
management of internal and external constraints by actors in an organization in order to achieve 
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imposed and internal goals” (p. 131). He argues that the core of command and control is “constraint 
management”, and defines constraint as something that is an obstacle to action or goal-achievement. 
Persson indicates the importance of the recognition, resolution, and thereby management of 
constraints in command and control.  

1.3 Constraints and their representation 
The concept ‘constraint’ has been addressed by scientists from a variety of disciplines and perspectives 
and has implications for cognitive systems engineering (Ashby, 1956; Checkland, 1981; Gibson, 1986; 
Hollnagel & Woods, 2005; Leveson, 2004; Norman, 1998; Reitman, 1964; Vicente, 1999; Vicente & 
Rasmussen, 1992; Woods, 1995). Combining these perspectives we define constraint as either a limit 
on goal-directed behavior, or an opportunity for goal-directed behavior, or both. Constraints are 
invariably described as essential factors in the functioning of (cognitive) systems. This work addresses 
constraints explicitly in the analysis of behavior of joint cognitive systems. In CSE constraints are said 
to shape the selection of appropriate action (Hollnagel & Woods, 2005). Similarly, the related 
disciplines of cybernetics and systems theory consider the concept of constraint to be of major 
importance, because constraints facilitate control.  

In cybernetics, constraints are recognized to play a significant role in process control. One of the 
fundamental principles of control and regulation in cybernetics is the Law of Requisite Variety (Ashby, 
1956). This law states that a controller of a process needs to have at least as much variety (behavioral 
diversity) as the controlled process. Constraints in cybernetics are described as limits on variety. 
Constraints can occur on both the variety of the process to be controlled and the variety of the 
controller. This means that if a specific constraint limits the variety of a process, less variety is required 
of the controller. If a specific constraint limits the variety of the controller, less variety of the process 
can be met when trying to exercise control. Regarding the prediction of future behavior, Ashby notes 
that if a system is predictable, then there are constraints that the system adheres to. Knowing about 
constraints on variety makes it possible to anticipate future behavior of the controlled process, and 
thereby facilitates control. 

The recognition of constraints on action has been observed in field studies as a strategy to cope with 
complexity in socio-technical joint cognitive systems. Example domains include refinery process 
control (De Jong & Köster, 1974), ship navigation (Hutchins, 1991a, 1991b), air traffic control 
(Chapman et al., 2001; K. Smith, 2001), and trading in the spot currency markets (K. Smith, 1997). 
Similarities of system complexity and coupling in these domains and command and control suggest 
that the recognition of constraints is likely a useful approach in command and control as well. 

Woods (1986) emphasizes the importance of spatial representations when providing support to 
controllers. In this paper we develop the visualization of constraints as the support strategy. 
Representation design (Woods, 1995) and ecological interface design (Vicente & Rasmussen, 1992), 
offer design guidelines concerned with constraint: Decision support systems should facilitate the 
discovery of constraints, represent constraints in a way that makes the possibilities for action and 
resolution evident, and highlight the time-dependency of constraints. One representation scheme for 
such discovery is the state space. 

State space representation is a graphic method for representing the change in state of process variables 
over time (Ashby, 1960; Flach et al., 2003; Knecht & Smith, 2001; Port & Van Gelder, 1995; Stappers 
& Flach, 2004). The variables are represented by the axes. States are defined by points in the space. 
Time is represented implicitly by the traces of states through the space. Figure 1 is an example state 
space in which the variables are fuel range and distance. The regions with different colors represent 
alternative opportunities for action. The lines between these regions are constraints on those actions. 
The arrows represent traces of states of a pair of processes through the space as their states change 
over time. The opportunities for action have yet to change for the first process, but they have changed 
for the second.  
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Figure 1 A generic state space.  Constraints are represented as thresholds between regions associated 

with alternative opportunities for action. The arrows represent a pair of processes as their states change 
over time. 

Recent work in cognitive systems engineering, human factors, and ergonomics reflects a renewed 
interest in the state space representation. Stappers & Flach (2004) describe state space representation as 
a promising and rich visualization method of the behavior of cognitive systems. They state that it steps 
away from the typical block diagrams of perception, mental processing, and motor control that hinder 
appropriate thinking about dynamics. They describe the metaphor of state spaces as “that of the 
cartographer’s map, showing a landscape with roads and pitfalls, mountains and rivers, i.e., 
opportunities and threats, but leaving the reader’s mind free to roam and imagine developing states and 
possible routes through the territory” (Stappers & Flach, 2004) (p. 825). In sum, state spaces ignore 
processing stages and activities and emphasize constraints.  

1.4 A method for the recognition of constraints 
From the discussion above, we can conclude that constraints are acknowledged in work practice and 
described in the literature to shape action and enable control, and that being aware of constraints is 
essential for process controllers. However, in complex and dynamic environments where constraints 
continually change, where people have to work collaboratively and where information and people are 
distributed, keeping abreast of all relevant constraints can be difficult. To address this difficulty, this 
paper investigates a method for recognizing constraints in process control tasks. The method is 
intended to become part of the support systems that Brehmer & Sundin (2000) and Cebrowski & 
Garstka (1998) envision.  

The method has three steps, which are discussed in turn. 

 (1) The first step in the method is a functional resonance analysis of the joint cognitive system’s 
process control task.  The analysis is conducted by (or in consultation with) a domain expert.   

The modeling of the joint cognitive system’s process control task is done by connecting modules that 
represent the functions that need to be performed. All functions are described through and may be 
linked via their aspects, in terms of their input and output, preconditions, resources, time, and control. 
This functional modeling scheme was recently developed by Hollnagel (2004) for accident modeling 
and complex system analysis purposes under the acronym FRAM (functional resonance accident 
model). The modules of functions and their characteristics are therefore called FRAM-modules. 
Because the modeling method is developed for complex joint human-machine system analysis, it is also 
suitable for modeling the tasks and functions that are performed in network-based command and 
control, which typically involves such complex systems.  

Figure 2 describes the six aspects that a FRAM-module addresses for each function that is identified. 
To find the FRAM-modules, one may start with the top-level goal, which may translate into the top-
level function, or one may start with any function and move on to related functions. Typically, the goal 
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in this domain is to get some sort of process under control, such as a progressing fire, a crowd of 
panicking people, a spreading oil spill, or a moving adversary military force. This translates into the 
top-level function of for example fighting the fire, directing the flow of people, blocking and cleaning 
the oil spill, or fighting the adversary forces. From there on, the functions that are necessary or 
otherwise related to the input of the function, its timing, control, required resources, and 
preconditions, determine the other functions in the model of a task. The tasks identified through a 
goals-means task analysis (GMTA; Hollnagel, 1993) may aid in the definition of functions in FRAM.  

 

Function Aspect Description 

Input That which the function uses or transforms 

Output That which the function produces 

Preconditions Conditions that must be fulfilled before the 
function can be carried out 

Resources 
That which the function needs or consumes 
when it is carried out (e.g. matter, energy, 
information, manpower) 

Time Time available, as a resource or a constraint 

Control 
That which supervises or adjusts the 
function (e.g. controller, guideline, plan, 
procedure) 

 
Figure 2 FRAM-module description of function aspects and hexagonal function representation (Hollnagel, 2004). 

 

FRAM has possibilities and advantages similar to goals-means or means-ends task analysis, which is a 
highly related method. Both FRAM and goals-means task analysis (GMTA) have a recursive structure, 
focus on the goals of the joint human-machine system rather than strict function allocation, and can be 
applied to operational as well as hypothetical systems. The Test-Operate-Test-Exit unit (Miller et al., 
1960) and the means-ends analysis in the General Problem Solver (Newell & Simon, 1961) are early 
examples of goals-means task analysis. More recently, the principles of GMTA have successfully been 
applied to the modeling, design, and evaluation of process control tasks (Hollnagel, 1993; Hollnagel & 
Bye, 2000; Hollnagel & Woods, 2005; Lind & Larsen, 1995).  

(2) The second step in the method is to identify the essential variables, the subset of process variables 
that the joint cognitive system can both observe and (indirectly) affect. 

This step in the method identifies the variables that change in the performance of the tasks identified 
in the FRAM analysis. These are the variables that are affected by the joint cognitive system’s goal-
directed actions, and the variables upon which the joint cognitive system bases its understanding of the 
situation. These variables stem directly from the components of the FRAM module, that is, the 
constraints associated with time, control, preconditions, and resources can be identified by addressing 
these aspects of each function. 

Following Neisser (1976) and Hollnagel (2003), support for people doing their work should focus on 
assuring a satisfactory understanding of the situation and an effective execution of action toward the 
goals of the joint cognitive system. The act of controlling steers the process to be controlled toward 
the fulfillment of the joint cognitive system’s goals. The act of controlling is modeled as an assembly of 
feedback (compensatory) and feedforward (anticipatory) loops (Hollnagel, 2003). Feedback and 
feedforward control, and the understanding of the situation, are based on observations of the state that 
the system is in.  
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In the process control domains that are of interest to cognitive systems engineering, the units of 
observation are typically states, defined by the current instantiation of a large number of variables that 
can change rapidly over time. Following Ashby (1956), who used the term ‘essential variables’ for the 
variables that must be kept within assigned limits for an organism to survive, we use the term ‘essential 
variables’ for the subset of process variables that the joint cognitive system can both observe and 
(indirectly) affect. We imply that essential variables must be known for the joint cognitive system to 
function adequately. 

(3) The third step of the method has three parts: (a) sampling the values of the essential variables (b) 
juxtaposing these variables to form a set of multidimensional state spaces, and (c) comparing the 
location of the data in the state spaces to the thresholds between regions specifying differing 
opportunities for action. 

Step 1, the FRAM analysis, identifies the functions for and constraints on the execution of a task, and 
step 2 identifies the variables that change during its execution and the constraints on these variables. 
Step 3 juxtaposes variables associated with related tasks to form state spaces that make these 
preconditions explicit by specifying regions where the constraints are (not) met. Boundaries between 
regions form thresholds that represent constraints on action. In the example of Figure 1, there are two 
such thresholds that divide the space into three regions.  

In the remainder of this article we discuss an experiment that provides an existence proof that the 
representation of data and constraints in state spaces can form the basis for the design of information 
systems to support operators in command-and-control environments. 

2 Application of the constraint recognition method 
This section describes the microworld study that we have conducted, and more importantly the 
insights we have gained regarding the application of our method for the recognition of constraints. 

2.1 Microworlds and C3Fire 
Microworlds are simulated task environments that (a) provide a task that can be made more complex, 
challenging, and realistic than traditional laboratory studies but that (b) generalize to interesting parts of 
real world problem solving while remaining (c) are more controllable, tractable, reproducible, and 
flexibly designable research environment than a field study (Brehmer & Dörner, 1993; Funke, 2001; 
Gray, 2002).  

C3Fire (Granlund, 2002) is a fire-fighting microworld in which a group of people work together to gain 
control of a computer-simulated fire. Their task is to collaborate in an experimentally controlled 
configuration for command and control interaction, under observation of a researcher who manages 
the experiment. Figure 1 presents an overview of the C3Fire microworld. Its elements include a map 
showing vegetation, buildings, vehicles, and the fire, and the computer network for controlling the 
vehicles and communicating by e-mail. 

In the C3Fire setting used in this experiment, various mobile units and stationary units are located on 
the map. Mobile units (trucks) need fuel to move across the map. Stationary units have a fixed position 
on the map and cannot move. Fire trucks are mobile units that can fight fires. To do so, they need 
water. Water providing units can provide other units with water. This class is formed by water trucks 
and water stations. Similarly, fuel providing units are units that can supply all moving units with fuel. 
These can be divided into fuel trucks and fuel stations. The class of stationary units consists, besides of 
water and fuel stations, of vegetation and buildings.  

The rate of burning and spreading of the fire can be set by the researcher, and is typically made 
dependent on vegetation, terrain, the presence of buildings, and wind direction and speed. Thus, these 
properties of the environment constrain the development of the fire.  
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Participants direct the units where to drive by interacting with an interface showing a map with the 
dynamic simulation, an e-mail tool, and some data describing the state and characteristics of the trucks.  

As the discussion above has illustrated, the C3Fire microworld captures many of the characteristics of 
complex environments: It implements high degrees of connectivity, complexity, uncertainty, time 
pressure, and polytely. It provides a test bed for research on collaborative and distributed command 
and control in a dynamic, volatile, uncertain environment. By allowing several participants to control 
the interdependent trucks, their actions become mutually enabling and constraining. To sketch the 
method for the recognition of constraints and to illustrate behavior in terms of constraints, this paper 
discusses the application of the method to an experimental study in C3Fire, and deals with the issue of 
how support systems’ designers could take advantage of the representations it produces. Publication of 
more detailed analysis and results of the study is in preparation and can be found elsewhere (Woltjer, 
2005; Woltjer & Smith, 2005). 

The various units in C3Fire are mutually enabling and constraining because of interdependencies in the 
consumption and provision of water and fuel. Interdependencies among decision makers arise 
whenever different classes of units are assigned to different participants in the simulated command and 
control center.  For example, if fire trucks need water and fuel, water trucks and fuel trucks constrain 
the actions of fire trucks. If different people have control over these different units, their actions are 
mutually enabling and constraining. This also becomes apparent through the first step in the method 
described above, the goals-means task analysis. 
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Figure 3 The conceptual C3Fire microworld setting used in the present study, adapted from (Granlund, 
2002). 

2.2 The constraint recognition method applied to C3Fire 
This section presents the application of the constraint recognition method to the C3Fire microworld. 

A small part of the functional modeling task analysis of C3Fire is shown in Figure 4. The analysis 
reveals how functions are linked and thereby how units are mutually enabling and constraining. To take 
the example of the ‘fire trucks fight fire’ function, the input of this function is burning vegetation and 
buildings, which may be saved from or lost to the fire (the output of the function). The preconditions 
of fighting a fire are (1) that the fire truck has water (which is the output of the water refilling function) 
and (2) that the fire truck is collocated with that fire (which is the output of the moving-to-fire 
function). The time and pace of fire trucks fighting fire is influenced by the fire spread rate and fire 
fighting rate for example. The main resource used for fire fighting is water. 
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Figure 4 Functional modeling (FRAM) analysis of a small part of the task in the C3Fire microworld. 

The essential variables were subsequently analyzed according to the second step in the method. These 
are variables that are both affected by the actions of the network of participants, and used by the 
participants to assess the situation that unfolds during the experimental scenarios. They include fuel 
and water levels, distances to intended positions and other trucks and stations, time available to fight 
fire and move across the map, etc.  

Table 1 presents an example of an analysis of essential variables linked to the various aspects of a 
FRAM-module. It describes the function of a truck T refilling its resource R from a source S as an 
example. This abstract description of the function may then be instantiated with for example ‘fire truck 
F4’ for truck T, ‘water’ for resource R, and ‘water truck W12’ for source S. Table 1 also illustrates how 
operators such as ‘increase’, ‘level’, ‘same’, ‘time’, ‘between’, and ‘rate’, may be used to express actions 
on or properties of the various quantities in the simulation. These operators enable the linking of 
aspects of one function to the other function. For example, changing the position of truck T or source 
S in order to fulfill the precondition ‘same(pos(truck T), pos(source S))’ is the output of the truck 
moving function, which in turn specifies the indirectly related (and therefore marked with an asterisk)  
variable of ‘*time(between(truck T, source S))’. 
 

Truck T refills resource 
R from source S Description Essential variables, examples 

Input 
truck T 
source S 
resource R 

coordinates of truck T 
coordinates of source S 

Output increase(level(truck T, resource R)) new level(truck T, resource R) 

Preconditions same(pos(truck T), pos(source S)) 
level(source S, resource R) > 0 

pos(truck T), pos(source S) 
*time(between(truck T, source S)) 
level(source S, resource R) 

Resources   

Time refill dynamics rate(increase(level(truck T,  
                     resource R, source S)))

Control   
 

Table 1 Description of the function module ‘truck T refills resource R from source S’ with examples of 
essential variables. 



  

 11 

Experimentation with C3Fire comprised multiple trials where different scenarios of a simulated fire-
fighting task were presented to a multi-person team. Thirty-two Swedish with a mean age of 24.6 years 
participated in the study for a monetary compensation. The participants were not trained in command 
and control. The participants filled out a form stating their informed consent to anonymous 
participation in the study. There were a total of 8 scenarios with changing geographical layout and task 
difficulty. The purpose of these manipulations was to keep the scenarios challenging and the 
participants engaged. The 32 participants engaged in the C3Fire scenarios in 8 four-person teams, each 
playing 8 scenarios independently so that 64 trials of empirical data were collected. C3Fire captures and 
logs a large number of variables. Performance variables include the number of squares that were still 
burning, closed out, or burnt out at the end of each scenario, which will not be discussed further here. 
For the purpose of the analysis of constraints, all variables associated with the fire truck, water truck, 
and fuel trucks’ behavior were logged. 

We will now turn to the description of the application of the third step of the method for recognizing 
constraints. This step entails the sampling of the values of the essential variables, juxtaposing these 
variables in multidimensional state spaces, and comparing the location of the data in the state spaces to 
the thresholds between regions specifying differing opportunities for action. Our discussion 
emphasizes the state space representation of behavior relative to constraints, tells the stories the state 
spaces contain, and illustrates the utility of state space representations in a command and control 
environment.  

An example of a state space for constraints is shown in Figure 5. This figure juxtaposes the variables 
‘distance to the nearest fuel providing unit’ and ‘fuel range’ and plots data of all fire trucks (F1-6) and 
all water trucks (W7-9) during one entire trial. The distance to the nearest fuel providing unit is the 
distance of a unit to the nearest fuel truck or fuel station. The fuel range indicates how many squares 
the truck can drive with the current fuel level. The higher black line indicates the states where the 
truck’s fuel is exactly sufficient to reach the nearest fuel providing unit. In the region above this line, 
the distance to the nearest fuel providing unit is smaller than the distance that the current fuel level 
allows the truck to drive. In other words, when a truck is above the line, it can make it on its own to a 
fuel providing unit. In the region below the lower constraint line, the truck does not have sufficient 
fuel to reach the nearest fuel providing unit, and a fuel truck will have to come to it instead to refuel. It 
may be a strategy at a particular point in time that the fire trucks in a specific area with a small fire have 
to refuel themselves because fuel trucks are occupied elsewhere, and that fuel trucks in another area 
have to actively supply fire trucks with fuel because they are too occupied fighting extensive fires. This 
state space representation thus links the goal structure of the task, the constraints of the environment, 
strategies for performing the task, and the actual states of the control process in relation to the three 
former concepts. 

Between these constraint lines, there is a grey zone where it is not certain whether the truck can reach 
its intended position. The existence of the grey zone in the state space reflects the uncertainty that is 
often encountered in real world traveling, where one often does not know the exact fuel consumption. 
Often however one can estimate the upper and lower limits on fuel use. The exact fuel consumption is 
difficult to predict exactly because of local influences such as road condition, weather, etc. In this way 
C3Fire captures some of the inherent uncertainty in the command and control domain. 

Strictly horizontal lines mean that the truck is not moving (fuel range stays the same) and the nearest 
fuel providing unit is moving either towards or away from the truck. In cases when the fuel providing 
unit moves away, another fuel providing unit may become the nearest. 

The vertical line in these state spaces at X = 1 reflects the fact that when trucks refuel, they are one 
square removed from the nearest fuel providing unit. As they refill their fuel range increases to a 
maximum of 20, tracing the vertical line at X = 1.  

In Figure 5, we can again see that trucks generally had sufficient fuel ranges to make it to the nearest 
fuel providing unit. Examination of the trace of truck W7 through the state space is informative. The 
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oval in Figure 5 shows W7 at states (6.5, 8) and (6.5, 7), where it had enough fuel to reach the nearest 
fuel providing unit. Between these states, W7 kept moving (decreasing fuel level) but the line goes 
straight down, indicating that the distance to the nearest fuel providing unit stayed constant. It can be 
inferred that the nearest fuel providing unit was moving in the same direction as W7. Thereafter the 
distance to the fuel providing unit grew, and truck W7 then made a long excursion into the region of 
the state space that indicates that it could not reach a fuel providing unit. It crossed both of the black 
constraint lines, eventually reaching a state with approximate coordinates (7.2, 3), highlighted by the 
circle in Figure 5. At this time, the horizontal line indicates that a fuel providing unit approached truck 
W7. Thereafter, the diagonal line from (5.8, 3) towards the origin indicates that W7 started to burn fuel 
as it moved towards the fuel providing unit.  

The vertical lines at the bottom of the figure that intersect the horizontal axis reveal that trucks F2, F4, 
F5, F6, W7, and W8 all ran out of fuel one or more times. They were not positioned next to a fuel 
providing unit while their fuel ranges were zero. In these cases a fuel truck would have to come to 
them. Knowing this information in advance or being able to predict when this situation may happen 
would have been a huge advantage to participants trying to engage in anticipatory constraint control 
(De Jong & Köster, 1974). 

 

Figure 5 Sample state space for the variables ‘distance to the nearest fuel providing unit’ and ‘fuel 
range’ for fire trucks and water trucks. 

The second example state space we discuss here is the space that is formed when ‘transit time for water 
resupply’ is juxtaposed with ‘fire fighting time given the water supply’ (current water level). Such a 
space is shown in Figure 6. The transit time for water resupply is defined as the number of seconds it 
takes to bridge the distance between a fire truck and the nearest water providing unit (either a water 
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truck or a water station). The fire fighting time given the water supply is defined as the number of 
seconds that fire can be fought until the water level is zero.  

 

Figure 6 Sample state space for the variables ‘transit time for water resupply’ and ‘available fire-fighting 
time’ for fire trucks. 

In discussing one possible use of this space we will sketch a strategy employing two assumptions about 
the desired functioning of fire and water trucks. First, since fire trucks are already quite engaged and 
busy fighting fire, it may be distracting to have to constantly think about their water level and where, 
when and how to get water. This may be especially unnecessary since the water trucks are dedicated to 
water provision. Therefore, it is likely a good strategy for water trucks to bring water to fire trucks. 
Second, fire trucks often try to fight fires in a series of adjacent cells, and normally several adjacent 
cells are on fire. This makes it useful to talk about the fire fighting time for which water is available 
even when it reaches quite high numbers. 

These considerations make it reasonable to create a threshold defined by states where the available fire 
fighting time is equal to the time it takes for a water truck to reach a fire truck. This line is drawn in the 
state space of Figure 6. Above and left of this line, there is more fighting time available than it would 
take for a water truck to arrive. Well above or left of this line, there is little need to refill with water, 
since there is plenty of water left with respect to the distance to the water supply. Below and right of 
this line, the fire truck will run out of water (given continuous fire fighting) before it can be refilled. 
Assuming that the fire truck will have to continue to fight fires in nearby cells, action probably has to 
be taken to get water providing units closer to the fire truck to enable it to continue to fight fire.  

In the trial shown in Figure 6 the transit time for water resupply often far exceeded the fire fighting 
time available. This applies to almost all fire trucks. Moreover, the lines descending vertically into the 
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horizontal axis illustrate that trucks F1, F4, F5, and F6 were all without water at times when it would 
have taken considerable time for a water truck to get to them. It is not possible to evaluate the quality 
of this team’s performance from the state space of Figure 6 alone. Letting fire trucks wander beyond 
their water supply may have been part of a strategy, or it may not have mattered in the specific 
situation. The information made available by the state space would have likely been useful to the 
participants in case these situations were unanticipated or unintended. 

In the discussions of state spaces, fuel ranges have been a central part of the analysis. Since maintaining 
fuel range at appropriate levels seems so critical, we illustrate that there are other visualization methods 
that may be useful to explore in the analysis of constraints. We have created snapshots that show the 
fuel range values plotted as circles around the positions of the trucks. Figures 7 and 8 present two 
examples of the utility of these snapshots. The two figures show data from different times during the 
same trial.  They relate essential variables (position, fuel range), and make changes in their values over 
time salient. What emerges from these plots is the presence or absence of overlap between fuel ranges. 
Overlaps in fuel ranges mean that trucks can reach each other, which is desirable given that fuel is a 
critical resource. In contrast, effectiveness and efficiency are likely to be hampered when there is little 
overlap.  In Figure 7 there is considerable overlap; most trucks can get fuel. In Figure 8, there is little; 
the situation is hopeless.  

In Figure 7, after one minute of running the scenario, the fuel ranges of most of the trucks overlap. 
They can reach each other to refill water and fuel. This representation of fuel constraints makes the 
dire situation of truck W9 jump directly into attention. We can recognize instantly that the truck was 
quite remote and had a fuel range of zero (as illustrated by the small circle around the position of the 
truck). It had no means to get back to the cluster of trucks grouped together where the action is. This 
figure makes it easy to recognize what to do: someone must supply truck W9 with fuel, so that it can 
get back into the game.  

Figure 8 plots the fuel ranges 15 minutes later (t=960). The situation is more or less hopeless. Only 
truck F3 can still move. The others are scattered across the map and have fuel ranges of zero. Nothing 
can be done to remedy this situation since all fuel trucks have run out of fuel.  

3 Discussion 
A large pool of state spaces has been obtained during the experiment, juxtaposing many different pairs 
(and even triples) of variables. The recognition of constraints and their illustration in state spaces has 
fulfilled two goals of this study. First, the state spaces illustrate behavior in terms of movement of 
vehicles, resource usage, and strategy and tactics in handling constraints. The participants’ coping with 
constraints is illustrated in the state space by the movement of states towards or away from constraint 
lines. Review of the state spaces has identified trials with many crossings of constraint lines. In these 
trials, trucks frequently ran into difficulties and the fires burned out of control. In other state spaces, 
there were few or no crossings of constraint lines. This contrast indicates a large variety in the handling 
of constraints across teams and scenarios. Second, the study suggests that representation design in decision 
support systems and interfaces may usefully be based on the state space representation. In this study, 
information made available post-hoc in the state spaces suggests that the spaces give useful insight 
through the combination of essential variables and their behavior over time. Figure 9 recapitulates the 
state spaces in an abstract conceptual form.  
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Figure 7 Map illustrating the constraint on fuel logistics at time t = 60, one minute into trial 1.6.2.  All 
trucks are within range of at least one fuel truck. 

 
Figure 8 Map illustrating the constraint on fuel logistics at time t = 960, 16 minutes into the trial. No 

trucks can get refueled. 
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The state space on the left hand side of Figure 9 illustrates regions specifying differing opportunities 
for action. For states in the green region, fuel range is sufficient to bridge the distance. In the amber 
zone one cannot be certain if fuel range is sufficient, and the red region indicates that fuel is 
insufficient to bridge the distance. The first example of a state space (Figure 5) is a concrete example of 
this kind of state space. The state space on the right of Figure 9 illustrates a more gradual specification 
of constraint, and more interlaced regions with opportunities for action. A concrete example of such a 
state space is Figure 6 which juxtaposes the time available for an activity with the time needed for a 
related activity. In such cases the combination and juxtaposition of constraints may not be as rigid, but 
can nevertheless be relevant in a goal-directed context. Other shapes of regions of opportunities for 
action with more constraint lines combined may be identified in the future, as they have been reported 
in the literature in other domains. The combination of essential variables into one visualization can be 
highly meaningful and useful. 
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Figure 9 Conceptual idea of illustrating behavior and representing constraints in state spaces. Arrows 
represent state transitions over time. Thickness of the solid lines illustrates recency of state transition. 

Dotted arrows illustrate possible projections of future behavior. 

State spaces form a very powerful representation. They can combine essential variables to form 
meaningful ensembles that are relevant to the goals of command and control. A value of an essential 
variable may not be informative in itself, but in the context of other variables and commander’s goals, 
meaning is added. Thus, the visually lucid nature of state spaces lets their observer interpret the value 
of essential variables in a goal-directed context.  

Automation or “intelligent” systems that aim to take over the task of interpreting data from process 
control operators have proven brittle and precarious in the face of unanticipated events, as discussed 
above. State spaces rearrange data in a way that facilitates interpretation and extraction of meaning, 
leaving the cognitive work and interpretation of data to the human controller, and thus avoiding the 
pitfalls of automation.  

To control a process means to know the history of the process, its current situation or state, and to be 
able to anticipate and affect future states (Hollnagel & Woods, 2005). State spaces address the behavior 
of essential variables in the process to be controlled through the recent history of the process, the 
current state of the process. They enable extrapolation of the past and present to anticipate future 
behavior. Process data represented in state spaces may therefore enhance the controller’s ability to 
control the process. Thus, the availability of representations of variables based on state space 
visualization may enhance control significantly for commanders in network-based command and 
control structures. Future network-based environments are expected to display a high reliance on data 
communication and presentation (Brehmer & Sundin, 2000; Cebrowski & Garstka, 1998). These 
settings are foreseen to pose high demands on the commander of the future to make sense of massive 



  

 17 

amounts of data. State spaces offer a viable alternative to displays of raw data. Instead of presenting 
just raw data, state spaces offer a context for values of essential variables that may help commanders 
make sense of the dynamic situation. Instead of algorithms of “intelligent” decision support systems, 
state spaces let the commanders interpret data themselves, keeping them “in the loop”.  

It is important to discuss the assumptions that the current work is based on. The first set of 
assumptions involves those inherited from the experimental platform, C3Fire. Although C3Fire 
captures many essential factors and properties of network-based command and control systems, there 
are some obvious differences between C3Fire and command and control environments. The C3Fire 
environment is clearly defined in terms of states of variables and their values. It is entirely 
deterministic, and can be called a closed-loop system. In command and control settings, the variables 
that play a role in the control of complex systems may not always be clearly identifiable. Information 
about the values of these variables may be uncertain, unreliable or incomplete. The utility of the 
method of recognizing constraints is not necessarily affected by these admittedly large differences. The 
state space representation does not interpret data; it merely enables human operators to interpret data 
and find meaningful patterns and relationships. The method does not assume that data is certain, 
reliable, or complete; it merely re-arranges data in a manner that makes the constraints on 
opportunities for action obvious.  

In real command-and-control applications, as in C3Fire, state spaces can only juxtapose variables that 
are readily identifiable and observable. When variables are not available, the state spaces will not 
generate inappropriate depictions of the process, unlike much automation that has an interpretative 
role in supporting the operator. Because state spaces do not fabricate interpretations, unreliable or 
uncertain data are not a threat to the operators’ assessment of the situation. 

The representations developed here are meant to be incorporated in the network-based visions of 
distributed collaborative command and control. It therefore assumes the availability of data by means 
of a broadcasting structure of communication, where each information-providing entity sends 
information to a network, and entities connected to this network have access to this information, 
listening in on the information they need to fulfill their tasks. Although the method surely can be 
applied to a certain extent to situations where operators have to actively seek information, the 
information considered here is assumed to be readily available. The set of essential variables should 
therefore be identified either at the design stage of support system development, or in real-time by the 
commanders given a flexible representation of data. Issues of network bandwidth, data filtering, and 
communication technology should therefore be ascribed to the idea of the network structure of 
command and control, and not to the constraint recognition method outlined here. 

These considerations lead to a number of directions for future research. Regarding the description of 
behavior in terms of state spaces, it seems fruitful to continue analyzing data from a variety of 
command and control settings in terms of state spaces and to develop a more general method of 
representing constraints and their implications for behavior. 

Regarding the design of representations of constraints and behavior in state spaces, much is 
unexplored in the details of the representations. As was discussed above, the approach supports the 
construction of understanding in terms of what has happened, what is happening, what may happen 
next, and which actions one can or cannot do. This promises to be a powerful approach. Questions 
concerning exactly which essential variables to present in order to improve control remain unexplored 
and have to be tailored to the specifics of the domain. 

The theories outlined in earlier sections of this paper point us in several directions for further research. 
The recognition-primed decision model leads us to the importance of situation assessment and the 
recognition of the situation as being familiar and related to earlier experiences. Dynamic decision 
making emphasizes the relationship between goals and opportunities for action. The method for 
constraint recognition addresses these issues directly by identifying the goals, the means to achieve 
them, and the constraints on the opportunities for action as identified by examining the relationships 
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between essential variables. Further investigations into recent theories of command and control in 
relation to the constraint recognition method seem fruitful, such as the network-based paradigm 
described earlier in this thesis, and newly developed dynamic cybernetic models that focus on control 
(Brehmer, 2005).  

Also, we are currently extending the scope of the method from emergency management to command 
and control where an adversary takes the role of the process to be controlled, as in traditional military 
settings, for example through the use of the dynamic wargame for experiments DKE (see 
Kuylenstierna et al., 2004, for other experiments with this simulation).  

In cognitive systems engineering some goals of representation design are to reduce the time needed for 
evaluation and the time needed for the selection of action, as well as to facilitate simultaneous 
compensatory and anticipatory control (Hollnagel & Woods, 2005). We claim that the state space 
representation has the potential to do just that. As is discussed in the paper, the state space approach 
supports the construction of understanding in terms of what has happened, what is happening, what 
may happen next, and which actions one can or cannot do. This promises to be a powerful approach 
to support the maintaining and regaining of control, since control support means support for 
compensatory and anticipatory goal-directed action.  

In many time-critical systems in dynamic complex domains, a balance needs to be found between 
safety and efficiency (Hollnagel, 1999). The notion of control encompasses both of these aspects of 
system behavior, and research approaches directed at the facilitation of control such as the recognition 
of constraints may improve our understanding of establishing both safety and efficiency to a 
satisfactory extent. Instead of the brittleness of many earlier approaches to ‘decision support’, the 
constraint-based approach may bring design a little closer to enable systems to behave in a resilient 
manner. Enhanced conditions for anticipation, preparation, and recovery may facilitate resilience 
(Hollnagel et al., 2006), a concept that addresses both safety and efficiency.  
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