
A Network Centric Infrastructure for Decision
Support Based on Service Integration

J. Berger, A. Boukhtouta, A.-C. Boury-Brisset

Defence R&D Canada – Valcartier
2459, Pie-XI Blvd North

Québec, Quebec
G3J 1X5, CANADA

M. Debbabi, H. Issa, S. Ray, S. Dalouche

Concordia Institute for Information Systems Engineering,
Concordia University,

Montreal, Quebec, Canada

ABSTRACT

The importance of- fresh data is of paramount importance especially in missions involving
safety/security critical context. The present infrastructure for service integration implements a
one-time execution of a multi-task business process. Business process languages compose
various services but the end-result corresponds to a static instance of the retrieved information.
This modus operandi exhibits a crucial drawback. Actually, if a Decision Support System (DSS)
is to be implemented on top of such integration infrastructure there will be no guarantee of data
freshness. Current drawbacks and limitations can be leveraged through a rescue mission
scenario, for example, which heavily depends on accurate data. This is true since state-of-the-art
technologies associated with web services do not tackle the significant issues of monitoring and
re-execution of web services during their integration. Baring this problem in mind, we propose a
self-contained middleware capable of performing real-time integration, monitoring and re-
execution of web services. Consequently, the end result will guarantee fresh information that is
well-suited to impose decision support mechanisms. In this context, this paper leverages the
following contributions: First, it identifies a business case for the use of service integration as an
infrastructure for distributed decision support. Second, it identifies the software capabilities
needed to develop this middleware. Third, it demonstrates a procedure to upgrade the current
status of the "Digital Cockpit" middleware [2] to include real-time integration, and monitoring of
web services. Finally, it concludes with a partial standard based implementation of the system
followed by the snapshots of user interface.

Keywords

Decision Support Systems, Digital Cockpit, Middleware, Monitoring, Re-execution, Service
Integration, Web Services.

 2

1. INTRODUCTION
Nowadays, most organizations use a large variety of networked computer systems to collect,
process, and produce large volumes of information. In particular, military organizations move
towards network-based defense. However, current command and control information systems are
highly centralized, using a central processing of information and message exchange between
different actors or decision makers. To enable each decision maker or actor to obtain customized
and detailed information about the current situation, a command and control system should be
decentralized and more dynamic. So, there is a need to provide military decision makers with
better decision support systems that facilitate informed and timely decisions in highly dynamic
and distributed environments.

The digital cockpit is a middleware that is based on peer-to-peer technology to dynamically
distribute situation information between different units or decision makers. Providing the
military decision makers with a peer-to-peer information system (or middleware) enables them to
have a shared and better understanding of the situation. A peer-to-peer network based defence
middleware also enables the decision-making process to be more rapid than previous operational
paradigms [32]. Indeed, the ability to dynamically restructure itself and to be able to share
information efficiently will be important characteristics of a military force.

The problem of non-fresh information rises due to the static use of information and/or services.
This, in turn, does not provide organizations with appropriate access to information in mission-
critical situations, where accurate and up-to-date data is aught to be available at all times. In
military scenarios, accurate decisions should be taken in an opportune time else the payoff will
not be optimal. Achieving a solution for this problem requires real-time or near real-time
reaction to events. This is where our proposed middleware fits to close the existing gap by
allowing organizations to accomplish high payoffs by utilizing correct information. A decision
for a rescue mission planning, for example, is based on a combination of multiple information,
such as weather conditions, available aircraft, available troops, etc. As a result, a decision can be
made only after all the needed services are composed and executed returning the required
information set. Clearly, the main drawback in such a service integration mechanism is that it
does not guarantee the accuracy and freshness of data during the whole span of rescue schedule.
At any time, information regarding weather conditions may significantly change right after the
execution of its corresponding service terminates. Such change is rendered unnoticed and may
have significant impacts on the entire previous decision. As a consequence, the entire mission
can be jeopardized. This occurs since with current implementations of service
integration/monitoring, the decision maker will not be informed about such changes unless s/he
requests the re-execution of the entire service process again. Therefore, instead of spending time
to analyze data, users will waste more time trying to collect precise data.
Limitations of current service integration frameworks are inherited from the specification
guiding web service composition and execution [10], [13]. Identifying that such drawbacks can
pose significant problems, our proposed framework builds on top of our previous digital cockpit
infrastructure [2], to provide efficient means to overcome current limitations. The enhancement
is achieved by adding the capability of performing real-time integration, monitoring and re-
execution of web services. By accomplishing this, decision makers can trust the freshness of the
delivered information, thus aiding in better decisions. Our proposed infrastructure includes an
execution engine, which when detects a change, re-executes the global plan, and returns the

 3

latest information set to the user without any intervention from the client side. This will reduce
the time needed for the user to interact with the system, and will introduce more time to
accurately analyze the information. The end result will produce a rich blend between the research
fields of service integration and decision support systems yielding better systems. The remainder
of this paper is organized as follows: Section 2 illustrates the state of the art in both Service
Oriented Architecture (SOA) and decision support systems. Section 3 further details our
approach. It provides an overview of the digital cockpit’s architecture and illustrates how we
support web services by adding an integration container. Section 4 identifies a partial
implementation of the proposed middleware. We next provide a comparison among various
existing technologies that could be used to implement such system, and we present the
technologies we used to achieve our goal. We also provide some snapshots of the user interface
identifying various levels of information drilling. Finally, section 5 provides our conclusions
concerning the entire framework and poses some further research possibilities.

2. SERVICES ORIENTED ARCHITECTURES AND DECISION SUPPORT SYSTEMS
Organizational needs for information integration differ depending on business and operational
requirements. Among the most dominant approaches we find: Information Integration, Business
Process Integration, and Service Integration [14], [24]. On one hand, information integration is
concerned only with data; it allows the combination of data from disparate data sources. With
this approach where databases are the main points of connection [3], [17], two main solutions
have been proposed: data warehousing and federated architecture. The first requires the building
of a physically separated database and the use of Extract, Transform and Load tools (ETL). This
solution is relevant when data does not change frequently or when the integrated view does not
need to be up-to-date. The federated solution defines one or more mediated schemas, which are
not used for storing data but only for querying them. When a query is issued to the system, it is
then translated into a set of queries over the corresponding data sources. This approach keeps the
local autonomy of data sources and creates a virtual repository enabling real-time on-demand
data access. This very solution is appropriate when data or the global schema may change
frequently. On the other hand, business process integration approach deals with defining
information flow between different systems [8]. Generally, integrated systems are autonomous,
exhibit their own process choreography engines, and run internal business processes. The main
idea behind business process integration is to provide a single logical model, which spans over
multiple applications and data sources.

2.1. Service Oriented Architecture
Organizations are moving towards an information era where significant payoffs could be yielded
if business companies implement data/service sharing and integration. The main problem that
arises is interoperability. Data sources and services reside on different platforms and each
communicates according to its specific communication protocol. Before the emergence of SOA,
various integration technologies came to existence. Electronic Data Interchange (EDI) is a
standardized message format to perform various business transactions among business partners.
Later on, with the advance in communication infrastructure, computing power, and middleware
software, new technologies evolved to provide capabilities to integrate data and services
belonging to the same application but whose components reside on a distributed computing
environment. Common Object Request Broker (CORBA) [25], [28] from Object Management

 4

Group (OMG), Distributed Component Object Model (DCOM) [11], [18], [23] from Microsoft,
and Remote Method Invocation (RMI) [27], [26] from IBM and Sun Microsystems are the
offspring of these technological advancements. Despite these breakthroughs, these technologies
still lack the main essence they were created to solve. Interoperability among different system
components residing on different platforms remains weak and difficult to achieve. For example,
CORBA and DCOM cannot communicate unless a bridge is placed between them. Still, each of
the newly emerged technologies has its own communication protocol. For example, CORBA
uses Internet Inter-ORB protocol (IIOP), DCOM utilizes Object Remote Procedure Call (ORPC)
protocol and RMI depends on Java Remote Message Protocol (JRMP). Understanding the
limitations of existing solutions and to cope with the explosion of the web and e-commerce, SOA
for web services came to existence. The concept was created to address the vast integration
issues that were prominent from earlier technologies. The new wave of integration that SOA was
built on focuses on the independence of platform, languages, data, and communication protocols.
Key SOA concepts are based on service description, publication, and binding. Organizations
describe their services and publish them in accessible repositories where other services may also
be found. This mechanism is achieved in a transparent way hiding all the complexity from the
end user. Most definitions of SOA point to the use of web services in their implementation,
which can be achieved using any service-based technology [4]. As an example, e-Speak [19], a
software product developed by HP in 1999, was the first web service implementation of SOA.
Next, companies started developing frameworks for web service integration, resulting in
environments such as J2EE from Java, WebSphere from IBM, and .Net from Microsoft. This
evolved towards web services that are self-described, self-contained, and modular units built on
top of standard-based protocols, and that enable service integration over multiple platforms.
Consequently, web services are gaining huge momentum since they overcome the above stated
limitations of previous technologies. The architecture of web services is straightforward. Service
providers describe their services using Web Service Definition Language (WSDL) and place the
corresponding description in a repository. A service requestor uses Universal Discovery,
Description and Integration (UDDI) [20] to find the appropriate web service that fits the profile
of the requestor. When a match is identified, the service provider and the service requestor bind
together and all further communication is achieved via Simple Object Access Protocol (SOAP).
This use of standard-based protocols contributed to the wide adoption of web services. However,
using web services in such way does not leverage the business world with the real expected
value. Therefore, providing a link between web services and business processes will grant the
business a precious added value. Among recent initiatives in this direction, we find Business
Process Execution Language for Web Services (BPEL4WS) [13] and Web Service
Choreography Interface (WSCI) [31]. BPEL4WS is a business process integration specification
standard designed by IBM and Microsoft. It provides a language for the formal specification of
business processes and business interaction protocols, extending web services interaction, and
providing more support to business transactions. Regarding WSCI, it took the first step towards
standardization ensuring the adoption of collaborative business applications. Actually, these
languages define an interoperable integration model that should facilitate the integration of
intra/inter-organizational processes between businesses and organizations.

2.2. Decision Support Systems
Decision makers, in large organizations or military environments rely on decision support
systems (DSS) to aid them in the process of evaluating past and present situation and make

 5

informed decisions. This has become a fact since current enterprises are overwhelmed with
tremendous amount of information, and it is beyond the human capabilities to fully manage and
understand so many data. This is where a DSS steps in and tries to materialize the “big picture”
of an organization by better exploiting the information needed to support business processes and
decisions. In the military, there is a need to provide military commanders and staff with a
common operational picture to gain shared understanding of the situation when making critical
decisions. This picture must reflect accurate and up-to-date information coming from disparate
and distributed sources. The major components of a DSS are: data sources, user interfaces,
architecture and network, and analysis tools. From an architecture point of view, DSS are usually
built on top of data warehouses or federated architecture. Thus, analytical capabilities are based
on data retrieved from either a data warehouse or a federated view of multiple data sources. The
analysis is only initiated after all appropriate queries are executed returning the requested
information. This query based dependency weakens the DSS. Based on the fact that queries were
designed to be executed once, it limits their ability to capture and reflect any change occurring in
a pre-processed field. This major limitation puts the effectiveness, correctness and trust of DSS
at stake. Although this is not what decision makers want, this is what they are really getting. To
the best of our knowledge, almost all research work on SOA and DSS is done separately.
However, providing a framework that provides capabilities to build DSS over SOA becomes a
necessity. In this context and in the scope of this paper, we intent to initiate a new paradigm that
allows enhancing decision making by taking advantage of what SOA has to offer. These are,
asynchronous communications, integration of remote services enabling real-time notification,
and service composition. These characteristics provide decision makers with means to make
“fresh decisions” based on disparate and accurate information.

3. APPROACH
In this section, we present the approach used to provide a software platform performing real-time
integration/monitoring and re-execution of web services. This constitutes a novel approach to
establishing an infrastructure suitable for the further conduction of decision support mechanisms
in a distributed environment. The cornerstone idea is to establish a profound synergy between the
digital cockpit and real-time web service composition and monitoring. We tackle the information
and services integration problem from a network centric perspective, focusing on the
improvement of information sharing. Moreover, our proposed system improves situation
awareness as its core functionality is implemented by an “Integration Container”. Consequently,
the developed system will form the basis of an up-to-date decision support middleware, better
aiding in consolidate decision. Thus the deployed system will yield more mission effectiveness.
Hereafter, we briefly present our digital cockpit system [2].

3.1. Software Capabilities and Digital Cockpits
To achieve the required goal and to reach a coherent coalition between the digital cockpit and
our proposed middleware, the system should implement the following capabilities:

1- Service integration/composition,
2- Service monitoring,
3- Real-time interactive display,
4- User subscription mechanism,
5- Service re-execution,
6- Analytical methods,

 6

7- Optimization techniques.
The digital cockpit system accomplishes an efficient and useful decision support system mainly
based on real-time information retrieval from heterogeneous data sources. It consists of the
following modules: Integrator, subscriber, display manager, monitor, analyzer, and controller.
Figure 1 shows the layer-based architecture of the digital cockpit system [1].

Figure 1: Layer-Based Approach

The resource tier is where all the data needed resides. Data is acted upon and accessed by the
integration tier. The main responsibility of this tier is to connect the data sources and integrate
them. Following this procedure, the integrator forwards the result to subscribers who initially
requested the data, through the acceleration tier. This is achieved by utilizing a publish/subscribe
mechanism. At the presentation tier, in the client side, there reside various components that will
further act on the data to provide different decision support options. The client side components
are called “Analysis” and “Control”. While the analysis module is responsible to apply analysis
algorithms on the data, the control module is responsible to perform optimizations. All of this are
presented to the user in a well structured and sophisticated user interface through various visual
components. Each visual component allows different levels of interactions, thus revealing more
precise and accurate data with each refinement step. Finally, communication between the
components along the hierarchy of the middleware is achieved via asynchronous messages. The
digital cockpit middleware provides the following advantages to organizations:

 7

• It offers sophisticated user interfaces that keep on providing the user with up-to-date
information without continuous user intervention, using event notification
mechanisms.

• Information displayed on the screen is sent by the back-end application, using some
middleware technologies (Java Message Service (JMS) in our proposed middleware).

• The use of these advanced technologies leverages many key features such as:
guarantee of delivery of information; multicasting of information; and loosely-
coupled communication between the digital cockpit client and the back-end
application.

• Digital cockpit is intended to provide the decision maker with analytical capabilities,
which leverages the decision making procedures.

• Digital cockpit represents multiple software components. Each of them represents a
crucial business activity.

3.2. Integration Architecture and Inner Components
The enhanced version of the digital cockpit expands the integration tier to include a novel service
integration container. This additional feature rises due to the limitation of the digital cockpit to
integrate only heterogeneous data sources and not web services. As a result, adding a new
container to the present architecture enables service integration and monitoring. This container
will be the core, providing the ability to detect and reflect real-time changes without any user
intervention. Within this container resides an execution engine whose duty is to create and
manage a business process plan dealing with global service planning, execution, and re-
execution. In addition to the execution engine, a notification manager receives updates from
corresponding services and feeds these updates to the execution engine. This will automatically
trigger the re-execution of the pre-established global plan.

Figure 2: Architecture of Service Integration

 8

Figure 2 represents the overall architecture of the integration container as a standalone system. It
exposes the entire process of integration, monitoring and re-execution with a “weather” web
service as an example. First, the client sends a request to the integration container indicating an
interest with specific web service(s). This request is captured by the binding components and
redirected to the service execution engine. Binding components are mediums that transform a
request into the BPEL4WS understandable message format and forward messages to the
appropriate receiver. The execution engine will in turn compose the global service composition
plan and will initiate the execution process. The notification manager will register itself with the
corresponding web services. On the other hand, the weather web service has schedulers that
inform the notification manager whenever a change takes place in their corresponding datasets.
The notification manager will then inform the service execution engine with the changed values.
This will re-initiate the process of re-execution. It should be noted that inner/outer interaction
between system components and services is achieved asynchronously using messages and
publish/subscribe mechanism.
The need of an integration container rises due to the limitations of current technologies used to
compose web services [13]. Since the web services are composed and executed in a one-time
fashion, the user will not be informed of any change that took place after s/he last submitted a
request, unless s/he constantly keeps on interacting with the system requesting it to display its
updated results. With the introduction of an integration container, the user interacts only once
with the system indicating an interest in some services. From this point, the user is guaranteed to
be notified of all instant changes as they occur. This will enable the analytical methods of the
DSS to act on more accurate and up-to-date information each time.

1. Notification Manager: Once a user identifies an interest in some service(s), the
integration container registers its notification manager to all participating services
identified during the service planning phase. At this point, we are considering that each
service exhibits a mechanism which informs the notification manager that a change
occurred within its information set. After receiving this notification, the notification
manager will inject this information to the execution manager which in turn will initiate
some processes to reflect this update to the user. The importance of this notification
manager is that it will free the user from the burden of continuously checking if data has
changed since the last request was issued. Moreover, it will enhance the DSS process as
a whole because the analytical capabilities of the DSS will process accurate data every
time.

2. Execution Engine: The execution engine within the integration container is where all the
intelligence of this framework resides. Once the integration container receives a request
from the user, it will pass it to the execution engine. At this point, the engine initiates a
global planning event which decomposes the user’s request into smaller ones and builds
up business process plan which models the sequence of events that need to be executed.
The system will proceed in executing the plan i.e. services and upon completion; the end
result will be sent to the user and displayed in a fancy graphical way. At any time, if the
system detects a change, the process will re-execute the pre-established execution plan,
without any user intervention. This procedure by itself guarantees the freshness of
information delivered to the end user.

 9

4. IMPLEMENTATION

The conceptual model of the above-mentioned research is partly validated through an enhanced
version of “Digital Cockpit” implementation. In the following section we illustrate the various
technologies we used for the development of each component within the system. Technologies
are selected after performing a benchmark with other existing technologies, and identifying their
strengths and weaknesses.

4.1. Technological Framework
Local communication between classes is achieved by interface contracts, and wiring is achieved
using an Inversion of Control (IoC) [6] container called Spring Framework. IoC is an emerging
paradigm that greatly improves the reusability, flexibility, maintainability and unit-testability of
components. The localization of class instances is transparently achieved through the Singleton
and Factory Design Patterns [15] while removing the need for the developer to maintain
“Locator” classes. This allows full decoupling of components and system events. There exist
numerous Open Source IoC containers available including PicoContainer, Avalon,
NanoContainer, Excalibur and HiveMind [12]. However, Spring stands as the best candidate
since it has rapidly become the de facto standard for application wiring and lightweight J2EE
development. Additionally, Spring Framework provides helper classes that eases J2EE
development. Furthermore, Spring integrates nicely with Java Connector Architecture (JCA),
Java Database Connectivity (JDBC) and other persistence frameworks to provide declarative
local or distributed transaction demarcation.

4.2. Integration Container
Digital cockpit implements a standard integration container of Java Business Integration (JSR
208) [22]. JBI container realizes the access of service in a transparent and independent manner.
Therefore, it takes full advantage of the asynchronous features built into BPEL4WS, compared
to a classical SOAP over HTTP approach. Since JBI standard is relatively new, there are still few
Open Source JBI implementations available, mostly CodeHaus ServiceMix [30] and Sun’s
reference implementation (RI). The latter provides a more restrictive license than ServiceMix’s
Apache license, has a few community support, and provides a very limited set of binding
components (BC). On the other hand, ServiceMix provides support to Spring as well as JSR 208
deployment unit, it also ships with a number of BC, embeds FiveSights BPEL Process eXecution
Engine [9], and is integrated with other CodeHaus project such as ActiveMQ JMS [5], Jencks
JCA [29], etc. However, ServiceMix documentation is still in its infancy whereas RI’s
documentation is a little more complete. Since a BPEL support was needed as well as JMS BC,
ServiceMix was chosen. Moreover, developers are responsive and provide good support through
mailing-lists and forums.

4.3. Business Process Execution
The execution engine runs business processes and is capable of composing multiple services
from distant locations, if required to satisfy a client’s request. Incorporating re-computation of
business processes is time effective since the process semantics captures the states. The Business
Process Execution Language for Web Services (BPEL4WS) provides a high-level language to

 10

compose web services built on web services standards. As a result, our proposed middleware
uses BPEL4WS. Among competing BPEL engines, the most popular Open Source alternatives
include ActiveBPEL, Apache Twister, Fivesight PXE and IBM BPWS4J. BPWS4J has never
been updated and its community support is nearly non-existent. Apache Twister is still infancy
and does not provide a complete implementation of the BPEL standard yet. ActiveBPEL engine
documentation and community support is excellent, but it provides no other transport mechanism
than SOAP over HTTP. As a consequence, ActiveBPEL cannot be easily integrated inside a JBI
container. Finally, we proceeded with Fivesight PXE because of its existing integration inside
ServiceMix. Due to its extensible architecture, it can be embedded as a Service Engine (SE)
inside a JBI container.

4.4. JMS Binding Components
ServiceMix provides support to a number of binding components including ActiveMQ JMS,
Jencks JCA, etc. Implementation of asynchronous distributed communication is achieved
through ActiveMQ JMS implementation, which is usually considered as the most flexible free
JMS broker. Spring framework provides helper classes for JMS templates which avoids
programming and maintaining the ever-needed initialization and cleanup code. Furthermore,
BPEL4WS supports JMS binding components. However, there is a limitation in the current
implementation of Spring JMS template regarding asynchronous reception of messages. This
limitation can be circumvented by using Spring JCA support and ActiveMQ JCA Resource
Adapter to asynchronously receive JMS messages.

4.5. Service Notification
Integration of services implements initial retrieval of information through an implemented
binding component for the invocation of standard web service, called “Web-Service Invocation
Framework” (WSIF) [7] developed by Apache foundation. On the other hand the approach
encourages a “notification manager” that includes the WS-notification technology to be
asynchronously informed from the remote services. However, it should be mentioned that this
approach assumes known locations of the remote services. An extension of this approach could
be realized to find services dynamically by integrating with an outside XML registry. This issue
will not be discussed within the scope of this paper.

4.6. User Interface
The following snapshots of the user interfaces (figure 3 and figure 4) are presented from the
enhanced version of the “Digital Cockpit” project, supporting dynamic service integration. It
illustrates the integration of a frequently changing weather service. The service interface is
written in Digital Weather Markup Language (DWML) format as provided by National Weather
Service from USA’s National Oceanic and Atmospheric Administration (NOAA) [21]. This
weather service is composed of a set of schedulers and parsers which aggregate weather data
coming from various sources and provided under both XML and legacy formats. The JWeather
package has been used to parse Meteorological Aviation Routine Weather Report (METAR)
legacy format. The Java API for XML Processing (JAXP) has been used to parse XML weather
data. In the existence of any change in remote information, this service receives the data in
question, by an internal scheduler, and notifies the client through asynchronous JMS notification.
It re-calculates the relevant business process, and informs user interface irrespective of any

 11

recursive client’s initiative. Finally, the Java3D and JFreeChart libraries have been leveraged for
visualizing weather information in a user-friendly way. Java3D provides a high-level
programming interface for rendering three dimensional scenes whereas JFreeChart is a widely
used Open Source charting library which can generate graphics to be used as textures by Java3D.
The following figures represent a “drill down” scenario. A successful integration of weather
service in figure 3 shows an overall weather map representing a variety of weather information.

Figure 3: Overall View of Weather Scenario

An interested user may focus on a specific region of interest and requests more information as
shown in figure 4. Finally, figure 5 shows a specific wind condition, representing the lowest
layer of drilled down information. It should be mentioned that all these visual representations are
real-time and update themselves automatically with any fluctuations at corresponding remote
ends. At this point, the decision maker is guaranteed to be viewing current and accurate data, and
thus will be able to proceed with accurate decision that can maximize the payoff.

 12

Figure 4: Detailed Information of Weather Scenario

Figure 5: Specific Weather Component - Weather Forecast

 13

5. CONCLUSION

This paper is a result of our extensive research for a decision support middleware platform that
envisions real-time, asynchronous integration of data and services. A real-time integration of
services is a complicated process due to ad-hoc and proprietary nature of middleware framework
and pre-existing remote services. This paper represents a possible standard-based
implementation of a well-designed integration architecture that integrates services
asynchronously and accepts real-time notification of remote changes during a process run. On
the arrival of an event within a business process, the scope of re-computation is identified
independently from the integration style. The future work aims towards using such middleware
platform for cutting-edge decision support mechanisms that will leverage competitive advantages
to organizations. Other research possibilities can focus on the Quality of Service of web service
re-execution. This will facilitate faster output by re-executing only a subset of a pre-established
business process.

6. REFERENCES

1. A. Benssam, A.Boukhtouta, M.Debbabi, H.Issa, S.Ray, and A.Sahi. A message-based middleware for
asynchronous operations: Issues & Experience. In Proceedings of NOTERE2005, pages 51–60, Ottawa,
Canada, August 2005.

2. A.Boukhtouta, M.Debbabi, and N.Tawbi. A new paradigm for decision making: A synergy between
business intelligence and digital cockpits. In 10th ISPE International Conference on Concurrent
Engineering: Research and Applications, Portugal, 2003.

3. dmreview. Guide to Enterprise Information Integration (EII), 2004.
http://www.dmreview.com/whitepaper/WID1011596.pdf.

4. Wikipedia encyclopedia. Service-oriented architecture, 2005. http://en.wikipedia.org/wiki/Service-
oriented_architecture.

5. Apache Foundation. Activemq 3.1 release, 2005. http://java-source.net/open-source/jms/activemq.
6. Apache Foundation. Inversion of Control, 2005. http://jakarta.apache.org/hivemind/ioc.html.
7. Apache Foundation. WSIF: Web Services Invocation Framework, 2005.http://ws.apache.org/wsif/
8. R. Hackathorn. Convergence: The ethics of business process management, 2005.

http://www.bijonline.com/.
9. Quick Hits. Process execution engine (”pxe”), 2005. http://www.fivesight.com/pxe.shtml/.
10. H. Kreger. Web Services Conceptual Architecture (WSCA 1.0), May 2001. http://www-

306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.
11. M. Horstmann and M. Kirtland. Dcom architecture, July 1997. http://msdn.microsoft.com/default.aspx.
12. Java-source.net. Open source inversion of control containers, 2001. http://java-source.net/open-

source/containers.
13. M. Juric. Business process execution language for web services: A practical guide to orchestrating web

services using bpel4ws, 2005. www.ebpml.org/bpel4ws.htm.
14. D. S. Linthicum. Next Generation for Application Integration: from Simple Information to Web Services.

Addison Wesley publication, August 2003.
15. J. Maioriello. A survey of common design patterns, 2005.

http://www.developer.com/design/article.php/1502691.
16. R. Mason. Implementing an esb using mule: A real world example, 2005.

http://www3.java.no/JavaZone/2005/presentasjoner/RossMason/ross_mason-javazone-mule_0.pdf.

 14

17. R. McCann, A. Kramnik, W. Shen, V. Varadarajan, O. Sobulo, and A. Doan. Integrating data from
disparate sources: A mass collaboration approach. In Proceedings of the 21st International Conference on
Data Engineering (ICDE 2005), University of Illinois, USA, May 2005.

18. Microsoft. COM: Component Object Model Technologies. http:// www.microsoft.com/com/default.mspx,
2005.

19. J. M. Myerson. Web service architectures. Technical report, Sun MicroSystems, 2002.
http://www.webservicesarchitect.com/content/articles/webservicesarchitectures.pdf.

20. OASIS. Universal Description Discovery and Integration, 2005. http://UDDI.org.
21. National Oceanic and Atmospheric Administration’s. Experimental national digital forecast database xml

web service, 2005. http://www.weather.gov/xml/.
22. Java Community Process. Java specification requests (jsr) 208: Java business integration (jbi) 1.0, 2005.

http://www.jcp.org/en/jsr/detail?id=208.
23. G. Suresh Raj. A detailed comparison of corba, dcom and java/rmi, 1998.

http://my.execpc.com/˜gopalan/misc/compare.html.
24. Avanade Software. Enterprise application solution.

http://www.avanade.com/_uploaded/pdf/solution/avanadeintegration.pdf, 2005.
25. R. Mark Soley. Middleware that works, 2005. http://www.omg.org/corba-corner/corbalive.pdf.
26. S. Spence. PJRMI:Remote method invocation for persistent systems. In Proceedings of the International

Symposium on Distributed Objects and Applications (DOA’99), IEEE Press, Edinburgh, Scotland, February
1999..

27. Sun. Java Remote Method Invocation (Java RMI). http://java.sun.com/products/jdk/rmi/, 2005.
28. S.Vinoski. Corba: Integrating diverse applications within distributed heterogeneous environments. In IEEE

Communication Magazine, number 2, February 1997. http://www.cs.wustl.edu/schmidt/PDF/vinoski.pdf.
29. Jencks Team. Jencks: A jca container, 2005. http://jencks.org/.
30. ServiceMix Team. Servicemix 1.0 release: An open source enterprise service bus, 2005.

http://servicemix.org/ServiceMix+1.0+Release.
31. W3C. Web Service Choreography Interface, 2005. http://www.w3.org/TR/wsci/.
32. T. Gagnes, K. Bråthen, B. J. Hansen, O. M. Mevassvik, and K. Rose, Peer-to-Peer Technology – An

Enabler for Command and Control Information Systems in a Network Based Defence? In Proceedings of
the 9th International Command and Control Research and Technology Symposium, (ICCRTS), Denmark,
2004.

