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ABSTRACT 
(DSTL/QinetiQ Paper 10) 

The work reported in this paper was largely conducted under funding from the 
UK Ministry of Defence: Contract AES/N05501 Report on the Analysis of 

Organisation at MNE4. 

Social network analysis (SNA) techniques offer great promise for researchers 
investigating the new command and control issues arising in the age of network-
centric warfare. They provide a potential approach to the study of the organization-
level properties that emerge from individual-level behaviours. Of these properties, 
organizational robustness and resilience are of particular interest to many militaries 
and governments facing modern threats. This paper documents the results of an 
application of SNA techniques to the analysis of such properties in an experimental 
distributed multinational headquarters (JFCOM MNE4). Observations are made 
about the success of the techniques in uncovering organizational structure as it 
evolved during the experiment. Indicators of robustness were surprisingly good, as 
were indicators of virtual co-location (shared role awareness): in particular, evidence 
was found of a bimodal network in virtual co-location patterns, an especially robust 
structure. Strengths and limitations of the data sources and techniques are 
discussed. 
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Introduction 

USJFCOM Multinational Experiment 4 
US Joint Force Command is currently developing concepts for future operational-
level headquarters through a campaign of multinational experimentation. 
Multinational Experiment 4 (MNE4) was conducted between 27th February and 17th 
March 2006, and involved approximately 200 players1 from seven nations (Canada, 
Germany, Finland, France, Sweden, UK and USA) representing an operational-level 
military headquarters and associated staffs. This organization was directed to 
conduct an effects-based operation within a simulated Afghanistan scenario, 
including the management of an extant operation and re-planning to cope with major 
scenario injects. InfoWorkSpace (IWS) was the main software collaboration tool 
deployed in MNE4.  

The multinational analysis team was directed to assess the robustness of the Effects-
Based Approach to Operations (EBAO) developed by JFCOM and the international 
community participating in MNE4. This robustness was broken down by JFCOM into 
three components: that of the processes, the organization that conducted them and 
the technologies that supported them. The UK analysis team took on the task of 
analyzing the organizational component. Within the UK contingent, the QinetiQ team 
was asked by JFCOM and UK MOD – Directorate of Analysis, Experimentation and 
Simulation (DAES) to trial the use of social network analysis (SNA) techniques in this 
analysis, based on previous work by the team examining its applicability in the 
analysis of organizational robustness. 

Organizational robustness 
Extensive research has been published on the properties of networks that make 
them robust or vulnerable when under conditions of targeted or random failure2. In 
order to make the assessment of robustness a tractable problem, the following 
definitions were used3: 

1. Structural organizational robustness is the persistence of 
organizational structures in the face of a specified assembly of events; 

2. Functional organizational robustness is the ability of the organization to 
maintain function in the face of a specified assembly of events.  

Note that there should be no confusion with resilience, here – which we would define 
as the demonstrated ability to recover from damage caused by an insult within a 
specified timeframe. By the definitions above, robustness is shown when there is not 
even a temporary loss of structure/function in response to the event.  

Social network analysis 
Social Network Analysis (SNA) describes a set of techniques that enable 
visualisation and analysis of formal and informal relations between individuals. When 

                                                 
1 The exact number of ‘players’ was hard to define – many staff occupied a ‘grey cell’ role, responsible 
both for exercise ‘play’ and for injecting stimulation into the processes. 
2 Watts (2003) is recommended as an accessible introduction to the area. 
3 There are many definitions of robustness in common usage, with no agreement on which is most 
appropriate. A comprehensive list of alternatives can be found at the website of the Santa Fe Institute. 
The following definitions are based on that by Allen, quoted at 
http://discuss.santafe.edu/robustness/stories/storyReader$9 (RS-2001-009. Posted 10-22-01). 
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applied as organizational network analysis (ONA), these techniques promise the 
ability to bring to light aspects of organizational structure and behaviour that influence 
the performance of the enterprise. On the basis of such information it is possible to 
recommend interventions that will deliver improvements in enterprise-level properties 
such as productivity, efficiency, robustness and resilience. 

Based on graph theory, SNA techniques employ a formal mathematical approach to 
the study of all forms of social relations (Harary, 1969). As such, they bridge the gap 
between individual-level analysis techniques (e.g., measures of command intent, 
workload and situation awareness); and how these states and behaviours are 
influenced by their direct (dyadic) relationships with other individuals, the structure of 
sub-groups within which they operate, and their position within the entire network. 

Individual-level measures cannot capture the organizational strengths and 
vulnerabilities that emerge from low-level interactions, or how these two levels of the 
system are mutually constraining and enabling.  SNA is unique in addressing self-
organization – how interactions and flows (in information, knowledge and tasks, for 
example) change to meet the functional demands of the situation. As such, it is an 
ideal tool with which to study robustness. 

Method 

Data collection and processing 
Several networks were extracted from the experimental data made available by 
JFCOM, as – for the UK – the experiment was also a pilot study in integrating 
techniques of organizational analysis4. Additionally, it was not known in advance 
quite how users would employ the variety of collaborative tools at their disposal.  

Those used5 in the final analysis were: an expected virtual co-location network, 
mapping the degree to which individuals were expected to communicate, based on 
expected co-attendance at meetings; an expected task collaboration network, 
mapping the degree to which individuals were expected to collaborate, based on 
expected co-involvement in process steps; virtual co-location networks, mapping 
the extent to which individuals were virtually co-located in rooms, based on an 
analysis of co-attendance data culled from electronic logs of virtual room use6; 
information flow networks, mapping the results of player questionnaires on the 
players with whom they exchanged information; and role awareness networks, 

                                                 
4 UK MOD’s NITEworks program is developing a suite of such techniques for integrated analysis of 
military organizations. 
5 Other networks were generated during the data analysis phase, but the analysis of these is yet to be 
completed. It is intended that the results of the analyses of the following data sets will be available by 
September 06: 

• room chat co-location networks – mapping the extent to which individuals were virtually co-
located through shared participation in in-room chat, also based on logs; 

• private chat co-location networks – mapping the extent to which individuals were virtually co-
located through shared private chat; 

• e-mail flow networks – mapping the flow of email through the headquarters; and 

• reported meeting co-attendance networks – mapping meeting co-attendance links inferred from 
player questionnaires on meetings attended. 

6 InfoWorkSpace™ (IWS) version 3.0.  
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mapping the results of player questionnaires on the players of whose roles and 
responsibilities they were aware. 

Structural analysis of robustness  
The standard network measures used for assessing robustness depend on a few 
simple network concepts. These measures are useful in robustness analysis 
because they give an indication of how well messages (information, analyses, 
direction, and command intent) can be transmitted through the HQ: 

• The characteristic path length (CPL) of the network – the mean path length 
of the shortest paths between all nodes– gives one measure of the diameter7 

of the whole network, and therefore message-passing success for the entire 
network – a good indicator of connectivity and therefore robustness8; 

• The clustering coefficient of the network – to what extent nodes are formed 
into clear sub-groups; 

• The degree distribution within the network – to what extent nodes differ in 
the number of links they have in the network, which indicates to what extent 
the network’s connectivity is based on key individuals; 

• Reach centrality (Borgatti et al, 2002) was used to measure the proportion of 
all others in the organizational network an individual can reach in a given 
number of steps (e.g. one step, two steps, three steps etc). The higher the 
proportion of the network the individual can reach in the fewest amount of 
steps, the more highly connected they are.  

Although robustness depends on having a highly connected network, it is not just any 
kind of highly connected network that determines level of robustness but one with a 
unique pattern of connectivity – the clustered or scale-free network (Thompson, 
2005). The robustness properties of some common network topologies are well-
established. Scale-free networks are characterized by having no typical scale of 
connectivity. A random network will show a distribution of links per node that is 
approximately normal – there will be a large number of nodes in the network that will 
have a near-average number of links. Scale-free networks have no such tendency – 
a large number of nodes will have very few links, and a decreasing number will show 
increasing numbers of links, forming a ‘long tail’ in graphs of degree distribution9. 
This long tail provides robustness to random failure more efficiently (with fewer links) 
than a comparable random network. It is the targeting of this long tail that is the 
surest way to cause such networks to break down. 

By simulating the loss of nodes and links from the network, the team intended to 
derive an indication of how well the organization would cope in the short term with 

                                                 
7 Note that diameter is sometimes defined instead as the length of the longest of all shortest paths. 
8 It gives a good indication of the connectivity of the network. A greater proportion of connectivity to 
others in the network reduces the level of dependency an individual has on another within the 
organization. It also enables individuals to reach others in the network quickly and easily without having 
to go through too many intermediaries. This has advantages for rapid information transferral and 
information is more likely to pass from sender to receiver without becoming distorted. A short CPL 
between any two individuals also enables greater visibility of what is happening at any given time in the 
rest of the organizational network (Krebs & Holley, 2002-2005). 
9 This decreasing distribution can be described by a power law, and this is commonly regarded as a 
diagnostic feature for scale-free networks.  
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the loss of critical staff (either permanently or through the effects of high workload, 
sickness, shift-changes etc.). Robust networks will show smaller changes in CPL and 
diameter than fragile networks when similar sets of nodes are removed.  

Two types of node failure were considered – random failure and targeted attack. 
The former scenario represents a situation in which a set number of individuals are 
suddenly unable to participate in HQ activity. The latter might seem an unlikely 
scenario, but susceptibility to such attacks is now a widely-known property of real-
world networks10, and it is a useful way to simulate the effects of localized high staff 
workloads on the wider HQ. 

In addition, the project team were interested to see if the organization showed 
evidence of resilience where the designed organization showed indications of poor 
structural robustness. In order to do this, the networks derived from ‘expected’ data 
were compared with the organizational network structures observed. While the link 
types in the networks were too different to allow direct mathematical comparisons to 
be made, it was possible to collect observations on changes in user roles and look 
for these in the observed networks.  

Analysis of ‘shadow’ organizational structure 
While not directly related to issues of robustness, the team were also interested to 
see whether the network data could be used to discover informal sub-groups within 
the whole – sometimes called ‘shadow’ organization. Topological patterns such as 
cliques, clusters and k-cores are often used for this purpose. Given the size of the 
data, and the lack of existing research practice into the application of such 
techniques to two-mode (e.g. actor-meeting) data, the analysis was mostly 
exploratory, but Johnson’s hierarchical clustering procedure (Borgatti et al, 2002) 
was used to build an alternative hierarchy from the Week 3 data (see Figure 7 in the 
Appendix). 

Homophily analysis – localization of information flow as a contra-indication of 
resilience 
The theory of ‘homophily’ states that communication is more likely to occur between 
a sender and receiver who are alike (Lazarsfeld & Merton, 1954) or are similar on 
certain attributes such as demographic variables (Touchey, 1974). The opposite of 
homophily (i.e. that ties exist between individuals who are different in certain 
attributes) is known as ‘heterophily’. Although communication can be more effective 
between individuals who are homophilous (Rogers & Bhowmik, 1971), it can limit 
information flow to localised groups.  This negatively affects the permeation of 
information across the whole network required to support EBAO. In terms of efficient 
maintenance of robustness within the network, excessive homophily could be seen 
as an unhealthy organizational behaviour. The wider MNE4 analysis team was also 
interested in whether co-location would be a major determinant of the likelihood of 
staff being aware of each others’ roles and responsibilities.  

By using statistical techniques to explain variation in the relations between 
individuals, it is possible to determine the factors that affect the likelihood that two 
individuals within the organizational network will have a relationship. A structural 
blockmodel11 statistical test was used to determine the extent to which interactions 

                                                 
10 The standard introduction to these issues is that by Barabasi (2002).  
11 The ‘structural blockmodel’ method tests whether different classes have significantly different 
interaction patterns and whether this lies within-group or between-groups.  
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occur between individuals who share the same attribute through examining 
differences in group tie density (i.e. differences in the number of ties within-group vs. 
between-group) (Hanneman and Riddle, 2005).  The degree to which ties based on 
information sharing or awareness of roles and responsibilities display homophily or 
heterophily was tested through correlating each of these networks with both function 
and location attribute data. Data from the information flow and role and responsibility 
questionnaires was used for this analysis. 

The results of the analysis need to be considered in light of the constraints and 
artificialities of the MNE 4 experiment, including technical problems, tool constraints 
and an artificial operational tempo. IWS connectivity issues and Battle Rhythm 
disturbances limited working time across all functions, particularly in Week 1. This not 
only resulted in some process steps being temporally compressed or missed out of 
the EBAO cycle altogether, but also distorted data. IWS enables relational data for 
SNA to be captured quickly, accurately and automatically. However, although all 
event logs including room text chat entries can be captured, private chat entries are 
limited to logon/off. Voice chat event logging is also not currently possible in IWS. 
Activity logging should be a user requirement for future CIS. Due to technical 
difficulties with IWS players reverted to face-to-face working, especially at the start of 
experimental play when significant technical difficulties were experienced with the 
tool. As a direct result of a lack of pre-defined systematic observation of face-to-face 
interactions, this data could not be captured and included in the SNA analysis. This 
highlights the limitations of over reliance on gathering quantifiable, objective data for 
experimentation purposes from IWS and systems tools. 

Results 

Robustness analysis results 
The Week 3 IWS event log data was selected for this analysis, as it would be most 
representative of the state of a mature HQ performing the EBAO processes. It was 
also expected that IWS Week 3 data would fall into one of the standard network 
types - a scale-free network. Two versions of the data were produced – GT18 and 
GT50 – with a number of the lower-value connections removed, as a noise-reduction 
measure12.  

Both of these networks were compared with an artificial random network of matched 
node number and link density (the percentage of possible connections that are 
present in the network), to assess whether they showed standard differences 
characteristic of known network topologies. Figure 1, below, shows the degree 
distributions for the two slices through the Week 3 data, GT18 and GT50, compared 
with distributions from matched random networks. 
 

                                                 
12 The networks produced by IWS data event data were valued: the value between any two individuals 
being set by the minimum number of interactions recorded in rooms shared by those individuals within 
each of the three–hour work periods. In this way, the strength of each link was intended to represent the 
degree to which staff were virtually co-located. In order to conduct the various robustness analyses, it 
had to be dichotomized. In this process, lower-valued links are removed from the network so that only 
more frequent collaboration is represented, and all remaining links are treated as being of equal value. 
In order that the effects of this data processing did not introduce artefacts into the results two different 
networks were produced, at different thresholds. One network was created from links having mean or 
above-mean value (the ‘GT18’ network – for ‘greater than 18’, where 18 was the mean link strength) and 
another at the highest level before which the network would split into components of significant size (the 
‘GT50’ network). 
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Figure 1. Degree distribution for the IWS Week 3 log data (GT18 and GT50 sets - dark 
blue diamonds) against matched random networks (pink squares). 

  Nodes Links Density 
Mean 
Degree 

Cluster 
Co-eff. CPL ΔCPL 

  N   d K C L  ΔL 

Random network  
(matched N,d) 

183 10,958 .329 59.88 .330 1.67 -- 

Wk3 IWS: (GT18) 183 10,968 .329 59.93 .740 1.74 -- 

GT18, 20% 
targeted by 
degree 

147 4,530 .211 30.82 .667 2.01 +15.6% 

Means for GT18, 
20% random 
failure, (10 trials) 

-- 7,143 .333 48.63 .738 1.74 +.3% 

Std deviation -- 362 .017 2.47 .009 .03 +7.9% 

Random network  
(matched N, d) 

169 3,890 .137 23.02 .141 1.90 -- 

Wk3 IWS (GT50) 169 3,898 .137 23.07 .752 2.40 -- 

GT50, 20% 
targeted by 
degree 

135 1,378 .083 10.68 .729 3.25 +35.7% 

Means for GT50, 
20% random 
failure, (10 trials) 

-- 2,500 .138 18.52 .750 2.43 +1.5% 

Std deviation -- 127 .007 .94 .009 0.05 +2.1% 

Table 1. Robustness properties of two different m-slices through the same IWS Wk3 
event log dataset (the GT18 and GT50 networks). 
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While the Week 3 distributions are clearly not random, and both show a ‘long tail’ of 
higher-density nodes compared to the random networks, they do not follow the 
power-law curve expected of a scale-free network. Both distributions are in fact 
bimodal, with second modes occurring in both networks at about 55% of the degree 
maximum. This is a strong indication of the presence of a recognised type of network 
structure in the pattern of IWS use, known as a bimodal network. In such networks 
there are two typical scales of connectedness for nodes (shown by the two arithmetic 
modes in the distributions).  

A more direct way to measure this robustness is by simulating such attacks and 
failures on the network by removing sets of nodes and measuring the degree to 
which the network disintegrates. A standard procedure for this (Lusseau, 2003) is to 
simulate a targeted attack by removing the 20% of nodes with the highest degree, 
and random attacks by removing randomly-selected sets of 20% of the network. The 
results of these analyses are given in Table 1. Figure 2 and Figure 3 show the shape 
of the GT50 network before and after the simulated targeted attack. 

It can be seen from the table that the CPL for both the GT18 and GT50 slices is 
higher than that of a random network, which is not consistent with the properties of 
scale-free networks. The increase in CPL under conditions of attack – even for the 
GT50 network – is not as high as might be expected. As the graphs in Figure 2 and 
Figure 3 show, the network remains a single, relatively well-connected component, 
with the internally-redundant EBP group taking most of the damage. Scale-free 
networks, unlike random networks, will generally disintegrate under such conditions 
(Barabasi, 2002). Neither the GT18 nor the GT50 slice of the Week 3 data show such 
vulnerability, although they both suffered worse from targeted attack than from any of 
the random failures.  

Emergent organizational structures observed 
Evidence of functional robustness (the ability of the HQ to maintain function through 
changes in the internal structure) is provided in the changes seen in roles and groups 
in response to internal and external changes throughout the experiment. Figure 6 in 
the Appendix shows a the results of an analysis of one topological correlate of 
groups (k-cores). The CTF organizational structure evolved to cope with the 
demands of the process at both a role and subgroup level.  
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Figure 2. The Week 3 IWS co-location network (GT50 slice) – nodes sized by degree 

 

Figure 3. The Week 3 IWS co-location network (GT50 slice) after a simulated targeted 
attack on the most-connected 20% (by degree) – nodes sized by degree, pre-attack. 
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Role-level changes observed. 

Over the course of the experiment, cross-functional roles evolved to suit the task, 
providing evidence of the resilience of the staff in self-organizing. Network analysis 
makes these changes clear. Comparison of the actual patterns of collaboration with 
data from the ‘expected’ networks (compare with Figure 8 in the Appendix) shows the 
roles that changed in response to the demands of the event. For example, the KM 
Records Management Officer’s (RMO) role evolved to bridge between KM and EBE 
to help the over-tasked EBE Knowledge Management Officer (KMO) (Figure 4): 

 

Figure 4. Evolved cross-functional role of the KM KMO to support the EBE KMO taken 
from IWS logs from Day 11 Week3. 

The KM Training Officer was also redeployed to help the EBA KMO to help with 
standing knowledge request (KR) issues. These two roles continued to conduct their 
original roles whilst also facilitating the KMOs. The existence of these roles helped to 
facilitate information flow between functions by absorbing some of the workload from 
the KMOs in other groups. 
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Subgroup-level changes observed. 

At the subgroup level, large meeting structures proved inefficient for conducting tasks 
and enabling valuable inputs to be made by all experts present. As the functional 
group with the largest membership, this was particularly the case for EBP who 
provided a rapid response to this. During week 1, EBP broke down into two 
subgroups to conduct parallel planning and in order to conduct collaborative planning 
more efficiently, forming subgroups in EBP Breakout Room (BO) 1 and EBP BO 2. 
This is shown in Figure 5.  

 

 

Figure 5. Evolution of two subgroups over week 1 and 2 to support the efficient 
conduct of EBP tasks in EBAO, taken from a snapshot of IWS logs from Day 9, Week 2. 
The mixing of teams attending the two rooms is very visible, as is sub-group of staff 
that attended both rooms.  

These subgroups proved effective for conducting tasks across the whole 
experimental period. EBP BO 1 at the beginning of week two was used for continuing 
work on EB Plan 1A with active participation from MNIG, and Red and Green teams. 
EBP BO2 subgroup was formed to work on SITREPS in the first week and 
completion of the Action Development and Resource Matching (ADRM) in the 
second week.  

One of the aspirations of the analysis was the detection of an emergent (or shadow-) 
organization developing within the HQ in response to the experimental conditions. 
Although this has, in part, been addressed in the section on bottom-up reorganization 
above, an exploratory analysis was conducted to see if an organizational structure 
could be inferred from patterns of association in IWS rooms using the Week 3 data.  
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The patterns of association were used as an index of the similarity of each pair of 
nodes from the network, and Johnson’s hierarchical clustering procedure (Borgatti et 
al, 2002) was used to generate a representation of the clusters to which each actor 
belonged. This analysis often generates highly complicated representations: a 
simplified tree-map was used to make these sub-groups comprehensible. Figure 7 in 
the Appendix shows the results of this analysis represented as a tree-map13, 
although it is a reflection of the degree of cross-group working that this is still a highly 
complicated structure, with many logons that seem to be out of place with regard to 
their formal group affiliation. The map is included as it may be useful in determining 
alternative structures to the one used in the experiment, as a basis for future 
development and experimentation. 

Results of homophily analysis (within- vs. without-group communication) 
The results of the analysis (see Tables 4-5 in the Appendix for information sharing tie 
densities for within and between-groups) show that all but EBP have significantly 
stronger within-group ties than between-group ties (p-value = .000014 across all 
weeks). This indicates that in these groups, individuals conducted significantly more 
localised information sharing within their own function.  Although EBP was found to 
have moderately strong within-group information sharing ties in all weeks (0.078; 
0.089; 0.095) this was not significantly different from those between EBP and the 
other groups in weeks 1, 2 or 3 (p-value = .5928; .6460; and .7994 respectively). 
EBP was also found to have stronger information ties with the Command Group and 
EBA consistently across all experimental weeks. However, EBP had fewer 
information ties with the KS/KM/KBD group than any other E-Function (tie density of 
0.020; 0.023; 0.033 in weeks 1, 2, and 3 respectively). The significant between-group 
information sharing relationships are identified in Table 2, below. 

 

WEEK 1 P-Value WEEK 2 P-Value WEEK 3 P-Value 

CG EBA 0.0392 CG MNIG 0.0058 CG EBE 0.0268 

EBE CG 0.0308 MNIG CG 0.0136 CG EBA 0.0284 

      CG MNIG 0.0284 

      MNIG CG 0.0126 

Table 2. Significant between-group information sharing ties across all experimental 
weeks. 

Across both weeks 2 and 3, the CG and MNIG displayed strong reciprocal 
information ties. However, the results did not show any significantly strong 
information sharing ties between the MNIG and any other functional group. This has 
implications for an expected organizational structure that emphasises inter-agency 
communication, required to support EBAO. 

                                                 
13 Tree-maps are representations of tree-structured data (such as file structure) as if viewed ‘from the 
ground’. Actors who commonly associated together are located together within sub-groups, which are 
themselves contained by larger groups. 
14 ‘P’ stands for probability and measures how likely that any observed difference between groups is due 
to chance. P can take any value between 0 and 1. The closer the value is to 0, the more unlikely the 
observed difference is due to chance.  
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Correlation of awareness ties with Function. 

A similar pattern of within- and between-group ties was also found through 
correlation analysis between the ‘Awareness of Roles & Responsibilities’ network 
and the ‘function’ attribute data. Tie density values for within and between groups is 
shown in Tables 4-5 in the Appendix.  

In weeks 1 and 2, a significantly greater level of awareness of others’ roles and 
responsibilities was found within the CG (p-value = .0002; .0000 respectively), EBE 
(p-value = .0000 for both weeks), EBA (p-value = .0000 for both weeks), KS/KM/KBD 
(p-value = .0000 for both weeks), MNIG (p-value = .0000 for both weeks), and the 
Components (p-value = .0000 for both weeks).  In week 3 however, only the CG 
reported stronger within-group awareness ties (tie density = 0.850; p-value = .0300). 
All other groups reported greater awareness of the roles and responsibilities of those 
in other groups to themselves. Table 3 below shows the significant between-group 
awareness ties for weeks 1, 2 and 3. 

 

WEEK 1 P-Value WEEK 2 P-Value WEEK 3 P-Value 

EBE CG 0.0092 EBE CG 0.0000 CG EBP 0.0300 

EBA  CG 0.0010 EBE EBA 0.0412 CG EBE 0.0300 

EBA MNIG 0.0274 EBE MNIG 0.0042 CG EBA 0.0300 

MNIG CG 0.0000 MNIG CG 0.0000 CG KS/KM 0.0300 

Comp CG 0.0038 Comp CG 0.0008 CG MNIG 0.0300 

      CG Comp 0.0300 

      EBP CG 0.0300 

      EBE CG 0.0300 

      EBA CG 0.0300 

      KS/KM CG 0.0300 

      MNIG CG 0.0300 

      Comp CG 0.0300 

Table 3. Significant between-group awareness ties across all experimental weeks. 

Although density of information sharing ties reported by members of EBP did not 
significantly differ across within- and between-groups, they did report across all 
weeks a higher level of awareness of the roles and responsibilities of the CG (tie 
density = 0.086; 0.081; 0.135 respectively) and the least awareness of the roles and 
responsibilities of those in KS/KM (tie density = 0.014; 0.014; 0.018 respectively).  

Effects of distribution on information sharing and on awareness of roles and 
responsibilities. 

Co-location was not found to have a positive significant effect on information sharing 
tie density across any of the experimental weeks for any of the groups (p-value = 
0.9996). The MNIG however displayed a slightly stronger tendency for co-located 
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information sharing within their own group across all weeks, although this was again 
not found to be statistically significant (p-value = 0.5584; 0.5814; 0.6538 
respectively).  Co-location was also not found to be a positive significant driving 
factor in reported awareness of others roles and responsibilities across any of the 
experimental weeks (p-value = 0.9996). Again, the MNIG were found to have a 
slightly greater awareness of the roles of responsibilities of other MNIG members that 
were co-located at the same location, although this was found only to be statistically 
significant in experimental week 1 (p-value = 0.02088; 0.5010; 0.5066 respectively 
for weeks 1, 2 and 3).   

Conclusions  

In the context of this experiment, social network analysis techniques delivered results 
that were verified by subject-matter experts, for example in identifying role changes 
that had independently been described by players. They also delivered results that 
would not have been apparent at the level of the individual participant, such as an 
unexpected level of robustness to simulated threats, and an apparent success in 
overcoming some of the limitations of physical distribution through the use of virtual 
co-location technologies.  

The identification of a bimodal network in the Week 3 IWS data was a particularly 
surprising discovery, given the expectation that evidence of a scale-free network 
would be found. It is particularly interesting as some artificial networks with bimodal 
degree distributions have shown a level of robustness superior to all other network 
types. This robustness has been seen in response not only to single insults of 
targeted attacks and random failures, but also to combinations of a single attack 
followed by a single failure (Tanizawa, 2005).  

This prediction of improved robustness was confirmed by the results of the simulated 
attacks. Both of the IWS networks performed better than would be expected of a 
scale-free network – to the targeted attack in particular. Further work is required to 
identify the precise source of this robustness, but it is likely that redundancy in the 
internally well-connected EBP group was one source, combined with the existence of 
links between non-EBP groups. All the results (including eigenvector centrality 
measures not reported here) point to the EBP team as being central to the 
performance of the headquarters throughout the experiment. It is significant that this 
team were unusual in showing no significant preference for sharing information within 
the team rather than within the larger headquarters. This might have been expected 
to be a vulnerable source of network connectivity in the targeted attack scenario. It 
seems that the homophily shown by other teams was not so extreme as to render 
them disconnected when the removal of the EBP team was simulated. 

Further work would also identify whether targeting by measures other than degree 
(such as eigenvector centrality, as an indicator of an actor’s influence) would 
generate the same robustness result. Work by Goh et al (2002) suggests that it may 
be possible to classify networks universally using the exponent of the distribution of 
betweenness centrality scores instead of degree centrality. In the future, it might be 
useful to develop a corpus of results from analyses of this type on military and 
civilian15 collaboration networks with which new networks could be compared. 

                                                 
15 QinetiQ has already performed analyses of this type on electronic logs of its own corporate activity, 
with promising results (unpublished, as yet). 
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The organizational structure was under-specified before the experiment, but the 
headquarters showed evidence of functional robustness in that low-level structures 
emerged over the course of play that enabled the effective conduct of the process. 
This was in part due to adaptation by individuals in response to the demands of the 
new process. Network analysis was effective in identifying these changes, but failed 
to provide an adequate visualization of the analysis of emergent structure at higher 
levels of organization. Developing techniques for discovering and displaying 
emergent structure is now a key research area for the team, and it is intended that 
the same dataset will be used to test any new developments16. 

Initial indications are that these techniques have uncovered unexpected properties in 
the organizational structure of a military headquarters. There is fertile ground here for 
further work observing real military groups and testing hypotheses, specifically on 
adaptations to random failure and targeted attack. The collection of a corpus of such 
data would provide a valuable resource with which to address significant research 
problems, such as the diagnosis of large-scale enterprise properties (robustness, 
resilience) and modelling the dynamics of organizational networks under stress. 
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APPENDIX – Social Network Analysis diagrams 

 

Figure 6. Analysis of subgroups in the expected meeting attendance network structure based on a classification of k-cores to which players belonged 
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Figure 7. A tree-map of the results of Johnson's hierarchical clustering procedure applied to the IWS Week 3 data: the diagram 
shows staff (by logon) clustered by amount of time spent virtually co-located. 
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Figure 8. Expected interactions based on participation in the EBO process steps showing no pre-defined requirement for direct co-
ordination between the KM Training Officer and the EBA Knowledge Management Officer (coloured yellow); the KM Assistant Knowledge 

Request Officer. 
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WEEK 1 
 CG EBP EBE EBA KS/KM MNIG Components 
CG 0.667 0.095 0.159 0.198 0.136 0.155 0.160 
EBP 0.117 0.078 0.064 0.088 0.020 0.037 0.041 
EBE 0.197 0.061 0.359 0.111 0.051 0.088 0.069 
EBA 0.146 0.091 0.134 0.654 0.111 0.138 0.106 
KS/KM 0.110 0.042 0.054 0.114 0.230 0.034 0.010 
MNIG 0.155 0.033 0.110 0.134 0.031 0.588 0.027 
Components 0.123 0.045 0.065 0.100 0.008 0.019 0.189 

WEEK 2 
 CG EBP EBE EBA KS/KM MNIG Components 
CG 0.567 0.126 0.189 0.177 0.068 0.298 0.167 
EBP 0.099 0.089 0.071 0.095 0.023 0.042 0.039 
EBE 0.144 0.081 0.392 0.119 0.060 0.120 0.093 
EBA 0.125 0.100 0.125 0.592 0.118 0.134 0.104 
KS/KM 0.076 0.029 0.074 0.114 0.296 0.034 0.013 
MNIG 0.250 0.041 0.120 0.143 0.029 0.863 0.028 
Components 0.167 0.061 0.114 0.119 0.030 0.060 0.203 

WEEK 3 
 CG EBP EBE EBA KS/KM MNIG Components
CG 0.833 0.180 0.265 0.271 0.129 0.357 0.210 
EBP 0.180 0.095 0.086 0.108 0.033 0.077 0.058 
EBE 0.212 0.097 0.463 0.148 0.058 0.097 0.106 
EBA 0.177 0.110 0.145 0.658 0.121 0.165 0.108 
KS/KM 0.140 0.063 0.099 0.141 0.319 0.062 0.046 
MNIG 0.286 0.124 0.094 0.183 0.054 0.863 0.063 
Components 0.180 0.062 0.099 0.124 0.025 0.060 0.246 
Table 4. Structural blockmodel of differences in group tie density for information sharing. 
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WEEK 1 
 CG EBP EBE EBA KS/KM MNIG Components 
CG 0.467 0.063 0.061 0.083 0.045 0.083 0.060 
EBP 0.086 0.051 0.026 0.019 0.014 0.017 0.022 
EBE 0.167 0.052 0.271 0.063 0.038 0.091 0.054 
EBA 0.229 0.084 0.102 0.521 0.097 0.134 0.086 
KS/KM 0.110 0.028 0.032 0.036 0.208 0.026 0.003 
MNIG 0.381 0.031 0.039 0.054 0.013 0.549 0.019 
Components 0.153 0.032 0.050 0.038 0.012 0.033 0.157 

WEEK 2 
 CG EBP EBE EBA KS/KM MNIG Components 
CG 0.600 0.086 0.129 0.115 0.053 0.190 0.105 
EBP 0.081 0.068 0.041 0.020 0.014 0.031 0.033 
EBE 0.348 0.140 0.392 0.153 0.099 0.198 0.119 
EBA 0.219 0.100 0.122 0.575 0.101 0.161 0.107 
KS/KM 0.148 0.036 0.055 0.065 0.242 0.055 0.013 
MNIG 0.405 0.050 0.058 0.080 0.018 0.698 0.024 
Components 0.242 0.055 0.075 0.063 0.018 0.049 0.204 

WEEK 3 
 CG EBP EBE EBA KS/KM MNIG Components
CG 0.850 0.130 0.155 0.122 0.064 0.171 0.104 
EBP 0.135 0.061 0.041 0.022 0.018 0.044 0.030 
EBE 0.391 0.079 0.370 0.063 0.043 0.091 0.075 
EBA 0.275 0.105 0.119 0.521 0.092 0.152 0.101 
KS/KM 0.177 0.051 0.071 0.072 0.252 0.070 0.034 
MNIG 0.557 0.093 0.107 0.107 0.034 0.604 0.039 
Components 0.308 0.069 0.081 0.068 0,024 0.054 0.215 
Table 5. Structural blockmodels of differences in group tie density for awareness of roles & responsibilities  

 


