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Abstract. In contemporary multi-tiered command structures, we expect the individual federated 
systems to have local jurisdiction and autonomy of decision-making, i.e. as in the case of future 
unmanned vehicles. This allows a distributed command structure that is vastly more scalable than 
traditional centralized structures. However, as the individual federated systems make decisions 
pertinent to their situations; we need to ensure that the overall mission is satisfied. 

A mechanism allowing the federated systems to achieve their goals individually, while satisfying the 
global mission, is desirable. An approach to achieving this solution state uses techniques from the field 
of economic game theory.  We present a generalized optimization framework for distributed command 
and control that can be applied to several domains, such as unmanned vehicle control, incident 
command or network traffic algorithms. 

Our framework is based on commercially available multi agent systems. We have built upon our 
previously reported work[5, 22, 23] on route optimizations and airspace sector design in an air traffic 
control network, by including the goals of interested entities, thus maximizing the “payoff” to each 
agent. The work reported herein will be used as the basis for command and control tasks where rapid 
solving of large-scale optimization problems is needed, e.g. for flow management in air transportation, 
coordination between unmanned vehicles, and mission aware networks and protocols. 

1  Introduction 

 Distributed control is a process of 
hierarchical decomposition where the 
mission is defined at the global level, and the 
sub-goals are flowed down for execution. 
The command authority is normally top-
down. The control or manipulation of 
resources to effect a desired state can be 
distributed via many topologies. For 
example, in the case of a robotic mission 
where there are many groups of autonomous 
unmanned vehicles that converge towards a 
target to achieve an end, each group has its own command and control structure, as shown in fig 
1. Within the group, an agent (or vehicle) assumes leadership. Each of the agents must 
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Figure 1 Multiple groups of unmanned autonomous vehicles 
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communicate and collaborate to achieve the group’s objective(s). However, each agent is also 
autonomous, and may have its own goals and constraints. How can it achieve its goals and still 
contribute to the overall objective of the group? Further, how do the various groups contribute to 
the goals of the mission in a dynamic and rapidly changing environment? We are employing 
game theoretic concepts to facilitate distributed command and control in these dynamic 
environments. 

We have developed a generalized optimization framework based on game theoretic concepts, 
and a prototype application in the air traffic management domain that uses them. Our general 
framework, known as the Global Optimizer and Local Strategizer (GOALS), can be applied to 
any number of command and control domains where optimization is desired, for example, in 
resource management algorithms. The purpose of optimizing local goals is to achieve the optimal 
global solution by attempting to come as close as possible to locally optimal solutions for all 
involved agents. 

GOALS features interested agents or actors, which naturally have certain local goals. These 
local goals are expressed in terms of graph theory, specifically in the form of shortest path or 
maximum flow problems. In addition, other types of local goals may be implemented within the 
framework. The goals are represented as weighted graphs.  

As a prototype application of the GOALS framework, we have developed a Java 
implementation of a small, well-defined flow management problem in the air traffic management 
domain. This because the various interests of each of the agents (aircraft, controllers, airports, 
airlines) were understood. The optimal solution to flow management was compared against the 
output of the GOALS framework. Further discussion of our prototype is found in section 4 of this 
paper.  Also, an we have previously published an expanded version of this work [5] which briefly 
discusses additional technical considerations.  The GOALS framework is designed to be scalable, 
and applicable to many distributed command and control domains. 

2  Overview of the GOALS Framework 

Each agent in the GOALS framework solves its goals locally. Since these goals are represented 
as weighted graphs, we employ Dijkstra’s algorithm for shortest path optimizations, and/or the 
Ford-Fulkerson method for maximum flow optimizations[6]. Once a locally optimal solution has 
been found, the resources needed to implement this solution are determined, and the agent then 
attempts to obtain them within a marketplace. A hierarchical structure of marketplaces can be 
implemented, or, for smaller domains, these can be global.  

Agents may have conflicting goals, and to have each agent attempt to obtain the resources 
necessary for its own locally optimal solution without coordination would then result in chaos. 
Therefore, a negotiation method which allows “conflicts” between agents to be resolved in a 
manner that is beneficial to all is a necessity. Rosenschein and Zlotkin[21] suggest using game 
theoretical methods for such negotiation, as today’s computers are completely rational and 
emotionless. Our agents negotiate in the global space for a solution which may not be locally 
optimal for the agent, but is instead globally optimal. Each agent bids within a game theoretical 
market. 

The local agent attempts to obtain the needed resources in a marketplace, using methods from 
game theory such as market mechanism auctions[8, 19]. If the resources necessary for a local 
agent’s optimal solution are not available, the agent will try for the next best suboptimal solution, 
and so on until the necessary resources have been acquired. The resulting solution is globally 



optimal even if it is not locally optimal, as the best plausible solution for all agents, given the 
necessary interactions in the global space, has been selected. Within a marketplace, each agent 
exercises its own strategies. These strategies are based on game theoretical concepts. 

In our prototype air traffic management application, there is one global marketplace. This 
marketplace operates using a a standard English auction mechanism (highest bid wins). The 
general framework allows any type of market to be used. For example, it is also possible to use a 
second-price auction mechanism, such as Vickrey-Clarke-Groves (VCG) auctions [18]. Our 
framework also allows for parallel markets to operate simultaneously. We require market schema 
which operate in real time, are fault-tolerant, and can be distributed. The use of VCG auction 
schema fulfill these required qualities, however, time and budgetary constraints prevented us 
from implementing such a schema in our prototype.  

 
The GOALS framework is 

general enough to allow any 
type of market to be 
implemented and easily 
interfaced with our agents. 
Figure 2 shows a UML model 
of our market architecture. Any 
type of market can inherit from 
our Market class. A market is 
effectively a forum where 
collector agents (“buyers”) 
negotiate with distributor 
agents (“sellers”) for available 
resources. In our application, 
we have modeled aircraft as 
collector agents, and centers 
(controllers) as distributor 
agents. 

One problem with using a 
standard English auction 
mechanism is that overly 
“wealthy” agents can starve out 

other agents, denying needed resources. In certain cases, this is a highly undesirable situation, 
and may even be unacceptable. However, in second-price auctions, the highest bidder wins, but 
pays the second highest price. In this manner, second-price auction mechanisms, such as VCG 
auctions, ensure fairness and honesty in the marketplace, because no agent is tempted to be 
greedy and bid more for a resource than it is actually worth. 

Figure 2 UML Model of the Market class. 

 
One implementation of VCG auction mechanisms which we considered was a Marbles 

system[8]. The main issue with the pure Marbles implementation is that Marbles strategies have a 
concept of an agent who gives up in bidding for a resource (“altruistically commit suicide by 
permanently withdrawing, …possibly help[ing] others succeed[8]”). For some applications of our 
framework, most notably in air traffic management applications, “giving up” is simply not an 
option. Our resources in this particular domain represent routes to fly. An aircraft in flight cannot 
give up on obtaining a path and hover in its current position. In such a case, aircraft and center 



agents (controllers) can negotiate amongst each other rather than each having a self-centered 
bidding strategy.  The use of a double-heuristic bidding strategy ensures that resources are won 
using either by finding a dominant strategy or by finding a Nash equilibrium[3] to the normal-
form game represented by the auction[19]. This process yields a globally optimal solution in 
which no agent can do better without starving out other agents. 

It is anticipated that our agents will have some combination of goals, therefore a formula for 
edge weights must be determined which considers the importance of each goal. By finding the 
optimal solution with these weights in place, we have thus accounted for the differing 
importances of each local goal. Each agent ranks the importance of its local goals. This ranking 
leads to a clear definition of the utility of a particular solution within the domain space. 
Therefore, the agent can create a function by which it determines the weights involved in its own 
local graph representation of the operating environment. 

Weights can be determined using a single goal or by combining multiple goals. In this way, 
multiple local goals can be optimized simultaneously. This becomes important if an agent cannot 
acquire resources for an optimal solution and must fall back to a suboptimal solution. Many goals 
may be optimized simultaneously and any may be selected during the market phase. Weights 
might also be determined in relation to global efficiency so that “greedy” agents will find a 
globally optimal solution by performing their normal local optimization tasks[10]. This, however, 
may not be possible in a very large environment. 

3  Types of Agents 

Within the GOALS framework, we allow parallel markets. Also, there may be several 
thousand agents or more in the domain. It is therefore not practical for any one agent to know 
everything about the state of the world. In fact, this is not even desirable – an agent representing 
an aircraft flying from Boston to Chicago need not know about air traffic conditions near Los 
Angeles, for example. However, these conditions may indirectly affect the global state and 
prevent a locally optimal solution from being globally optimal. 

The idea of using intelligent autonomous agents in an air traffic management system is not 
new. Ljungberg and Lucas[17] used Belief-Desire-Intention (BDI) agents[20] in their prior work 
on the OASIS air traffic management system in Australia. Two other intelligent agent types 
approaches we considered include Partially Observable Markov Decision Processes 
(POMDPs)[15] and Distributed Constraint Optimization (DCO)[16]. A more detailed description 
of the agent types we considered for our prototype can be found in our previously published 
work[5] on the GOALS framework. 

Distributed Constraint Optimization (DCO) is similar to the approach we chose for our agents. 
Each agent is given a different overlapping subproblem. Agents using DCO first find a locally 
optimal solution to their assigned subproblem. Then, they must interact with other agents to find 
a globally optimal solution. We chose this method for our agents because we needed an agent 
which would be able to learn optimal strategies in the marketplace. The global solutions found 
would therefore become better with time. In future work, we plan to combine DCO with BDI 
behaviors, so that agents would learn over time optimal marketplace strategies. 



3.1  Existing Baseline Agent Frameworks 

Several standard agent frameworks environments currently exist which would allow our 
GOALS framework to interoperate with other systems. Among the agent frameworks we have 
investigated are IBM’s Agent Building and Learning Environment (ABLE)[2], the Java Agent 
Development Framework (JADE)[1], Cougaar[11], and Cybele/Cybele Pro. ABLE, JADE, and 
Cougaar are all available in the public domain. Additionally, the Foundation for Intelligent 
Physical Agents (FIPA) has published a standard[9] by which agents from different frameworks 
can communicate with each other.  

Cybele / Cybele Pro is used as a basis for Raytheon’s Airspace Concepts Evaluation System 
(ACES). We plan to interface our optimization framework and air traffic management application 
into ACES for further evaluation on larger data sets. In the course of this work, we plan to 
implement agents in both ABLE and Cybele. 

We selected Cybele because of its use in ACES. Additionally, we chose ABLE and JADE as 
further Java based implementations because they are well-known and FIPA-compliant. We 
considered Cougaar, which has been used by the U.S. Defense Advanced Research Projects 
Agency (DARPA), but because it is not FIPA-compliant, so compatibility with systems using 
other types of agents could not be guaranteed, we have no plans for its implementation.  

4  Applicable Command and Control Domains 

The GOALS framework can be applied to various command and control domains where 
distributed, dynamic control is required.  For example, swarming behaviors of large numbers of  
agents may need to be controlled.  In a situation where many Unmanned Aerial Vehicles (UAVs) 
and/or Unmanned Ground Vehicles (UGVs) are working together as a pack or squadron.  Each 
vehicle is set up to follow a lead vehicle, however, the lead vehicle might be destroyed or 
otherwise rendered inoperable.  In such a situation, individual UAVs/UGVs need to be 
autonomous to a certain degree.  They will need to negotiate a new lead vehicle and devise new 
plans.  GOALS can be used as a tool to facilitate such negotiations. 

Unified Incident Command is another situation where the GOALS framework is useful.  
Emergency and first responder personnel need to be mobilized effectively and efficiently in any 
large-scale public emergency, such as a terrorist attack, or natural disaster.  GOALS can aid in 
quickly dispatching medical, fire, or law enforcement personnel  to the areas where they will be 
most effective. 

In addition to physical resources, software and/or network resources can also be managed by 
GOALS.  GOALS can assist in mission-aware bandwith provisioning, software resource 
management, service management, or network flow management.  The U.S. Department of 
Defense (DoD)’s Global Information Grid (GIG) will facilitate access to large quantities of 
information at high bandwidth.  Mobile Ad-hoc Network (MANET) services will be 
implemented on top of the GIG.  These services will need to be able to effectively manage their 
data traffic to and from the GIG.  Connections are transient, and a framework such as GOALS 
will be needed in order to use the connections that are strongest, as well as to route data traffic 
effectively.   



5  Implementation of the Prototype 

Our air traffic management application and our optimization framework are both implemented 
in Java. Since our approach is graph based, we needed a COTS graph library. We used selected 
the jGraphT libraries[14], which are available in the public domain. We chose jGraphT mainly 
because it allowed for rapid implementation. Most graph structures we needed were already 
implemented in jGraphT, and jGraphT also included an implementation of Dijkstra’s Algorithm 
for shortest paths. We have implemented the Ford-Fulkerson Method for maximum flow 
problems, as it was not included in the jGraphT libraries. 

Each agent models its problem space as a graph. Air traffic management problems can be 
easily modeled within this space. We model any airport, navigational fix, intersection, or 
navigational aid (such as a VOR1 ) as a node. Airway sections can then be represented as edges 
between these nodes. Edge weights depend on the particular local goal desired. For example, if 
an aircraft’s local goal is to minimize fuel usage, edge weights could represent the estimated 
amount of fuel used by traversing that edge. The weights could also represent the physical 
distance between nodes.  

 

Fig. 3. An aircraft agent interacts with the market in an attempt to obtain all the resources needed for its optimal solution, but may 
win “useless” resources dependent on resources it does not win.  In the upper graph, an aircraft agent flying from Boston (BOS) to 
Chicago (ORD) first discovers its shortest path to be through Philadelphia (PHL) and Cleveland (CLE).  In the middle graph, it 
does not win the resource representing the path from Philadelphia (PHL) to Cleveland (CLE), so it tries for a new routing through 
Pittsburgh (PIT).  In the bottom graph, the resource from Cleveland (CLE) to Chicago (ORD) is no longer needed, so the aircraft 
agent must find some way to dispense with it. 

Once the locally optimal solution is determined, and required resources are assessed, “bidding” 
on these resources within a game theoretical market can commence. Centers are considered to be 
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distributor agents (“sellers”), which make paths available in the market. Collector agents 
(“buyers”) represent aircraft, and bid on the resources being offered by the distributor. 

One possible market implementation is based on the Java Auction Simulator API (JASA)[1]. 
JASA implements VCG auctions as well as other types of auctions. Each agent bids on each 
resource it needs, simultaneously. The highest bid wins the resource, but the amount paid for the 
resource is the amount of the second highest bid (or 0, if there were no other bids). This method 
ensures honesty among agents, as no agent has an incentive to bid an amount greater than the 
resource’s domain value. 

Some agents can be both collectors and distributors, for example, if a resource is won by an 
aircraft agent that later decides the resource is not needed. This determination may come about 
because the need for the resource may depend on winning other resources – if an auction is not 
won, the aircraft may be “stuck” with a resource it does not need, and will therefore have to 
obtain the resources for an alternate solution. Figure 2 illustrates this situation. 

Upon completion of negotiations, the market notifies the participating agents of the results of 
negotiation, including what resources were transferred and at what cost. The temporal nature of 
resources becomes important here, both in terms of cost and resource gain. For our air traffic 
management application, we define a resource as the right to fly on a given segment of airway 
starting at a given time. In the situation described by Figure 3, the aircraft agent may become a 
distributor agent. It distributes the resource corresponding to the right to fly from Cleveland to 
Chicago at the designated time. 

In any case, if an agent fails to acquire a resource which is needed for its optimal local 
solution, it becomes necessary to fall back onto a suboptimal local solution. This is accomplished 
simply by creating a new local goal for the agent, using the same graph but different weights and 
finding the optimal solution corresponding to the new graph. Any solution in the new graph is 
also a feasible solution in the old graph. In fact, the optimal solutions to many local goals are 
determined simultaneously during the local optimization phase. This way, no additional 
computation time is wasted during the market phase if the agent must select a suboptimal 
solution. 

6  Analysis, Conclusions, and Future Work 

We have developed and introduced a general framework for agent-based distributed 
optimization that is very flexible. The software developer can use our framework to quickly 
experiment with different types of markets, different types of agents and agent behaviors, and 
different types of agent goals. Agent goals do not even have to be formulated as graph theoretic 
problems. 

As a proof of concept for our optimization framework, we implemented a small air traffic 
management simulation. Nodes in the local goal graph represented either airports or transition 
points between center control. Aircraft agents were simulated, with goals of going from each 
airport to each of the other airports. Edge weights represented the physical distance between 
nodes (which was determined arbitrarily for this example). Each airport node was given a 
capacity, so that center agents could solve their maximum flow goals. 

The air traffic management application we have developed is intended as a proof of concept 
only. Time and budgetary constraints did not permit us to develop this application fully. Future 
work will include expanding this application, and testing different agent behaviors and markets. 



We have begun mapping this framework to other domains, such as packet routing in a network, 
or the deployment of first responders in a disaster situation. 

In the future, we plan to add machine learning techniques to our system, most notably in 
bidding strategies. Collector agents will learn what bids are optimal, and situations a resource is 
likely to be won. Also, collectors may learn how to adjust weights in local goal graphs to arrive at 
feasible suboptimal solutions. This will likely include the incorporation of BDI agents and graph 
weighting schemes as described in prior sections. We will possibly investigate agents that learn 
by using genetic algorithms[7]. Other work in this area[4, 12, 24] indicates that machine learning 
techniques can be incorporated in negotiation mechanisms.  Our future work will also include 
applying the GOALS framework to the command and control domains introduced in section 4 of 
this paper.  Specifically, we intend to study the potential use of the GOALS framework in 
network centric environments, such as planning disaster management and relief operations, 
where large-scale data availability and distribution, as well as rapid logistical operations, are 
required. 
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