
11th ICCRTS
Coalition Command and Control in the Networked Era

A Distributed Collaboration Architecture for Global Optimization1

Thomas Castelli, Joshua Lee, and Waseem Naqvi

{Thomas_J_Castelli, leejm, Waseem_Naqvi}@raytheon.com

Raytheon Company, Network Centric Systems
1001 Boston Post Road,

Marlborough, MA 01752, USA

Abstract. In contemporary multi-tiered command structures, we expect the individual federated
systems to have local jurisdiction and autonomy of decision-making, i.e. as in the case of future
unmanned vehicles. This allows a distributed command structure that is vastly more scalable than
traditional centralized structures. However, as the individual federated systems make decisions
pertinent to their situations; we need to ensure that the overall mission is satisfied.

A mechanism allowing the federated systems to achieve their goals individually, while satisfying the
global mission, is desirable. An approach to achieving this solution state uses techniques from the field
of economic game theory. We present a generalized optimization framework for distributed command
and control that can be applied to several domains, such as unmanned vehicle control, incident
command or network traffic algorithms.

Our framework is based on commercially available multi agent systems. We have built upon our
previously reported work[5, 22, 23] on route optimizations and airspace sector design in an air traffic
control network, by including the goals of interested entities, thus maximizing the “payoff” to each
agent. The work reported herein will be used as the basis for command and control tasks where rapid
solving of large-scale optimization problems is needed, e.g. for flow management in air transportation,
coordination between unmanned vehicles, and mission aware networks and protocols.

1 Introduction

 Distributed control is a process of
hierarchical decomposition where the
mission is defined at the global level, and the
sub-goals are flowed down for execution.
The command authority is normally top-
down. The control or manipulation of
resources to effect a desired state can be
distributed via many topologies. For
example, in the case of a robotic mission
where there are many groups of autonomous
unmanned vehicles that converge towards a
target to achieve an end, each group has its own command and control structure, as shown in fig
1. Within the group, an agent (or vehicle) assumes leadership. Each of the agents must

Lead

Figure 1 Multiple groups of unmanned autonomous vehicles

1 Approved for public release through Raytheon Export Control, #TD-06-0011

communicate and collaborate to achieve the group’s objective(s). However, each agent is also
autonomous, and may have its own goals and constraints. How can it achieve its goals and still
contribute to the overall objective of the group? Further, how do the various groups contribute to
the goals of the mission in a dynamic and rapidly changing environment? We are employing
game theoretic concepts to facilitate distributed command and control in these dynamic
environments.

We have developed a generalized optimization framework based on game theoretic concepts,
and a prototype application in the air traffic management domain that uses them. Our general
framework, known as the Global Optimizer and Local Strategizer (GOALS), can be applied to
any number of command and control domains where optimization is desired, for example, in
resource management algorithms. The purpose of optimizing local goals is to achieve the optimal
global solution by attempting to come as close as possible to locally optimal solutions for all
involved agents.

GOALS features interested agents or actors, which naturally have certain local goals. These
local goals are expressed in terms of graph theory, specifically in the form of shortest path or
maximum flow problems. In addition, other types of local goals may be implemented within the
framework. The goals are represented as weighted graphs.

As a prototype application of the GOALS framework, we have developed a Java
implementation of a small, well-defined flow management problem in the air traffic management
domain. This because the various interests of each of the agents (aircraft, controllers, airports,
airlines) were understood. The optimal solution to flow management was compared against the
output of the GOALS framework. Further discussion of our prototype is found in section 4 of this
paper. Also, an we have previously published an expanded version of this work [5] which briefly
discusses additional technical considerations. The GOALS framework is designed to be scalable,
and applicable to many distributed command and control domains.

2 Overview of the GOALS Framework

Each agent in the GOALS framework solves its goals locally. Since these goals are represented
as weighted graphs, we employ Dijkstra’s algorithm for shortest path optimizations, and/or the
Ford-Fulkerson method for maximum flow optimizations[6]. Once a locally optimal solution has
been found, the resources needed to implement this solution are determined, and the agent then
attempts to obtain them within a marketplace. A hierarchical structure of marketplaces can be
implemented, or, for smaller domains, these can be global.

Agents may have conflicting goals, and to have each agent attempt to obtain the resources
necessary for its own locally optimal solution without coordination would then result in chaos.
Therefore, a negotiation method which allows “conflicts” between agents to be resolved in a
manner that is beneficial to all is a necessity. Rosenschein and Zlotkin[21] suggest using game
theoretical methods for such negotiation, as today’s computers are completely rational and
emotionless. Our agents negotiate in the global space for a solution which may not be locally
optimal for the agent, but is instead globally optimal. Each agent bids within a game theoretical
market.

The local agent attempts to obtain the needed resources in a marketplace, using methods from
game theory such as market mechanism auctions[8, 19]. If the resources necessary for a local
agent’s optimal solution are not available, the agent will try for the next best suboptimal solution,
and so on until the necessary resources have been acquired. The resulting solution is globally

optimal even if it is not locally optimal, as the best plausible solution for all agents, given the
necessary interactions in the global space, has been selected. Within a marketplace, each agent
exercises its own strategies. These strategies are based on game theoretical concepts.

In our prototype air traffic management application, there is one global marketplace. This
marketplace operates using a a standard English auction mechanism (highest bid wins). The
general framework allows any type of market to be used. For example, it is also possible to use a
second-price auction mechanism, such as Vickrey-Clarke-Groves (VCG) auctions [18]. Our
framework also allows for parallel markets to operate simultaneously. We require market schema
which operate in real time, are fault-tolerant, and can be distributed. The use of VCG auction
schema fulfill these required qualities, however, time and budgetary constraints prevented us
from implementing such a schema in our prototype.

The GOALS framework is

general enough to allow any
type of market to be
implemented and easily
interfaced with our agents.
Figure 2 shows a UML model
of our market architecture. Any
type of market can inherit from
our Market class. A market is
effectively a forum where
collector agents (“buyers”)
negotiate with distributor
agents (“sellers”) for available
resources. In our application,
we have modeled aircraft as
collector agents, and centers
(controllers) as distributor
agents.

One problem with using a
standard English auction
mechanism is that overly
“wealthy” agents can starve out

other agents, denying needed resources. In certain cases, this is a highly undesirable situation,
and may even be unacceptable. However, in second-price auctions, the highest bidder wins, but
pays the second highest price. In this manner, second-price auction mechanisms, such as VCG
auctions, ensure fairness and honesty in the marketplace, because no agent is tempted to be
greedy and bid more for a resource than it is actually worth.

Figure 2 UML Model of the Market class.

One implementation of VCG auction mechanisms which we considered was a Marbles

system[8]. The main issue with the pure Marbles implementation is that Marbles strategies have a
concept of an agent who gives up in bidding for a resource (“altruistically commit suicide by
permanently withdrawing, …possibly help[ing] others succeed[8]”). For some applications of our
framework, most notably in air traffic management applications, “giving up” is simply not an
option. Our resources in this particular domain represent routes to fly. An aircraft in flight cannot
give up on obtaining a path and hover in its current position. In such a case, aircraft and center

agents (controllers) can negotiate amongst each other rather than each having a self-centered
bidding strategy. The use of a double-heuristic bidding strategy ensures that resources are won
using either by finding a dominant strategy or by finding a Nash equilibrium[3] to the normal-
form game represented by the auction[19]. This process yields a globally optimal solution in
which no agent can do better without starving out other agents.

It is anticipated that our agents will have some combination of goals, therefore a formula for
edge weights must be determined which considers the importance of each goal. By finding the
optimal solution with these weights in place, we have thus accounted for the differing
importances of each local goal. Each agent ranks the importance of its local goals. This ranking
leads to a clear definition of the utility of a particular solution within the domain space.
Therefore, the agent can create a function by which it determines the weights involved in its own
local graph representation of the operating environment.

Weights can be determined using a single goal or by combining multiple goals. In this way,
multiple local goals can be optimized simultaneously. This becomes important if an agent cannot
acquire resources for an optimal solution and must fall back to a suboptimal solution. Many goals
may be optimized simultaneously and any may be selected during the market phase. Weights
might also be determined in relation to global efficiency so that “greedy” agents will find a
globally optimal solution by performing their normal local optimization tasks[10]. This, however,
may not be possible in a very large environment.

3 Types of Agents

Within the GOALS framework, we allow parallel markets. Also, there may be several
thousand agents or more in the domain. It is therefore not practical for any one agent to know
everything about the state of the world. In fact, this is not even desirable – an agent representing
an aircraft flying from Boston to Chicago need not know about air traffic conditions near Los
Angeles, for example. However, these conditions may indirectly affect the global state and
prevent a locally optimal solution from being globally optimal.

The idea of using intelligent autonomous agents in an air traffic management system is not
new. Ljungberg and Lucas[17] used Belief-Desire-Intention (BDI) agents[20] in their prior work
on the OASIS air traffic management system in Australia. Two other intelligent agent types
approaches we considered include Partially Observable Markov Decision Processes
(POMDPs)[15] and Distributed Constraint Optimization (DCO)[16]. A more detailed description
of the agent types we considered for our prototype can be found in our previously published
work[5] on the GOALS framework.

Distributed Constraint Optimization (DCO) is similar to the approach we chose for our agents.
Each agent is given a different overlapping subproblem. Agents using DCO first find a locally
optimal solution to their assigned subproblem. Then, they must interact with other agents to find
a globally optimal solution. We chose this method for our agents because we needed an agent
which would be able to learn optimal strategies in the marketplace. The global solutions found
would therefore become better with time. In future work, we plan to combine DCO with BDI
behaviors, so that agents would learn over time optimal marketplace strategies.

3.1 Existing Baseline Agent Frameworks

Several standard agent frameworks environments currently exist which would allow our
GOALS framework to interoperate with other systems. Among the agent frameworks we have
investigated are IBM’s Agent Building and Learning Environment (ABLE)[2], the Java Agent
Development Framework (JADE)[1], Cougaar[11], and Cybele/Cybele Pro. ABLE, JADE, and
Cougaar are all available in the public domain. Additionally, the Foundation for Intelligent
Physical Agents (FIPA) has published a standard[9] by which agents from different frameworks
can communicate with each other.

Cybele / Cybele Pro is used as a basis for Raytheon’s Airspace Concepts Evaluation System
(ACES). We plan to interface our optimization framework and air traffic management application
into ACES for further evaluation on larger data sets. In the course of this work, we plan to
implement agents in both ABLE and Cybele.

We selected Cybele because of its use in ACES. Additionally, we chose ABLE and JADE as
further Java based implementations because they are well-known and FIPA-compliant. We
considered Cougaar, which has been used by the U.S. Defense Advanced Research Projects
Agency (DARPA), but because it is not FIPA-compliant, so compatibility with systems using
other types of agents could not be guaranteed, we have no plans for its implementation.

4 Applicable Command and Control Domains

The GOALS framework can be applied to various command and control domains where
distributed, dynamic control is required. For example, swarming behaviors of large numbers of
agents may need to be controlled. In a situation where many Unmanned Aerial Vehicles (UAVs)
and/or Unmanned Ground Vehicles (UGVs) are working together as a pack or squadron. Each
vehicle is set up to follow a lead vehicle, however, the lead vehicle might be destroyed or
otherwise rendered inoperable. In such a situation, individual UAVs/UGVs need to be
autonomous to a certain degree. They will need to negotiate a new lead vehicle and devise new
plans. GOALS can be used as a tool to facilitate such negotiations.

Unified Incident Command is another situation where the GOALS framework is useful.
Emergency and first responder personnel need to be mobilized effectively and efficiently in any
large-scale public emergency, such as a terrorist attack, or natural disaster. GOALS can aid in
quickly dispatching medical, fire, or law enforcement personnel to the areas where they will be
most effective.

In addition to physical resources, software and/or network resources can also be managed by
GOALS. GOALS can assist in mission-aware bandwith provisioning, software resource
management, service management, or network flow management. The U.S. Department of
Defense (DoD)’s Global Information Grid (GIG) will facilitate access to large quantities of
information at high bandwidth. Mobile Ad-hoc Network (MANET) services will be
implemented on top of the GIG. These services will need to be able to effectively manage their
data traffic to and from the GIG. Connections are transient, and a framework such as GOALS
will be needed in order to use the connections that are strongest, as well as to route data traffic
effectively.

5 Implementation of the Prototype

Our air traffic management application and our optimization framework are both implemented
in Java. Since our approach is graph based, we needed a COTS graph library. We used selected
the jGraphT libraries[14], which are available in the public domain. We chose jGraphT mainly
because it allowed for rapid implementation. Most graph structures we needed were already
implemented in jGraphT, and jGraphT also included an implementation of Dijkstra’s Algorithm
for shortest paths. We have implemented the Ford-Fulkerson Method for maximum flow
problems, as it was not included in the jGraphT libraries.

Each agent models its problem space as a graph. Air traffic management problems can be
easily modeled within this space. We model any airport, navigational fix, intersection, or
navigational aid (such as a VOR1) as a node. Airway sections can then be represented as edges
between these nodes. Edge weights depend on the particular local goal desired. For example, if
an aircraft’s local goal is to minimize fuel usage, edge weights could represent the estimated
amount of fuel used by traversing that edge. The weights could also represent the physical
distance between nodes.

Fig. 3. An aircraft agent interacts with the market in an attempt to obtain all the resources needed for its optimal solution, but may
win “useless” resources dependent on resources it does not win. In the upper graph, an aircraft agent flying from Boston (BOS) to
Chicago (ORD) first discovers its shortest path to be through Philadelphia (PHL) and Cleveland (CLE). In the middle graph, it
does not win the resource representing the path from Philadelphia (PHL) to Cleveland (CLE), so it tries for a new routing through
Pittsburgh (PIT). In the bottom graph, the resource from Cleveland (CLE) to Chicago (ORD) is no longer needed, so the aircraft
agent must find some way to dispense with it.

Once the locally optimal solution is determined, and required resources are assessed, “bidding”
on these resources within a game theoretical market can commence. Centers are considered to be

1VHF Omnidirectional Range, a common type of flight navigational aid.

distributor agents (“sellers”), which make paths available in the market. Collector agents
(“buyers”) represent aircraft, and bid on the resources being offered by the distributor.

One possible market implementation is based on the Java Auction Simulator API (JASA)[1].
JASA implements VCG auctions as well as other types of auctions. Each agent bids on each
resource it needs, simultaneously. The highest bid wins the resource, but the amount paid for the
resource is the amount of the second highest bid (or 0, if there were no other bids). This method
ensures honesty among agents, as no agent has an incentive to bid an amount greater than the
resource’s domain value.

Some agents can be both collectors and distributors, for example, if a resource is won by an
aircraft agent that later decides the resource is not needed. This determination may come about
because the need for the resource may depend on winning other resources – if an auction is not
won, the aircraft may be “stuck” with a resource it does not need, and will therefore have to
obtain the resources for an alternate solution. Figure 2 illustrates this situation.

Upon completion of negotiations, the market notifies the participating agents of the results of
negotiation, including what resources were transferred and at what cost. The temporal nature of
resources becomes important here, both in terms of cost and resource gain. For our air traffic
management application, we define a resource as the right to fly on a given segment of airway
starting at a given time. In the situation described by Figure 3, the aircraft agent may become a
distributor agent. It distributes the resource corresponding to the right to fly from Cleveland to
Chicago at the designated time.

In any case, if an agent fails to acquire a resource which is needed for its optimal local
solution, it becomes necessary to fall back onto a suboptimal local solution. This is accomplished
simply by creating a new local goal for the agent, using the same graph but different weights and
finding the optimal solution corresponding to the new graph. Any solution in the new graph is
also a feasible solution in the old graph. In fact, the optimal solutions to many local goals are
determined simultaneously during the local optimization phase. This way, no additional
computation time is wasted during the market phase if the agent must select a suboptimal
solution.

6 Analysis, Conclusions, and Future Work

We have developed and introduced a general framework for agent-based distributed
optimization that is very flexible. The software developer can use our framework to quickly
experiment with different types of markets, different types of agents and agent behaviors, and
different types of agent goals. Agent goals do not even have to be formulated as graph theoretic
problems.

As a proof of concept for our optimization framework, we implemented a small air traffic
management simulation. Nodes in the local goal graph represented either airports or transition
points between center control. Aircraft agents were simulated, with goals of going from each
airport to each of the other airports. Edge weights represented the physical distance between
nodes (which was determined arbitrarily for this example). Each airport node was given a
capacity, so that center agents could solve their maximum flow goals.

The air traffic management application we have developed is intended as a proof of concept
only. Time and budgetary constraints did not permit us to develop this application fully. Future
work will include expanding this application, and testing different agent behaviors and markets.

We have begun mapping this framework to other domains, such as packet routing in a network,
or the deployment of first responders in a disaster situation.

In the future, we plan to add machine learning techniques to our system, most notably in
bidding strategies. Collector agents will learn what bids are optimal, and situations a resource is
likely to be won. Also, collectors may learn how to adjust weights in local goal graphs to arrive at
feasible suboptimal solutions. This will likely include the incorporation of BDI agents and graph
weighting schemes as described in prior sections. We will possibly investigate agents that learn
by using genetic algorithms[7]. Other work in this area[4, 12, 24] indicates that machine learning
techniques can be incorporated in negotiation mechanisms. Our future work will also include
applying the GOALS framework to the command and control domains introduced in section 4 of
this paper. Specifically, we intend to study the potential use of the GOALS framework in
network centric environments, such as planning disaster management and relief operations,
where large-scale data availability and distribution, as well as rapid logistical operations, are
required.

References

1 Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. “JADE: A White Paper.” In exp.
Volume 3, No. 3. September, 2003. Pp. 6–19. http://exp.telecomitalialab.com

2 Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Millis, W. N. III, and Diao, Y. “ABLE: A
Toolkit for Building Multiagent Autonomic Systems.” In IBM Systems Journal, Volume
41, No. 3. September, 2002. Pp. 350–371.

3 Binmore, K. Fun and Games. D.C. Heath. 1991.
4 Carmel, D. “Model-based Learning of Interaction Strategies in Multi-agent Systems.”

Ph.D. Thesis, Technion – Israel Institute of Technology. November 1997.
5 Castelli, T., Lee, J., and Naqvi, W. “An Applied Optimization Framework for Distributed

Air Transportation Environments.” In Proceedings of the 17th International Conference
on Database and Expert Systems Applications. Krakow, Poland, 4–8 September 2006.

6 Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. Cambridge, MA:
MIT Press. 1998. Section VI.

7 Cliff, D. “Evolution of Market Mechanism Through a Continuous Space of Auction-
Types II: Two-Sided Auction Mechanisms Evolve in Response to Market Shocks.”
Hewlett-Packard Techincal Report #HPL-2002-128. Bristol, England. May 8, 2002.

8 Frank, M., Bugacov, A., Chen, J., Dakin, G., Szekely, P., and Neches, B. “The Marbles
Manifesto: A Definition and Comparison of Cooperative Negotiation Schemes for
Distributed Resource Allocation.” In Proceedings of the AAAI Symposium on
Negotiation Methods for Autonomous Cooperative Systems, AAAI, 2001.

9 Foundation for Intelligent Physical Agents, Specifications website.
http://www.fipa.org/specifications/index.html

10 Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., and Stentz, A. “Market-
Based Multi-Robot Planning in a Distributed Layered Architecture.” In Multi-Robot
Systems: From Swarms to Intelligent Automata: Proceedings from the 2003 International
Workshop on Multi-Robot Systems, Volume 2. Kluwer Academic Publishers. 2003. Pp.
27–38.

11 Helsinger, A., Thome, M., and Wright, T. “Cougaar: A Scalable, Distributed Multi-Agent
Architecture.” In Proceedings of the 2004 IEEE Conference on Systems, Man, and
Cybernetics. The Hague, The Netherlands. October, 2004.

12 Huang, P. and Sycara, K. “Multi-agent Learning in Extensive Games with Complete
Information.” In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems. Pp. 701–708. Melbourne, Australia. 2003.

13 JASA library. http://www.csc.liv.ac.uk/~sphelps/jasa/
14 jGraphT library. http://jgrapht.sourceforge.net
15 Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. “Planning and Acting in Partially

Observable Stochastic Domains.” Technical Report, Brown University. January, 1997.
16 Liu, J., and Sycara, K. “Exploiting Problem Structure for Distributed Constraint

Optimization.” In Proceedings of the First International Conference on Multi-Agent
Systems. Pp. 246–253. San Francisco, 1995.

17 Ljungberg, M. and Lucas, A. “The OASIS Air Traffic Management System.” In
Proceedings of the Second Pacific Rim International Conference on Artificial
Intelligence. Seoul, Korea. 1992.

18 Parkes, D. C., and Shneidman, J. “Distributed Implementations of Vickrey-Clarke-Groves
Mechanisms.” In Proceedings of the 2004 International Conference on Autonomous
Agents and Multi-Agent Systems. New York. July 2004.

19 Phelps, S., Parsons, S., and McBurney, P. “An Evolutionary Game-Theoretic Comparison
of Two Double-Auction Market Designs.” Proceedings of the Agent Mediated Electronic
Commerce Workshop VI, New York. July 2004.

20 Rao, A. S., and Georgeff, M. P. “BDI Agents: From Theory to Practice.” In Proceedings
of the First International Conference on Multi-Agent Systems. San Francisco. July, 1995.

21 Rosenschein, J. S., and Zlotkin, G. Rules of Encounter. Cambridge, MA: MIT Press.
1994.

22 Trott, G., Naqvi, W., and Wood, R. “Negotiating Rights of Passage.” Presented at
Raytheon’s 3rd Systems/Software Engineering Symposium. March 2004.

23 Trott, G., and Naqvi, W. “Flow Management Resolution Advisor using Intelligent
Interoperable Agents.” 2003 End-Year Report for Raytheon IDEA Grant. Unpublished
work.

24 Zeng, D. and Sycara, K. “Bayesian Learning in Negotiation.” In Adaptation, Coevolution
and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium,
pages 99–104, Menlo Park,CA, March 1996. AAAI Press. AAAI Technical Report #SS-
96-01.

