

11TH ICCRTS

COALITION COMMAND AND CONTROL IN THE NETWORKED ERA

The Gladiator Multi-Agent Peer-to-Peer Architecture
Information Management, Agent Technology, Network-centric Computing

Robert M. Patton and Thomas E. Potok
Robert M. Patton (POC)

Oak Ridge National Laboratory
P.O. Box 2008 MS 6085

Oak Ridge, TN 37831-6085
865-576-3832

pattonrm@ornl.gov

The Gladiator Multi-agent Peer-to-Peer Architecture

Robert M. Patton and Thomas E. Potok
Oak Ridge National Laboratory
{pattonrm, potokte}@ornl.gov

Abstract

The advancement of Internet technology brings an
overwhelming deluge of information. However, before
this information can be effectively used, it must first be
collected, filtered, processed, analyzed, and finally,
presented in a meaningful manner. One such
challenge is that of detecting duplicate documents.
With the advent of peer-to-peer (P2P) computing,
information sources or repositories are no longer
centralized. Consequently, this further exasperates the
challenges of detecting duplicate documents. We
propose a multi-agent peer-to-peer (P2P) architecture
that is based on a gladiator metaphor to address this
challenge. This architecture allows for a divide and
conquer approach for complex information retrieval
problems in dynamic P2P networks.

1. Introduction

The advancement of Internet technology brings an
overwhelming deluge of information. Before this
information can be utilized as knowledge to the
consumer, it must first be collected, filtered, processed,
analyzed, and finally, presented in a meaningful
manner. Each of these processes presents its own
unique set of challenges. One such challenge is that of
detecting duplicate documents. Duplicate documents
present both advantages and disadvantages. As an
advantage, they ensure availability and redundancy of
data. As a disadvantage, they require more storage
space and increase the time required for collecting,
filtering, and analysis. For the purposes of our work,
duplicate documents represent both an obstacle to
reducing the amount of time needed for analysis of
information and a growing challenge as the Internet
continues to expand. According to [1], between 20%
and 30% of 150 million web pages downloaded in a
week are duplicates or near duplicates. Furthermore,
with the advent of peer-to-peer (P2P) computing,
information sources or repositories are no longer
centralized. According to [2], it was observed at one
time, that up to 42% of data on Gnutella [3] is

duplicate data. Consequently, P2P networks can
further exasperate the challenges of detecting duplicate
documents.

This work focuses on the use of agent technology to
address the challenges of detecting duplicate
documents in a P2P environment. Agent technology is
an evolving paradigm that strives to create software
that can mimic certain human behavior. Agents are
novel in several aspects: 1) they use a peer-to-peer
communication and control topology, that is, one agent
can communicate with one or several other agents, not
just to a client or a server as in traditional technology;
2) agents can send message to each other through a
blackboard, which allows encapsulated and
asynchronous communication. In other words, a
general message can be posted on a blackboard where
any agent can read it regardless of how long is has
been posted; 3) the messages that are sent among the
agents are asynchronous and use a higher-level agent
communication language rather than method or
function calls. Agent technology is an ideal match for
the peer-to-peer computing environment. Yet as the
number of agents within a system increases, there are a
number of issues that arise. A peer-to-peer messaging
scheme can be quickly disabled by a few large
broadcast messages or an overloaded central
blackboard. Messaging over long distances or over
limited bandwidth can easily negate any advantage that
additional CPU cycles may bring. Based on our work
with large, distributed multi-agent systems [4], we
propose a multi-agent P2P architecture that is based on
a gladiator metaphor. In this system, each agent is a
gladiator who does battle with other gladiators in a
stadium. The stadium forms a well-connected sub-
community on a given peer. These sub-communities
can work on entire problems, or on a subset of larger
problems. Once the gladiator agents have solved a
problem, the “fittest” gladiator agents are sent to
another stadium sub-community for additional
battle/analysis. By doing this, it provides cross-
fertilization of information from on stadium to another
stadium. In addition, this architecture allows for a

divide and conquer approach for complex problems in
potentially unstable networks.

The following sections describe background
research that lead to this architecture and a description
of the architecture on a text analysis application that
identifies duplicate documents within a large document
set.

2. Background

As noted by [5] [6] [7] [8] [9] [10] [11] [12] [13]
[14] [15] [16], there are a variety of ways to defined
the meaning of “duplicate”. Intuitively, “duplicate”
would imply an identical document. However, some
documents may share content, but not formatting.
Other documents may share formatting but not content.
Still, others may be a combination. Ultimately,
“duplicate” refers to the similarity of information that
is conveyed in the document. Generally, most
techniques for identifying duplicates are statistical
based, and use the term frequency -- inverse document
frequency (TF/IDF) [17] approach to create a vector-
space model (VSM) and generate those statistics.

In the worst case, a document set of size N would
require O(N2) to perform an exhaustive search of
duplicate documents. According to [8], average
performance can be O(N), a significant improvement
over the worst case. However, even this approach
becomes prohibitive when applied to a multi-million
document dataset such as described in [1] [14].
Furthermore, most of these works implicitly assume a
centralized data repository. Finally, of the work
performed thus far, most of it does not address the
challenges posed by identifying duplicates amid a
massive amount of documents stored in a P2P
environment.

The focus of this work is to explore the use of agent
technology for handling massive amounts of data amid
a P2P environment and identifying duplicate
documents. This approach was briefly mentioned in
[10]. Little work, if any, has been performed
specifically in this area. However, according to [18]
[19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
[30], intelligent software agents show tremendous
promise in a P2P environment and processing
distributed data. Of these, [30] is most relevant to the
work described here. Their work focuses on the use of
cooperative agents that work together to search for
documents based on a user’s query. Given a
dynamically changing dataset and a user query, the
agents work to find documents matching the query.
The matching is based on a selected reference point
that is either close to or far from the centroid of the

dataset. If the query is within a defined distance to this
reference point, then a match to the query is said to be
found. Since duplicate document detection is a
specialized form of searching in certain respects, the
use of a centroid would potentially skew the results
and create false positives or negatives. Furthermore,
the approach of [30] implicitly depends on the high
availability of the distributed information sources.
This is not guaranteed in a P2P environment.

One of the primary characteristics of the duplicate
document detection problem is that it is nearly
embarrassingly parallel in nature. While some
communication and synchronization may need to occur
in order to be efficient and accurate, essentially, the
processing of document A is not dependent on the
processing of document B. Therefore, parallelization
of the processing is easily achieved. In addition, the
data sets to be analyzed are often located in distributed
repositories. Again, this lends itself well to
parallelization and the use of P2P networks.

Another characteristic of the duplicate document
detection problem is that it is a searching problem with
a very large search space. The large search space is a
result of the need to compare M terms between two
documents. For N documents, this creates a very high
dimensional search space. One technique for
searching very large search spaces is a genetic
algorithm (GA) [32] [33]. This algorithm is based on
the theory of evolution and survival of the fittest, and
has been shown to be effective in a variety of
applications [34]. A variation of the GA is the coarse-
grained parallel GA (CGPGA) [35] [36] [37]. This
variation takes a large population of individuals and
divides them into sub-populations located on “islands”.
For each island, a sequential (or simple) GA is
performed on the individuals. At specified intervals,
individuals from each island migrate to other islands.
Then, on each island, the sequential GA continues to
operate with the newly migrated individuals. The
advantage of this algorithm is that it is ideal for
searching problems that are nearly embarrassingly
parallel in nature. The “island” concept allows the GA
to search different areas of the search space in parallel.
The migration aspect helps keep the GA from
converging on a sub-optimal solution, which allows
the GA to continue searching. Finally, this variation of
the GA is ideal for use in heterogeneous P2P networks.

Unfortunately, there is a variety of difficulties in
developing a GA. First, there is the issue of encoding
the solution domain into a “genetic code”. Next, there
is the issue of crossover and mutation rates. It is often
necessary to “tweak” these values in order to optimize
the GA and create a fine balance between convergence
and divergence. Unfortunately, there is no clear

method for doing this. Finally, the GA is specifically
designed to find a single optimal solution. While it is
possible to use niching techniques [38] [39] to find
multiple solutions, this does not dramatically help for
this particular problem domain.

3. Gladiator Architecture

In light of the characteristics of the duplicate
document problem domain, related research work, and
the island model concepts of the CGPGA, the
Gladiator architecture was developed. This
architecture is composed of three distinct entities as
shown in Figure 1. The Stadium represents a
particular computing resource available on the P2P
network. An Organizer agent is associated with each
Stadium. It is the Organizer’s responsibility to ensure
that the Stadium’s resources are utilized effectively,
and to ensure that new fights are created between
Gladiators. Gladiator agents represent documents and
are constantly searching to engage in new fights with
other Gladiators. For each document in a dataset, there
is one Gladiator agent. A comparison of VSMs
between two documents constitutes a fight between
two Gladiators.

Figure 1. Gladiator architecture

4.1 Stadium

In a P2P environment, there are a variety of

computers available, each with its own unique
characteristics, capacity, and performance. In the
Gladiator architecture, the Stadium represents a
computer on the P2P network. This is analogous to the
“island” in the CGPGA. In addition, the Stadium
represents the document dataset that is available on the
computer, if any. If there is a document dataset, the
Stadium will create new Gladiator agents for each
document in its dataset. If there is no document
dataset, then the Stadium acts as an overflow stadium
to help balance the workload from other Stadiums. In

this way, the architecture is adaptable to both
centralized and distributed datasets.

4.2 Organizer

For each Stadium, there is a corresponding

Organizer agent. This agent oversees the fights (i.e.,
document comparisons) that occur between the
Gladiators. The goal of this agent is to ensure that that
the resources of the Stadium are not overwhelmed by a
large number of Gladiators and that fights continue to
occur. Concerning resources, the Stadium is capable
of processing only a limited number of Gladiators.
When the capacity of the Stadium is reached, the
Organizer begins coordinating and sending any new
Gladiators to other Stadiums for battle. In this way, a
Stadium with a large number of documents can
distribute the processing. As Gladiators are introduced
into the Stadium, the Organizer begins scheduling
fights. Initially, the number of fights gradually
increases. However, a match between two Gladiators
is only scheduled one time and is not duplicated.
Therefore, the number of fights reaches a saturation
point as shown in Figure 2. At this point, no new
fights are schedule since each Gladiator has fought
against every other Gladiator in the Stadium.

Stadium

Organizer

Gladiator 1

Gladiator 2

Gladiator N

Gladiator …

Fights vs Time

Time

N
um

be
r

of
 F

ig
ht

s

Figure 2. Number of Fights reaches saturation

This saturation point is analogous to the premature

convergence of an island population in a CGPGA [36].
To alleviate this issue, once the saturation point has
been reached, the Organizer then begins to coordinate
and send a percentage of the Gladiators in the Stadium
to other Stadiums on the P2P network. This is
analogous to the migration of individuals in a CGPGA
using an asynchronous island migration [36]. By
doing this, different document datasets can be
compared after each dataset has performed a
comparison of its own documents. This helps reduce

the number of comparisons to be made between
different datasets.

For the Organizer agent, there remain several
research opportunities. First, as the Stadium reaches
capacity, the Organizer would ideally route new
Gladiators to those Stadiums that were the least full.
The architecture described here would be adaptable to
a variety of load balancing algorithms. Which
algorithm would give the best performance for this
architecture remains an open question. Next, as the
Organizer begins scheduling fights, it would be ideal
to schedule only those fights that “make sense”. For
example, comparing a document concerning finances
with a document concerning soccer would probably
not be useful in detecting a duplicate. Therefore, an
initial, inexpensive comparison of documents may be
helpful in reducing the number of more expensive
comparisons while maintaining similar or identical
results. As with the load balancing algorithms, this
architecture is adaptable to any preliminary algorithm
for document comparison. Finally, as the number of
fights reaches saturation, the Organizer begins sending
a percentage of the Gladiators in the Stadium to other
Stadiums. Similar to the load balancing, there is an
open question as to which Stadiums to send the
Gladiators, which Gladiators to send, how many to
send, and when to send them. These questions are
analogous to those regarding the CGPGA and the
migration of individuals between islands. Again, a
variety of different migration policies could be used in
this architecture. A comparison of different
combinations of load balancing, fight selection, and
migration algorithms would provide valuable insight.

4.3 Gladiator

For each document in a dataset, a Gladiator agent is

created. The Gladiator agent takes its corresponding
document and creates a VSM using TF/IDF [17].
Once doing this, the Gladiator then makes a fight
request to the Organizer agent. The Organizer
responds with a list of potential opponents to fight.
Once a pair of Gladiators have been scheduled to fight,
the selected Gladiator agents then communicate
directly with each other to perform a comparison of
document VSMs. If the comparison determines that
the Gladiators are not duplicate documents, then the
match results in a stalemate. Otherwise, one gladiator
kills the other according to some selection policy.
Therefore, only those gladiators that remain alive are
deemed original and unique. Those that are dead are
duplicates. If a gladiator remains alive but reaches a
saturation point in the number of fights that it performs
(in the same way as the Organizer), then that gladiator

goes into retirement. If the document dataset is a
dynamic set in that new documents are added over a
period of time, then the retired gladiators are brought
back as new gladiators are introduced into the
Stadium, and other gladiators are killed.

For the Gladiator agent, there remain two primary
research opportunities. First, the detection of a
duplicate. The architecture described here is adaptable
to any algorithm for detection such as those described
in [5] [10] [11] [12] [13]. However, some of these
methods were designed for centralized datasets.
Therefore, a thorough comparison of these methods for
use in this architecture would provide valuable insight
into both the detection algorithm and the Gladiator
architecture. Second, the determination of which
document should be marked a duplicate. While much
work has been done in identifying duplicates, very
little work has been done to determine which of the
duplicate documents to keep or remove. Depending on
the need, there may be a variety of different selection
policies that could be used to select which duplicate to
remove. The architecture described is adaptable to any
selection policy that may need to be used.

5. Results

Preliminary results of a system built on the

gladiator architecture show very promising accuracy
and speed of duplicate document detection. A series of
experiments on a set of 1,000 documents successfully
demonstrated that the Gladiator architecture accurately
removes duplicates within a small P2P environment.
Further experimentation is required to assess fully the
performance, however, the observed speed of the
untuned Gladiator system is marginally slower than
that of a centralized system. It is expected that the
speedup of the system will improve with larger
document sets because of the communication overhead
becoming less significant in comparison to the
document processing time and the ability to parallelize
the document processing.

6. Future Work

The Gladiator architecture described here is a novel
approach to addressing the critical need of identifying
duplicate documents amid a P2P network. However,
this preliminary work paves the way for a variety of
interesting and challenging objectives. As described in
sections 4.2 and 4.3, the architecture is capable of
adapting to a broad range of algorithms for specific
needs while providing the necessary infrastructure to
operate in a P2P environment. Future work will

include the analysis and comparison of these different
algorithms within this architecture and the effect that
each one has on the results. In addition, future work
will include the comparison of this approach with
different dataset sizes and include measurements for
scalability, speed, and accuracy. Furthermore, another
area to be investigated is the communication and
migration overhead associated with a large-scale multi-
agent system and its effect on the P2P. These areas
and others will be explored further in future work with
this architecture.

7. Conclusions

There is a wealth of textual information readily
available over the Internet, however, availability and
usefulness are two separate issues. Before this
information can be truly useful, it must first be
analyzed, which is often a time consuming and
expensive operation. Much of the information that is
available on P2P networks is duplicate information.

Analyzing and organizing duplicate information is a
waste of resources. We have described a multi-agent
P2P architecture called Gladiator that allows highly
parallel detection of duplicate documents on a given
document set using a divide and conquer approach.
Preliminary results show that the architecture can
successfully find duplicates in a P2P environment, and
holds promise of doing so much faster than is being
currently performed. Future work with this
architecture will include the analysis and measurement
of several performance characteristics such as
scalability, speed, and accuracy.

8. References

[1] D. Fetterly, M. Manasse, et.al. “On the evoluation
of Clusters of Near-Duplicate Web Pages”, Proceedings of
the First Latin American Web Congress., IEEE, 2003.

[2] J. Miller, “Characterization of Data on the Gnutella
Peer to Peer Network”, First IEEE Consumer
Communications and Networking Conference, IEEE, 2004.

[3] Gnutella website: http://www.gnutella.com/

[4] J. W. Reed, T.E. Potok, et. al. “A Multi-Agent
System for Distributed Cluster Analysis”, Third
International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS '04), Edinburgh,
Scotland, May 24-25, 2004.

[5] M. Sanderson, “Duplicate detection in the Reuters
collection”, Technical Report TR-1997-5, Department of
Computing Science, University of Glasgow, 1997.

[6] Y. Zhang, J. Callan, and T. Minka. "Novelty and
redundancy detection in adaptive filtering." In Proceedings
of the Twenty Fifth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval ACM, Tampere, Finland, pp. 81-88.

[7] M. Bilenko, R. Mooney, et. al. “Adaptive Name
Matching in Information Integration”, IEEE Intelligent
Systems, Volume 18 , Issue 5 , Sep/Oct 2003, pp.16 – 23.

[8] A. Chowdhury, O. Frieder, et. al. “Collection
statistics for Fast Duplicate Document Detection”, ACM
Transactions on Information Systems (TOIS) Volume 20 ,
Issue 2, April 2002, pp. 171 – 191.

[9] J. W. Cooper, A. R. Coden, and E. W. Brown,
“Detecting Similar Documents using Salient Terms”,
Proceedings of the Eleventh International Conference on
Information and Knowledge Management, ACM, McLean,
Virginia, USA, 2002, pp. 245 – 251.

[10] K. Monostori, A. Zaslavsky, H. Schmidt,
“Document Overlap Detection System for Distributed Digital
Libraries”, Proceedings of the Fifth ACM Conference on
Digital Libraries, ACM, San Antonio, Texas, United States,
2000, pp. 226 – 227.

[11] T. W. Yan and H. Garcia-Molina, “Duplicate
Removal in Information Dissemination”, Proceedings of
21th International Conference on Very Large Data Bases
(VLDB ’95), Morgan Kaufmann Publishers, Inc., San
Francisco, Ca., USA, September 1995, pp 66--77.

[12] A. Broder, M. Charikar, et. al., “Min-wise
Independent Permutations”, Proceedings of the 30'th Symp.
on the Th1eory of Computing, ACM Press, New York, 1998,
pp. 327--336.

[13] D. P. Lopresti, “Models and Algorithms for
Duplicate Document Detection”, Proceedings of the Fifth
International Conference on Document Analysis and
Recognition, (ICDAR '99), IEEE, Sept. 1999, pp. 297 – 300.

[14] J. G. Conrad, X. S. Guo, and C. P. Schriber,
“Online duplicate document detection: signature reliability in
a dynamic retrieval environment”, Proceedings of the
Twelfth International Conference on Information and
Knowledge Management, ACM, New Orleans, LA, USA,
2003, pp. 443 – 452.

[15] N. Bourbakis, W. Meng, et. al., “Removal of
Redundancy in Documents Retrieved from Different
Resources”, Proceedings. Tenth IEEE International
Conference on Tools with Artificial Intelligence, IEEE,
Taipei Taiwan, Nov. 1998, pp. 112 – 119.

[16] D. V. Khmelev, and W. J. Teahan, “A Repetition
Based Measure for Verification of Text Collections and for
Text Categorization”, Proceedings of the 26th Annual

International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, ACM, Toronto,
Canada, 2003, pp. 104 – 110.

[17] G. Salton and M.J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, New York, 1983.

[18] P. Dasgupta, “Agent Based Peer to Peer Systems”,
The 45th Midwest Symposium on Circuits and Systems
(MWSCAS-2002), IEEE, August 2002, pp. 663-666.

[19] O. Babaoglu, H. Meling, and A. Montresor,
“Anthill: a framework for the development of agent-based
peer-to-peer systems”, Proceedings. 22nd International
Conference on Distributed Computing Systems, IEEE, July
2002, pp. 15 – 22.

[20] Tie-Yan Li; Zhi-Gang Zhao; Si-Zhen You, “A-
peer: an agent platform integrating peer-to-peer network”,
Proceedings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid, (CCGrid 2003)., May
2003, pp. 614 – 617.

[21] D. Lubke, and J. M. Gomez, “Applications for
Mobile Agents in Peer-to-Peer-Networks”, Proceedings of
the 11th IEEE International Conference and Workshop on
the Engineering of Computer-Based Systems (ECBS’04),
IEEE, May 2004, pp. 523 – 529.

[22] E. Leontiadis, V. V. Dimakopoulos, and E. Pitoura,
“Cache Updates in a Peer-to-Peer Network of Mobile
Agents”, Proceedings of the Fourth International
Conference on Peer-to-Peer Computing (P2P’04), IEEE,
August 2004, pp. 10 – 17.

[23] J. Arcangeli, S. Leriche, and M. Pantel,
“Development of Flexible Peer-To-Peer Information Systems
using Adaptable Mobile Agents”, Proceedings of the 15th
International Workshop on Database and Expert Systems
Applications (DEXA’04), IEEE, September 2004, pp. 549 –
553.

[24] B. J. Overeinder, E. Posthumus, and F. M.T.
Brazier, “Integrating Peer-to-Peer Networking and
Computing in the AgentScape Framework”, Proceedings of
the Second International Conference on Peer-to-Peer
Computing (P2P’02), IEEE, September 2002, pp. 96 – 103.

[25] R. Y. Chen and B. Yeager, “Java Mobile Agents
on Project JXTA Peer-to-Peer Platform”, Proceedings of the
36th Hawaii International Conference on System Sciences
(HICSS’03), IEEE, January 2003, pp. 282 – 291.

[26] M. Bisignano, G. D. Modica, and O. Tomarchio,
“Mobile agent location management: a comparison between
CORBA and P2P based systems”, Proceedings of the Eighth
IEEE International Symposium on Computers and
Communication (ISCC’03), IEEE, June/July 2003, pp. 1029
– 1034.

[27] A. Mihalyi, “Optimizing peer-to-peer networks
using mobile agents”, Proceedings of the 46th International
Symposium on Electronics in Marine (ELMAR 2004), IEEE,
June 2004, pp.194 – 199.

[28] A. J. Chakravarti, G. Baumgartner, and M. Lauria,
“The Organic Grid: Self-Organizing Computation on a Peer-
to-Peer Network”, Proceedings of the International
Conference on Autonomic Computing (ICAC’04), IEEE, May
2004, pp. 96 – 103.

[29] V. V. Dimakopoulos and E. Pitoura, “Performance
Analysis of Distributed Search in Open Agent Systems”,
Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS’03), IEEE, April 2003.

[30] J. J. Chua, and P. E. Tischer, “Strategies for
Cooperative Search in Distributed Databases”, Proceedings
of the IEEE/WIC International Conference on Intelligent
Agent Technology (IAT’03), IEEE, October 2003, pp. 325 –
328.

[31] T. Potok, M. Elmore, et. al. “VIPAR: Advanced
Information Agents discovering knowledge in an open and
changing environment” IIIS Agent Based Computing,
Orlando, FL, USA, July 2003.

[32] J.H. Holland, Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[33] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[34] C.L. Karr and L. M. Freeman, Ed., Industrial
Applications of Genetic Algorithms. CRC Press, New York,
NY, 1999.

[35] R. Tanese, Distributed Genetic Algorithms for
Function Optimization, Ph.D. thesis, University of Michigan,
1989, Computer Science and Engineering.

[36] S.C. Lin, W.F. Punch III, and E.D. Goodman,
“Course-Grain Parallel Genetic Algorithms: Categorization
and New Approach”, Proceedings of the Sixth IEEE
Symposium on Parallel and Distributed Processing, IEEE,
1994.

[37] V. Cristea, and G. Godza, “Genetic algorithms and
intrinsic parallel characteristics”, Proceedings of the 2000
Congress on Evolutionary Computation, IEEE, 2000.

[38] S.W. Mahfoud, Niching methods for genetic
algorithms, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1995.

[39] C. Ryan, “Niche and Species Formation in Genetic
Algorithms,” Practical Handbook of Genetic Algorithms,
Applications vol. I, L. Chambers Ed. CRC Press, pp. 57-75,
1995.

	1. Introduction
	2. Background
	3. Gladiator Architecture
	4.1 Stadium
	4.2 Organizer
	4.3 Gladiator

	5. Results
	6. Future Work
	7. Conclusions
	8. References

