
 Unclassified

 Unclassified
 1

11th ICCRTS
COALITION COMMAND AND CONTROL IN THE NETWORKED ERA

Multi-mission Prioritization Using Cost-based
Mission Scheduling

Paula Moss
Raytheon Company

Fort Wayne, IN-46808

Bruce Baker
Raytheon Company

Fort Wayne, IN-46808

Dr. Deepak Khosla, HRL
HRL Laboratories, LLC

Malibu, CA-90265

Alex Dow, HRL
HRL Laboratories, LLC

Malibu, CA-90265

Paula Moss (Point of Contact)
Raytheon Company

Network Centric Systems
1010 Production Road

Fort Wayne, IN 46808-4106
260-429-4306/260-429-4655 (fax)

Paula_C_Moss@Raytheon.com

 Unclassified

 Unclassified
 2

1 Abstract
Multi-mission prioritization is an essential part of the modern battlespace. The

focus on joint operations and the ability to share operational data in a net-centric
environment has created a dynamic battlespace where one asset may have several
operational missions to support. Many command and control systems that are being
developed today such as DD(X), Future Combat Systems (FCS), and Distributed
Common Ground System (DCGS) are dealing with the issues of a complex and dynamic
battlespace. For example, the LHD class ship (Amphibious Assault Ship) in Figure 1
maintains satellite communications, communications with air intelligence assets such as
Unmanned Arial Vehicles (UAVs), communications with land-based Tactical Operation
Centers and other land-based assets in order to determine the tactical operations picture.
The LHD uses its onboard sensors and weapon systems to meet its operational objectives
within the scope of this picture. DD(X), the next generation destroyer for the Navy, has
the need to prioritize air, land, surface, and subsurface missions that are initiated for self-
defense, to support the battle group, or to support land-based operations. This
prioritization and scheduling of actions across warfare areas is addressed in this paper.

Figure 1: Modern Battlespace

 Unclassified

 Unclassified
 3

2 Motivation
Each branch of the military has developed unique methods for determining the priority of
the missions that they are responsible for executing. These methods work very well in a
highly structured environment with well-established command hierarchies. In a net-
centric environment, the boundaries of command and execution are becoming blurred.
The net-centric command and control hierarchy allows a single unit to support more than
command node. This requires the unit to prioritize the tasks it is to perform. When the
tasks are of a similar nature, prioritization is straightforward. When the tasks to perform
are dissimilar, prioritization becomes more complicated and new paradigms, such as cost-
based prioritization, may be needed. Additionally, when a unit is being tasked from
multiple command nodes, it is more likely that the unit will have periods where there are
not enough resources to achieve all objectives. This necessitates the incorporation of
more robust dynamic scheduling techniques. This paper addresses pairing cost-based
prioritization with a three-tiered dynamic scheduling algorithm to achieve mission
objectives in a multi-mission environment. The Mission Scheduling problem is referred
to as MS throughout the paper.

3 Resource-based Scheduling Paradigms

3.1 Traditional Scheduling Algorithms
Traditional scheduling algorithms include greedy (task based algorithms) and meta-
heuristics approaches (Simulated Annealing, Tabu Search, Neural Networks, Genetic
Algorithms). The Greedy approach is the least-complex scheduling algorithm. It
schedules missions, one-at-a-time, ordered by value. Once a mission is scheduled it
cannot be moved or removed from the schedule.

Because of the inherent difficulty and large size of most real-world scheduling problems,
most research has focused on suboptimal, meta-heuristic algorithms. [Rabideau et al.,
1999] and [Dorn et al., 1996] discuss techniques for solving such difficult scheduling
problems through the processes of iterative improvement and repair. Their techniques,
like those we employ here, recognize that solutions can be found quickly by building
them in an iterative fashion. While their techniques provide a fundamental foundation for
applying methods like Genetic Algorithms (GA) and Tabu Search to automatic
scheduling problems, much of their gains are lost when applying them to a problem like
Mission Scheduling (MS), for which they were not explicitly designed. This is a
common problem in applying prior art in scheduling domains, as performance is
degraded when general methods are applied to specific problems and domain-dependant
advances do not often translate to even slightly different problems.

There has been much prior work in using GA for scheduling problems. [Shi et al., 1996]
develops a GA approach to Job Shop Scheduling problems, while [Ozdamar, 1999],
[Dorn et al., 1996], and [Shtub et al., 1996] propose GA approaches to more general
scheduling problems. Though GA is a promising technique, its incarnations in prior
work have limited applicability to MS because of fundamental differences in the
objective functions and constraints for which they were developed. There has also been

 Unclassified

 Unclassified
 4

work on scheduling with evolution programs ([Cheng and Gen, 1994], [Mesghouni et al.,
1997]), though it suffers from the same limitations as GA when applied to MS.

Simulated Annealing (SA) is a technique that we have taken advantage of and which also
appears throughout the literature. [Yamada et al., 1994] tailors SA to Job Shop
Scheduling, and [Hindsberger and Vidal, 1998] discuss its applications to Target-Radar
allocation. Job Shop Scheduling is a fundamentally different scheduling problem than
MS, and methods for solving the one don’t necessarily work well for the other.
Hindsberger and Vidal concluded that a Tabu Search algorithm worked better than SA
for their particular problem because of the limited amount of “cooling time” they could
afford to give their SA algorithm. One of our primary contributions is related to
formulating SA to fit MS such that only a small amount of “cooling time” is required.

One highly investigated aspect of scheduling is related to manufacturing problems and
supply chain management. Commercial products are available from Manugistics, Ariba,
and i2 Technologies, though these tools tend to be specifically tailored to the demands of
manufacturing industries. Major modifications would be necessary to apply these
techniques to MS and there is no proven history of these tools working on problems with
the scale of MS.

Integer programming (IP) is clearly the dominant general method for finding optimal
solutions to all sorts of difficult scheduling problems. High-quality, commercially
available solvers (such as ILOG OPL/CPLEX, Dash Optimization/XPRESS-MP, and
IBM/OSL) make IP a desirable framework for solving scheduling problems. The
problem with these solvers, even when using the best available, is that problem instances
with any interesting size cannot be solved in a reasonable about of time. Most IP solvers
rely on branch-and-bound or similar techniques that are typically exponential in the
number of variables. An instance of MS will often have millions of variables, making IP,
as well as any optimal approach, infeasible. [Billups et al., 2005] conducted a thorough
investigation of using IP techniques to solve a simpler version of MS and confirmed that
none but the simplest of problem instances can be solved optimally with IP. The scale of
MS problems is large even for suboptimal solution techniques. Though little work has
been done on MS itself, algorithms for solving related problems have been limited to
much smaller instances (e.g. 2500 timeslots in [Johnson and Antunes, 1996]).

One of the clear problems with relying on prior work for MS solvers is the difficulty with
preserving solution quality when translating the intended scheduling problem to MS. A
possible way of resolving this is to focus on a simpler version of MS that includes only
missions with a single task. This task-based scheduling has much more in common with
more general scheduling problems and should therefore have more success in utilizing
existing solution techniques. Our investigations found that while task-based techniques
are easy to implement and often more intuitive, the solutions are often very low quality.
We have found that developing techniques tailored for MS far outperform the simpler
task-based techniques.

 Unclassified

 Unclassified
 5

3.2 Contract Algorithms
An anytime algorithm is one that can run for “any” amount of time and then return some
result [Dean and Boddy, 1988; Zilberstein, 1996]. It is assumed that the longer the
amount of time the better the returned result. A contract algorithm is a specific type of
anytime algorithm where the amount of time it will be allowed to run is specified ahead
of time. Another type of anytime algorithm is an interruptible algorithm, that is, one that
can be stopped at any time during its execution and it will return a valid result.

[Russell and Zilberstein, 1991] drew a clear distinction between contract and interruptible
algorithms. They explained that a contract algorithm is typically easier to construct
because it is run with the knowledge of when it must return a result, while an
interruptible algorithm is typically more useful because it is ready to return a result at any
time. Their treatment of contract algorithms was using them as subroutines for
constructing interruptible anytime algorithms.

We should note that algorithms can be both contract and interruptible, though, depending
on the designer’s objectives, they typically work best as one or the other. Since a
contract algorithm knows how long it has to run it can structure its development of the
solution to take that into account. This extra information implies that a contract
algorithm should return a better solution than a plain interruptible algorithm run for the
same amount of time. Although, this also means that if a (interruptible) contract
algorithm is not allowed to run out its contract, its solution may be significantly worse
than the plain interruptible algorithm. We can imagine this playing out in the MS
problem, where a contract algorithm can hold off on trying to schedule some low-value
missions until the end, whereas an interruptible algorithm may want to try to schedule
those missions right away for fear of being interrupted.

The algorithm described in this paper, as is often the case with contract algorithms, is
made up of multiple components that are themselves contract algorithms. This makes
sense since we have a fixed number of tasks to schedule, we should only need to make
some fixed number of function calls to try and schedule them. In order for our algorithm
to meet its contract, it must have control over the runtime of those function calls. It is
thus up to the top-level algorithm to determine how best to divide up its allotted time
among its internal components. We refer to this meta-resource allocation problem as
time budgeting.

There has been successful prior work with greedy and GA-based approaches, though it
has been limited to simpler versions of MS. [Billups et al., 2005] developed several GA
algorithms for a satellite scheduling problem similar to MS, though it only included a
single resource (which makes IP methods much more tractable) and allowed for less
freedom in how the different tasks of a single mission can be scheduled. Similarly,
[Becker and Smith, 2000] developed an incremental approach to a problem that looks
similar to MS but is extremely domain dependant and, therefore, their positive results do
not necessarily translate to MS. Finally, we have found no prior work to similar types of
problems that have addressed the need for contract algorithms in order to meet strict
deadlines.

 Unclassified

 Unclassified
 6

4 Current State-of-the-Technology

4.1 Cost-based Scheduling
The idea of cost-based scheduling is not new. Many of the IP scheduling problems are
based on the idea of minimizing cost. The IP algorithm generates feasible solution(s) that
minimize or maximize an objective function across the entire schedule. As mentioned
previously, IP scheduling methods may not produce a solution to a complex problem
within the time constraints necessary for a military Command and Control (C2)
application operating in a dynamic battlespace.

4.2 Application of Cost-based Scheduling in Non-military Domains
Crew scheduling in the airline industry is one example of cost-based scheduling in a non-
military domain. Air New Zealand used optimization techniques to minimize cost while
ensuring that all tasks were performed. In this application, scheduling tasks that were
performed by highly trained human schedulers in days could be achieved in hours or
minutes using automated techniques. Additionally, the automated scheduling could take
more crew preferences into account during the scheduling process [Butchers, et al, 2001].

A time critical example of cost-based scheduling in a non-military domain is network
management. [Peha, 1992] discusses the use of cost-based scheduling for a high-speed
packet-based network with diverse traffic. Each packet on the network is given a priority
based on the packet’s performance objectives. In this application, the priority of the
packet may change over time as the deadline for the task approaches.

5 Cost-based Scheduling for Multi-mission Prioritization

5.1 Cost-based Scheduling Approach
The idea of cost is not new to the military. Prioritization schemes are used in combat
systems to ensure that the most important engagements take precedence over less
important engagements. Commanders routinely take into account the ramifications of
taking a particular course of action. The cost-based mission scheduling paradigm
proposed simply attempts to combine the decisions currently made by the combat system
and commander, express them in quantifiable terms, and pair that with dynamic mission
scheduling algorithms.

5.1.1 Computation of Cost
The basic survivability equation for a Navy ship is defined as follows.

Survivability = 1 – (Susceptibility * Vulnerability)

In this equation, Survivability is the ability of a system to avoid (Susceptibility) or
withstand (Vulnerability) a hostile environment and still have the ability to accomplish its
designated mission. [Motts, 1996] introduces the concept of Restoration to the equation
such that:

 Unclassified

 Unclassified
 7

Survivability = 1 – (Susceptability * Vulnerability * Restoration)

where:

Susceptibility = (Probability of attack given an encounter * Probability of hit given an encounter)

Vulnerability = Probability of kill given a hit

Restoration = Probability of restoration given a hit.

Using this equation, we extrapolate the cost associated with a mission.

Cost = (1 – Survivability) X 100

Cost is a numeric representation of the cost to the ship if the threat is realized. Cost has a
range of 0 – 100, where 0 is the best value and 100 is the worst value. Cost is only one
element of the Mission Value as described below.

Although Cost in this example is based on a ship, the idea of Cost can be applied to other
units within the C2 domain. Each of the elements of the Cost equation can be
represented as individual “algorithms” within the combat system. The level of fidelity of
these algorithms can be refined over time as more information about the unit and its
operating environment becomes available. Whether the “algorithm” is based on table
lookup information or a detailed mathematical algorithm, introducing the notion of Cost
adds value to the scheduling process. It allows the prioritization to reflect the “negative”
aspects associated with taking an action.

5.1.2 Computation of Mission Value
Three elements are used to determine the Mission Value that is used for scheduling
purposes: Cost, Time to Go (Tgo), and Threat Priority. Cost was described in Section
5.1.1. Urgency, as represented by Tgo, is the remaining time that a threat is actionable.
Threat Priority is derived for a particular warfare area. It has a range of 0 – 100, where 0
is the lowest priority and 100 is the highest priority. By combining these three elements,
Mission Value spans warfare domains. For example, firing a land attack mission to
eliminate a threat has a potential consequence that the enemy could fire back at the ship.
The Mission Value takes both aspects of this into account.

In our approach, the operator would be allowed to determine the weighting that each of
these elements is given when determining the Mission Value. This would allow the
operator to determine if Cost would be considered within the scheduling process.

One factor that will need to be addressed in the future is the revisit rate for computing
Mission Value. Is computation of Mission Value once when the mission is initially
placed on the schedule sufficient, or is it necessary to recalculate the Mission Value
periodically as the Tgo decreases? Will the Mission Value change enough to justify the
resource usage and potential perturbation of the mission schedule?

 Unclassified

 Unclassified
 8

5.1.3 Mission Scheduling
The general mission scheduling problem involves building a schedule that accomplishes
some optimal set of objectives. A problem instance is made up of a set of missions that
need to be scheduled and a set of resources that can be utilized. A mission itself is made
up of a set of one or more tasks that must all be accomplished in order for the mission to
be considered a success. Each task is subject to two constraints: a resource constraint and
a temporal constraint. A task’s resource constraint specifies a subset of the system
resources that are capable of executing the task. A task’s temporal constraint specifies a
fixed time window in which the task must be executed and the amount of time for which
the task execution will occupy the assigned resource. It is assumed that a single resource
can only execute a single task at a time. Our goal is to build a schedule, which is
basically a mapping from tasks to resources and start times. A schedule thus specifies
when a task will be executed and on what resource. For a mission to be considered
“scheduled” it must have each of its tasks scheduled for execution by a valid resource
within the valid time window.

In cases with many missions (like those of interest here), it is often the case that the
problem is oversubscribed, i.e. it is not possible to successfully schedule all missions. In
this case each mission has a reward value that is earned only if the mission is successfully
scheduled, and the objective of a scheduler is to find the schedule that earns the highest
total reward.

Finally, the particular variant of mission scheduling problems we are dealing with here
come with a time goal that specifies the maximum amount of time that can be spent
finding a solution. The goal of our scheduler is thus to find a schedule that maximizes
earned reward value within the time goal.

5.2 Key Technologies
The need addressed by the algorithm we propose here is for a fast method of building
good mission schedules. Recognizing that finding a provably optimal schedule is
computationally infeasible on problems of interesting size, we have focused on local
search techniques that iteratively build a schedule with no guarantee of optimal
convergence. Although we do not require provable convergence, it is necessary that the
algorithm return better solutions the longer it is allowed to run. This provision also
ensures that the algorithm performs well with a time limit.

The scheduling techniques we have employed are inspired by the observation that, given
a partial schedule and some remaining missions to schedule, some missions and tasks will
be easier to fit into the schedule and some will be harder. An “easy” task is one that can
be inserted into the schedule by simply moving around some of the tasks currently in the
schedule. A “hard” task is one that requires more complex, unintuitive changes to the
schedule in order to fit it. An example of a complex change to the schedule would be to
remove some set of tasks in order to fit in some other set of tasks. This can be
particularly unintuitive because removing a single task can cause an entire mission to
become “unsuccessful” (because all of its tasks are no longer scheduled), thus any of the

 Unclassified

 Unclassified
 9

mission’s tasks that remain in the schedule are making no value contribution.
Recognizing when this can be beneficial can be difficult.

Our intuition (and experience) is that a technique that is good at scheduling the “easy”
tasks, will not be particularly good at the “hard” tasks, and vice versa. By having
techniques that can focus on a particular type of task, we can develop those techniques to
surpass the performance of a general method that tries to be good at both.

Many tasks, especially early in the process, will be easy to schedule. What we want at
this stage is a method that is aware of the schedule structure and can focus on fitting a
single given task. For this purpose we present Systematic Swapping, a method of shifting
and swapping tasks to free up adequate space to fit a given task. As the schedule fills, it
will get harder to add new tasks. At this point we need a method that will move and
remove tasks in order to make bigger changes to the schedule and thus allow many new
tasks to be inserted. For this purpose we use Simulated Annealing to randomly perturb
the schedule out of local maximums.

Figure 2 shows how our algorithm incrementally builds a valid schedule by adding
missions to the schedule, one-at-a-time, starting with the highest-valued missions. To
successfully schedule a mission, we must schedule all of its tasks. Initially we attempt to
insert each task into the schedule without moving any previously scheduled tasks. If a
task won’t immediately fit into the schedule, we then proceed with Systematic Swapping
in order to move around previously scheduled tasks to make room for the new one. If
some of the mission’s tasks were unable to be scheduled by Systematic Swapping, we
then call on the Simulated Annealing routine to try and improve the schedule by adding
some of unscheduled tasks from this and other missions that failed to be scheduled.

 Unclassified

 Unclassified
 10

Figure 2: Flow-chart for top-level hybrid algorithm.

In order to find the best possible schedule in the allotted time, the algorithm budgets the
time that can be spent by any particular call to Systematic Swapping and Simulated
Annealing. The amount of time budgeted to any particular call is determined by the time
remaining, the potential benefit of the call, and some other statistics about the time
required to complete some fundamental scheduling procedures.

Get highest valued
mission not yet

considered

Get one of mission’s
tasks not yet
considered

Allocate time budget

Systematic
Swapping

Time
left?

Tasks
left?

Success
?

Get N most recent
missions with failed

tasks

Allocate time budget

Time
left?

Simulated
Annealing

Improve-
ment?

Keep new schedule

Any tasks
failed?

YES

YES

YES YES

YES

YES

NO

NO

NO

NO

NO

NO

Easy Missions Hard Missions

Mission
Scheduling

Scenario

First try to
simply insert

 Unclassified

 Unclassified
 11

Systematic Swapping

The purpose of the Systematic Swapping algorithm is to fit a single task into the
schedule, within the budgeted time, without removing any previously scheduled task.
We avoid unscheduling any tasks because doing so would invariably cause a scheduled
mission to become unscheduled. Since we order the missions based on their reward
value, any previously scheduled missions must have a higher reward than the current one.
Therefore unscheduling one mission so as to schedule the current one will always result
in a worse schedule. It may be the case that removing a higher-valued mission allows us
to schedule multiple lower-valued missions with a greater combined value than the other,
but Systematic Swapping is limited to a local view of the schedule that only includes the
previously scheduled tasks and the single current task. It, therefore, cannot recognize
such situations. Those tradeoffs will be addressed in the Simulated Annealing part of the
algorithm.

The basic idea behind Systematic Swapping is that it initially tries to fit the task without
changing the schedule. If it is unable to do this, then, as time permits, it attempts to move
previously scheduled tasks that are in the way of the current task in order to make room
for it. The function works recursively, that is, when it tries to move a previously
scheduled task it does so with the same Systematic Swapping procedure. The result of
this is situations where it may be trying to move a task to make room for a task to make
room for a task, etc.

To keep the Systematic Swapping procedure within the given time budget, care must be
taken to divide the allotted time between the recursive calls. Often more than one task
must be moved in order to fit the new task, thus we do not want to spend our entire
budget moving a single task. We therefore employ a “ramping up” procedure that
initially budgets very little time to deeper recursive calls, but increases that budget
polynomially after each iteration of the algorithm. Further more, the rate at which the
recursive budgets increase is slower for deeper recursions. This is consistent with our
intuition that deeper recursions have less impact and should therefore have less time
spent on them.

Simulated Annealing

As mentioned earlier, one limitation of the Systematic Swapping algorithm is that it
cannot recognize situations where it may be beneficial to remove a previously scheduled
task/mission from the schedule. This algorithmic limitation translates into an upper
bound on the achievable schedule quality. In order to loosen (though not entirely
eliminate) this bound and address the stated limitation of Systematic Swapping, we use
Simulated Annealing.

Simulated Annealing is a local search method for optimization where a suboptimal
solution is randomly perturbed in each iteration. The resulting new solution is then
evaluated. If it is better than the previous then it is accepted. If it is worse than the

 Unclassified

 Unclassified
 12

previous solution then it is accepted with some probability, otherwise the solution reverts
to the previous one. As the algorithm progresses, that probability decreases, such that by
the end only improvements are accepted. By accepting a worse solution the algorithm
avoids local optima in its search for the global optimum.

The fact that Simulated Annealing will temporarily accept a worse-off solution is exactly
what allows it to avoid the mentioned limitation of Systematic Swapping. Of course it
has its own limitations, in that it cannot easily recognize when minor adjustments to the
schedule will make a task schedulable. Systematic Swapping is a focused technique for
quickly identifying these minor adjustments, while the lack of focus in Simulated
Annealing’s random perturbations is what makes it better at more complicated
adjustments.

On a call to Simulated Annealing, a list of unscheduled tasks is passed as input. These
are the unscheduled tasks of the failed missions we are trying to improve the schedule
with. The only tasks that we allow to be perturbed (moved) are those in the input and any
previously scheduled task that is currently at a location that intersects with the valid
scheduling window of an input task. That is, only those tasks that are potentially
blocking the input tasks from being scheduled can be moved. All other tasks in the
schedule will stay where they are scheduled throughout the run of Simulated Annealing.
For all tasks that can be moved, we limit the ways that it can be perturbed (that is, the
locations it can be moved to) to either locations (resource/timeslot pairs) where it can be
validly scheduled, or it can be unscheduled.

One iteration of Simulated Annealing progresses as follows:

1. a task is chosen at random from those that are allowed to be perturbed
2. if it is currently scheduled, then it is moved to one of the available locations

(chosen at random) where it can be validly scheduled, or it is removed from the
schedule

3. if it is not currently scheduled, then it is moved to one of the available locations
(chosen at random) where it can be validly scheduled

4. if the resulting schedule is an improvement, then keep it and go to the next
iteration

5. if the resulting schedule is not an improvement, then keep it with some probability
and go to the next iteration

The running time of Simulated Annealing can be strictly controlled by limiting the
number of iterations. We can do this by tracking the runtime of the algorithm and, at
each iteration, estimating the time required by a typical iteration. We can then use that
estimate to determine how many more iterations can be completed in the budgeted time.
Naturally, as the algorithm progresses, the estimate will get more accurate and the
allowed number of iterations will stabilize. One issue this raises is how to handle the
transition probability, that is, the probability that we accept a new solution that is worse
than the previous one. We want this probability to begin very high (.99) and decay
exponentially to a very small value by the final iteration (.0001). With a fixed number of

 Unclassified

 Unclassified
 13

iterations, nIters, we can do this by multiplying the probability value by a fixed delta
after each iteration, where

 nIterspfinaldelta
1

= (6)
and pfinal is the small final probability, like .0001. Since we will not initially have an
accurate estimate of the total number of iterations, we cannot set a fixed delta at the
beginning. Instead, at the end of each iteration, when we recompute nIter we also
recompute delta. The rate of our decay will change slightly throughout the run of the
algorithm, nevertheless it will closely resemble an exponential decay of a fixed delta.

5.3 Test Scenario

To evaluate the performance and quality of our algorithm we use a testing scenario where
the resources to be scheduled are individual sensors within a sensor network. In our
scenario, these networks require a 24-hour schedule with discrete timeslots of 100
milliseconds. The tasks that are to be scheduled on the sensors can range in duration
from hundreds of milliseconds to several hours. A mission is made up of from one to
three tasks, and each task can be scheduled on from one to three different sensors.
Typical requirements range from scheduling 50 to 300 missions, and thus, on average,
100 to 600 tasks.

In real life, missions come in different types, where different types of missions are made
up of tasks that require seconds, minutes, or hours to complete. Typically, all the tasks of
a single mission have durations of comparable magnitude. To simulate this in our testing
scenarios we first determine the order of magnitude of the mission’s duration, and then
randomly determine the task durations based on that magnitude. To simulate different
“types” of missions, we draw a mission’s order of magnitude from a normal distribution
centered on half the order of the entire schedule. Figure 3 shows a sample distribution of
missions by order of magnitude of duration. For the 24-hour schedule used, most
missions take on the order of minutes to complete, though some take hours or seconds.
Figure 4 demonstrates a typical testing scenario with 50 missions.

 Unclassified

 Unclassified
 14

Figure 3: Distribution of the orders of magnitude of the missions in a sample scenario.

 Unclassified

 Unclassified
 15

Comparisons with Greedy

The central motivation behind our algorithm is the real-life need to find a good schedule
in a predetermined amount of time. While an algorithm that runs “as fast as possible”
will suffice in many situations, a lack of a time goal means the algorithm may run too
long or may not take full advantage of the time that it has. One such naïve algorithm is
the Greedy approach, which simply schedules missions, one-at-a-time, ordered by value.
Once a mission is scheduled it cannot be moved or removed from the schedule. While
this algorithm will not find great schedules on hard scenarios, it will run very quickly. In
fact, with a small enough time goal, our time-budget method will produce the same
schedule that Greedy does.

We compare our algorithm with Greedy, not to show that it can produce better schedules
(which is hopefully obvious), but to give a feel for what we are buying with extra running

Figure 4: A sample scenario. An outer box denotes a mission. The inner boxes denote a
mission's tasks. A yellow (light) bar denotes a task's duration, and the green (dark) bar
denotes slack in the task's window.

 Unclassified

 Unclassified
 16

time. Table 1 shows the improvement of our algorithm’s schedules over those found by
greedy when given a time goal of one-, two-, four-, and eight-times the time required by
Greedy.

Error!
Table 1: Average improvement in percent of total mission value scheduled compared to Greedy over
50 Monte Carlo runs.

Running time
Scenario

1xGreedy 2xGreedy 4xGreedy 8xGreedy
50 missions,

2 sensors 3.2% 8.3% 11.9% 15.1%

100 missions,
3 sensors 3.7% 6.6% 11.0% 13.9%

200 missions,
5 sensors 3.8% 7.7% 11.5% 14.8%

300 missions,
6 sensors 4.0% 7.5% 10.1% 13.5%

6 Next Steps
From a Mission Value perspective, the next step is to determine the revisit rate for
computation of Mission Value. This needs to be addressed in order to ensure that when a
new mission is added to the schedule, it is not given undue priority due to staleness of the
Cost value for a mission already on the mission schedule. This may also be addressed by
having Tgo be a fixed time rather than a relative time.

To measure the quality of a mission schedule it is necessary to know the optimal solution,
that is, the schedule with the highest possible combined reward value. This solution will
allow us the measure the suboptimality of a schedule and, thus, give us a tool for
objectively comparing the performance of different algorithms. Any optimal solver, as
discussed earlier, will be extremely limited in the scale of problems that it can solve.
Nevertheless, it would be an invaluable tool for measuring the performance of
metaheuristic algorithms and possibly provide the means for developing more
sophisticated heuristic solvers.

The novelty of the mission scheduling problem means there are relatively few solvers for
comparison. It would undoubtedly be worthwhile to investigate employing other
heuristic and metaheuristic approaches for further singular and hybrid methods.

Finally, the computational complexity of MS is seemingly astounding, but a lack of
formal analysis makes it difficult to speak definitively about the problem. Future work
on classifying the complexity of MS and identifying particularly hard or easy instances
would make algorithm development a clearer process.

 Unclassified

 Unclassified
 17

7 Summary
Application of cost based scheduling is viable in the military C2 domain and provides a
means to prioritize across warfare areas. Although the examples given in this paper
relate to naval ships, the basic equations could be tailored for other branches of service.

References

[Mott et al., 1996] Mott, Rex M, Kelly, Timothy V., Drabouski, Stephen J., June 13,
1996. “A Mathematical Model for the Derivation of Vital System Restoration Curves
SC.21 COEA” (Unclassified)

[Becker and Smith, 2000] M.A. Becker and S.F. Smith. Mixed initiative resource
management: The AMC Barrel Allocator. In Proceedings of the Fifth International
Conference on AI Planning and Scheduling, pp. 32-41, Breckenridge, CO, April 2000.

[Billups et al., 2005] S. Billups et al. Satellite payload scheduling with dynamic tasking.
Mathematics Clinic, Univ. of Colorado, Denver. http://www-
math.cudenver.edu/clinic/reports/ClinicReportSpring2005.pdf.gz. Spring 2005.

[Butchers et al., 2001] E.R. Butchers, P.R. Day, A.P. Goldie, S. Miller, J.A. Meyer, D.M.
Ryan, A.C. Scott, C.A. Wallace. Optimized Crew Scheduling at Air New Zealand. In
INTERFACES 31 : 1 January-February 2001, pp. 30-56. http://
pubsonline.informs.org/feature/ Edelman/1526-551X-2001-31-01-0030R.pdf

[Cheng and Gen, 1994] R. Cheng and M. Gen. Evolution program for resource
constrained project scheduling problem. In Proceedings of the First IEEE Conference on
Evolutionary Computational Intelligence, 2, pp. 736-41, 1994.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis of time-dependant
planning. In Proceedings of the Seventh National Conference on Artificial Intelligence,
pp. 49-54, Minneapolis, Minnesota, 1988.

[Dorn et al., 1996] J. Dorn, M. Girsch, G. Skele, and W. Slany. Comparison of iterative
improvement techniques for schedule optimization. In European Journal of Operations
Research, 94(2), pp. 349-61, 1996.

[Hindsberger and Vidal, 1998] M. Hindsberger and R.V.V. Vidal. Tabu search for target-
radar allocation. Technical Report, IMM Publications,
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/506/pdf/imm506.pdf, 1998.

 [Johnson and Antunes, 1996] E. Johnson and A. Antunes. A high capacity object
oriented mission scheduling system for XTE. In Astronomical Data Analysis Software
and Systems V, pp. 463-466, 1996.

 Unclassified

 Unclassified
 18

[Mesghouni et al., 1997] K. Mesghouni, S. Hammadi, and P. Borne. Evolution programs
for job-shop scheduling. In IEEE Transactions on Systems, Man, and Cybernetics, pp.
720-25, 1997.

[Mott et al., 1996] Mott, Rex M, Kelly, Timothy V., Drabouski, Stephen J., June 13,
1996. “A Mathematical Model for the Derivation of Vital System Restoration Curves
SC.21 COEA” (Unclassified)

[Ozdamar, 1999] L. Ozdamar. A genetic algorithm approach to a general category project
scheduling problem. In IEEE Transactions on Systems, Man, and Cybernetics—Part C:
Applications and Reviews, 29(1), February 1999.

[Peha, 1992] J. Peha. Analysis of Scheduling Algorithms for Integrated-Services
Networks Using a Semi-Fluid Flow Model. In Global Telecommunications Conference,
1992, Conference Record., pp. 330-334, Orlando, FL, December 1992.

[Rabideau et al., 1999] G. Rabideau, S. Chien, J. Willis, and T. Mann. Using iterative
repair to automate planning and scheduling of shuttle payload operations. In Innovative
Applications of Artificial Intelligence (IAAI), Orlando, FL, July 1999.

[Russell and Zilberstein, 1991] S.J. Russell and S. Zilberstein. Composing Real-Time
Systems. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pp. 212-217, Sydney, Australia, 1991.

[Shi et al., 1996] G. Shi, H. Iima, and N. Sannomiya. A new encoding scheme for solving
job shop problems by genetic algorithm. In Proceedings of the 35th Conference on
Decision and Control, Kobe, Japan, December 1996.

[Shtub et al., 1996] A. Shtub, L.J. LeBlanc, and Z. Cai. Scheduling programs with
repetitive projects: A comparison of a simulated annealing, a genetic and a pair-wise
swap algorithm. In European Journal of Operations Research, 88, pp. 124-38, 1996.

[Yamada et al., 1994] T. Yamada, B.E. Rosen, and R. Nakano. A simulated annealing
approach to job shop scheduling using critical block transition operators. In Proceedings
of the IEEE International Conference on Neural Networks (ICNN), pp. 4687-92, 1994.

[Zilberstein, 1995] S. Zilberstein. Optimizing Decision Quality with Contract
Algorithms. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1576-82, Montreal, Canada, 1995.

[Zilberstein, 1996] S. Zilberstein. Using Anytime Algorithms in Intelligent Systems. In
AI Magazine, 17(3), pp. 73-83, 1996.

