
 Unclassified  
 

 Unclassified  
 1 

11th ICCRTS 
COALITION COMMAND AND CONTROL IN THE NETWORKED ERA 

 

Multi-mission Prioritization Using Cost-based 
Mission Scheduling 

 
 
 

Paula Moss 
Raytheon Company 

Fort Wayne, IN-46808 
 

Bruce Baker 
Raytheon Company 

Fort Wayne, IN-46808 
 

Dr. Deepak Khosla, HRL 
HRL Laboratories, LLC 

Malibu, CA-90265 
 

Alex Dow, HRL  
HRL Laboratories, LLC 

Malibu, CA-90265 
 
 

Paula Moss (Point of Contact) 
Raytheon Company 

Network Centric Systems 
1010 Production Road 

Fort Wayne, IN 46808-4106 
260-429-4306/260-429-4655 (fax) 

Paula_C_Moss@Raytheon.com 

 



 Unclassified  
 

 Unclassified  
 2 

 

1 Abstract 
Multi-mission prioritization is an essential part of the modern battlespace.  The 

focus on joint operations and the ability to share operational data in a net-centric 
environment has created a dynamic battlespace where one asset may have several 
operational missions to support.  Many command and control systems that are being 
developed today such as DD(X), Future Combat Systems (FCS), and Distributed 
Common Ground System (DCGS) are dealing with the issues of a complex and dynamic 
battlespace.  For example, the LHD class ship (Amphibious Assault Ship) in Figure 1 
maintains satellite communications, communications with air intelligence assets such as 
Unmanned Arial Vehicles (UAVs), communications with land-based Tactical Operation 
Centers and other land-based assets in order to determine the tactical operations picture.  
The LHD uses its onboard sensors and weapon systems to meet its operational objectives 
within the scope of this picture.  DD(X), the next generation destroyer for the Navy, has 
the need to prioritize air, land, surface, and subsurface missions that are initiated for self-
defense, to support the battle group, or to support land-based operations. This 
prioritization and scheduling of actions across warfare areas is addressed in this paper.   

 
Figure 1: Modern Battlespace 
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2 Motivation 
Each branch of the military has developed unique methods for determining the priority of 
the missions that they are responsible for executing.  These methods work very well in a 
highly structured environment with well-established command hierarchies.  In a net-
centric environment, the boundaries of command and execution are becoming blurred.  
The net-centric command and control hierarchy allows a single unit to support more than 
command node.  This requires the unit to prioritize the tasks it is to perform.  When the 
tasks are of a similar nature, prioritization is straightforward.  When the tasks to perform 
are dissimilar, prioritization becomes more complicated and new paradigms, such as cost-
based prioritization, may be needed.  Additionally, when a unit is being tasked from 
multiple command nodes, it is more likely that the unit will have periods where there are 
not enough resources to achieve all objectives.   This necessitates the incorporation of 
more robust dynamic scheduling techniques.  This paper addresses pairing cost-based 
prioritization with a three-tiered dynamic scheduling algorithm to achieve mission 
objectives in a multi-mission environment.  The Mission Scheduling problem is referred 
to as MS throughout the paper. 
  

3 Resource-based Scheduling Paradigms 

3.1 Traditional Scheduling Algorithms 
Traditional scheduling algorithms include greedy (task based algorithms) and meta-
heuristics approaches (Simulated Annealing, Tabu Search, Neural Networks, Genetic 
Algorithms).   The Greedy approach is the least-complex scheduling algorithm.  It 
schedules missions, one-at-a-time, ordered by value.  Once a mission is scheduled it 
cannot be moved or removed from the schedule.  
 
Because of the inherent difficulty and large size of most real-world scheduling problems, 
most research has focused on suboptimal, meta-heuristic algorithms. [Rabideau et al., 
1999] and [Dorn et al., 1996] discuss techniques for solving such difficult scheduling 
problems through the processes of iterative improvement and repair.  Their techniques, 
like those we employ here, recognize that solutions can be found quickly by building 
them in an iterative fashion.  While their techniques provide a fundamental foundation for 
applying methods like Genetic Algorithms (GA) and Tabu Search to automatic 
scheduling problems, much of their gains are lost when applying them to a problem like 
Mission Scheduling (MS), for which they were not explicitly designed.  This is a 
common problem in applying prior art in scheduling domains, as performance is 
degraded when general methods are applied to specific problems and domain-dependant 
advances do not often translate to even slightly different problems. 
 
There has been much prior work in using GA for scheduling problems.  [Shi et al., 1996] 
develops a GA approach to Job Shop Scheduling problems, while [Ozdamar, 1999], 
[Dorn et al., 1996], and [Shtub et al., 1996] propose GA approaches to more general 
scheduling problems.  Though GA is a promising technique, its incarnations in prior 
work have limited applicability to MS because of fundamental differences in the 
objective functions and constraints for which they were developed.  There has also been 
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work on scheduling with evolution programs ([Cheng and Gen, 1994], [Mesghouni et al., 
1997]), though it suffers from the same limitations as GA when applied to MS. 
 
Simulated Annealing (SA) is a technique that we have taken advantage of and which also 
appears throughout the literature.  [Yamada et al., 1994] tailors SA to Job Shop 
Scheduling, and [Hindsberger and Vidal, 1998] discuss its applications to Target-Radar 
allocation.  Job Shop Scheduling is a fundamentally different scheduling problem than 
MS, and methods for solving the one don’t necessarily work well for the other.  
Hindsberger and Vidal concluded that a Tabu Search algorithm worked better than SA 
for their particular problem because of the limited amount of “cooling time” they could 
afford to give their SA algorithm.  One of our primary contributions is related to 
formulating SA to fit MS such that only a small amount of “cooling time” is required.  
 
One highly investigated aspect of scheduling is related to manufacturing problems and 
supply chain management.  Commercial products are available from Manugistics, Ariba, 
and i2 Technologies, though these tools tend to be specifically tailored to the demands of 
manufacturing industries.  Major modifications would be necessary to apply these 
techniques to MS and there is no proven history of these tools working on problems with 
the scale of MS. 
 
Integer programming (IP) is clearly the dominant general method for finding optimal 
solutions to all sorts of difficult scheduling problems.  High-quality, commercially 
available solvers (such as ILOG OPL/CPLEX, Dash Optimization/XPRESS-MP, and 
IBM/OSL) make IP a desirable framework for solving scheduling problems.  The 
problem with these solvers, even when using the best available, is that problem instances 
with any interesting size cannot be solved in a reasonable about of time.  Most IP solvers 
rely on branch-and-bound or similar techniques that are typically exponential in the 
number of variables.  An instance of MS will often have millions of variables, making IP, 
as well as any optimal approach, infeasible.  [Billups et al., 2005] conducted a thorough 
investigation of using IP techniques to solve a simpler version of MS and confirmed that 
none but the simplest of problem instances can be solved optimally with IP.  The scale of 
MS problems is large even for suboptimal solution techniques.  Though little work has 
been done on MS itself, algorithms for solving related problems have been limited to 
much smaller instances (e.g. 2500 timeslots in [Johnson and Antunes, 1996]). 
 
One of the clear problems with relying on prior work for MS solvers is the difficulty with 
preserving solution quality when translating the intended scheduling problem to MS.  A 
possible way of resolving this is to focus on a simpler version of MS that includes only 
missions with a single task.  This task-based scheduling has much more in common with 
more general scheduling problems and should therefore have more success in utilizing 
existing solution techniques.  Our investigations found that while task-based techniques 
are easy to implement and often more intuitive, the solutions are often very low quality.  
We have found that developing techniques tailored for MS far outperform the simpler 
task-based techniques. 
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3.2 Contract Algorithms 
An anytime algorithm is one that can run for “any” amount of time and then return some 
result [Dean and Boddy, 1988; Zilberstein, 1996].  It is assumed that the longer the 
amount of time the better the returned result.  A contract algorithm is a specific type of 
anytime algorithm where the amount of time it will be allowed to run is specified ahead 
of time.  Another type of anytime algorithm is an interruptible algorithm, that is, one that 
can be stopped at any time during its execution and it will return a valid result. 
 
[Russell and Zilberstein, 1991] drew a clear distinction between contract and interruptible 
algorithms.  They explained that a contract algorithm is typically easier to construct 
because it is run with the knowledge of when it must return a result, while an 
interruptible algorithm is typically more useful because it is ready to return a result at any 
time.  Their treatment of contract algorithms was using them as subroutines for 
constructing interruptible anytime algorithms.   
 
We should note that algorithms can be both contract and interruptible, though, depending 
on the designer’s objectives, they typically work best as one or the other.  Since a 
contract algorithm knows how long it has to run it can structure its development of the 
solution to take that into account.  This extra information implies that a contract 
algorithm should return a better solution than a plain interruptible algorithm run for the 
same amount of time.  Although, this also means that if a (interruptible) contract 
algorithm is not allowed to run out its contract, its solution may be significantly worse 
than the plain interruptible algorithm.  We can imagine this playing out in the MS 
problem, where a contract algorithm can hold off on trying to schedule some low-value 
missions until the end, whereas an interruptible algorithm may want to try to schedule 
those missions right away for fear of being interrupted. 
 
The algorithm described in this paper, as is often the case with contract algorithms, is 
made up of multiple components that are themselves contract algorithms.  This makes 
sense since we have a fixed number of tasks to schedule, we should only need to make 
some fixed number of function calls to try and schedule them.  In order for our algorithm 
to meet its contract, it must have control over the runtime of those function calls.  It is 
thus up to the top-level algorithm to determine how best to divide up its allotted time 
among its internal components.  We refer to this meta-resource allocation problem as 
time budgeting. 
  
There has been successful prior work with greedy and GA-based approaches, though it 
has been limited to simpler versions of MS.  [Billups et al., 2005] developed several GA 
algorithms for a satellite scheduling problem similar to MS, though it only included a 
single resource (which makes IP methods much more tractable) and allowed for less 
freedom in how the different tasks of a single mission can be scheduled.  Similarly, 
[Becker and Smith, 2000] developed an incremental approach to a problem that looks 
similar to MS but is extremely domain dependant and, therefore, their positive results do 
not necessarily translate to MS. Finally, we have found no prior work to similar types of 
problems that have addressed the need for contract algorithms in order to meet strict 
deadlines. 
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4 Current State-of-the-Technology 

4.1 Cost-based Scheduling 
The idea of cost-based scheduling is not new.  Many of the IP scheduling problems are 
based on the idea of minimizing cost.  The IP algorithm generates feasible solution(s) that 
minimize or maximize an objective function across the entire schedule.  As mentioned 
previously, IP scheduling methods may not produce a solution to a complex problem 
within the time constraints necessary for a military Command and Control (C2) 
application operating in a dynamic battlespace. 

4.2 Application of Cost-based Scheduling in Non-military Domains 
Crew scheduling in the airline industry is one example of cost-based scheduling in a non-
military domain.  Air New Zealand used optimization techniques to minimize cost while 
ensuring that all tasks were performed.  In this application, scheduling tasks that were 
performed by highly trained human schedulers in days could be achieved in hours or 
minutes using automated techniques.  Additionally, the automated scheduling could take 
more crew preferences into account during the scheduling process [Butchers, et al, 2001].   
 
A time critical example of cost-based scheduling in a non-military domain is network 
management.  [Peha, 1992] discusses the use of cost-based scheduling for a high-speed 
packet-based network with diverse traffic.  Each packet on the network is given a priority 
based on the packet’s performance objectives.  In this application, the priority of the 
packet may change over time as the deadline for the task approaches. 

5 Cost-based Scheduling for Multi-mission Prioritization  

5.1 Cost-based Scheduling Approach 
The idea of cost is not new to the military.  Prioritization schemes are used in combat 
systems to ensure that the most important engagements take precedence over less 
important engagements.  Commanders routinely take into account the ramifications of 
taking a particular course of action.  The cost-based mission scheduling paradigm 
proposed simply attempts to combine the decisions currently made by the combat system 
and commander, express them in quantifiable terms, and pair that with dynamic mission 
scheduling algorithms. 

5.1.1 Computation of Cost 
The basic survivability equation for a Navy ship is defined as follows.  
 
Survivability = 1 – (Susceptibility * Vulnerability) 
 
In this equation, Survivability is the ability of a system to avoid (Susceptibility) or 
withstand (Vulnerability) a hostile environment and still have the ability to accomplish its 
designated mission.  [Motts, 1996] introduces the concept of Restoration to the equation 
such that: 
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Survivability = 1 – (Susceptability * Vulnerability * Restoration)  
 
where: 
 

Susceptibility =  (Probability of attack given an encounter * Probability of hit given an encounter) 
 
Vulnerability = Probability of kill given a hit 
 
Restoration = Probability of restoration given a hit. 

 
Using this equation, we extrapolate the cost associated with a mission. 
 
Cost = (1 – Survivability) X 100 
 
Cost is a numeric representation of the cost to the ship if the threat is realized.  Cost has a 
range of 0 – 100, where 0 is the best value and 100 is the worst value.  Cost is only one 
element of the Mission Value as described below.   
 
Although Cost in this example is based on a ship, the idea of Cost can be applied to other 
units within the C2 domain.  Each of the elements of the Cost equation can be 
represented as individual “algorithms” within the combat system.  The level of fidelity of 
these algorithms can be refined over time as more information about the unit and its 
operating environment becomes available.  Whether the “algorithm” is based on table 
lookup information or a detailed mathematical algorithm, introducing the notion of Cost 
adds value to the scheduling process.  It allows the prioritization to reflect the “negative” 
aspects associated with taking an action.    

5.1.2 Computation of Mission Value 
Three elements are used to determine the Mission Value that is used for scheduling 
purposes: Cost, Time to Go (Tgo), and Threat Priority.  Cost was described in Section 
5.1.1.  Urgency, as represented by Tgo, is the remaining time that a threat is actionable.  
Threat Priority is derived for a particular warfare area.  It has a range of 0 – 100, where 0 
is the lowest priority and 100 is the highest priority.  By combining these three elements, 
Mission Value spans warfare domains.  For example, firing a land attack mission to 
eliminate a threat has a potential consequence that the enemy could fire back at the ship.  
The Mission Value takes both aspects of this into account. 
 
In our approach, the operator would be allowed to determine the weighting that each of 
these elements is given when determining the Mission Value.  This would allow the 
operator to determine if Cost would be considered within the scheduling process.   
 
One factor that will need to be addressed in the future is the revisit rate for computing 
Mission Value.  Is computation of Mission Value once when the mission is initially 
placed on the schedule sufficient, or is it necessary to recalculate the Mission Value 
periodically as the Tgo decreases?  Will the Mission Value change enough to justify the 
resource usage and potential perturbation of the mission schedule? 
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5.1.3 Mission Scheduling 
The general mission scheduling problem involves building a schedule that accomplishes 
some optimal set of objectives.  A problem instance is made up of a set of missions that 
need to be scheduled and a set of resources that can be utilized.  A mission itself is made 
up of a set of one or more tasks that must all be accomplished in order for the mission to 
be considered a success. Each task is subject to two constraints: a resource constraint and 
a temporal constraint.  A task’s resource constraint specifies a subset of the system 
resources that are capable of executing the task.  A task’s temporal constraint specifies a 
fixed time window in which the task must be executed and the amount of time for which 
the task execution will occupy the assigned resource.  It is assumed that a single resource 
can only execute a single task at a time.  Our goal is to build a schedule, which is 
basically a mapping from tasks to resources and start times.  A schedule thus specifies 
when a task will be executed and on what resource.  For a mission to be considered 
“scheduled” it must have each of its tasks scheduled for execution by a valid resource 
within the valid time window. 
 
In cases with many missions (like those of interest here), it is often the case that the 
problem is oversubscribed, i.e. it is not possible to successfully schedule all missions.  In 
this case each mission has a reward value that is earned only if the mission is successfully 
scheduled, and the objective of a scheduler is to find the schedule that earns the highest 
total reward. 
 
Finally, the particular variant of mission scheduling problems we are dealing with here 
come with a time goal that specifies the maximum amount of time that can be spent 
finding a solution.  The goal of our scheduler is thus to find a schedule that maximizes 
earned reward value within the time goal. 
 

5.2 Key Technologies 
The need addressed by the algorithm we propose here is for a fast method of building 
good mission schedules.  Recognizing that finding a provably optimal schedule is 
computationally infeasible on problems of interesting size, we have focused on local 
search techniques that iteratively build a schedule with no guarantee of optimal 
convergence.  Although we do not require provable convergence, it is necessary that the 
algorithm return better solutions the longer it is allowed to run.  This provision also 
ensures that the algorithm performs well with a time limit. 
 
The scheduling techniques we have employed are inspired by the observation that, given 
a partial schedule and some remaining missions to schedule, some missions and tasks will 
be easier to fit into the schedule and some will be harder.  An “easy” task is one that can 
be inserted into the schedule by simply moving around some of the tasks currently in the 
schedule.  A “hard” task is one that requires more complex, unintuitive changes to the 
schedule in order to fit it.  An example of a complex change to the schedule would be to 
remove some set of tasks in order to fit in some other set of tasks.  This can be 
particularly unintuitive because removing a single task can cause an entire mission to 
become “unsuccessful” (because all of its tasks are no longer scheduled), thus any of the 
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mission’s tasks that remain in the schedule are making no value contribution.  
Recognizing when this can be beneficial can be difficult. 
 
Our intuition (and experience) is that a technique that is good at scheduling the “easy” 
tasks, will not be particularly good at the “hard” tasks, and vice versa.  By having 
techniques that can focus on a particular type of task, we can develop those techniques to 
surpass the performance of a general method that tries to be good at both. 
 
Many tasks, especially early in the process, will be easy to schedule.  What we want at 
this stage is a method that is aware of the schedule structure and can focus on fitting a 
single given task.  For this purpose we present Systematic Swapping, a method of shifting 
and swapping tasks to free up adequate space to fit a given task. As the schedule fills, it 
will get harder to add new tasks.  At this point we need a method that will move and 
remove tasks in order to make bigger changes to the schedule and thus allow many new 
tasks to be inserted.  For this purpose we use Simulated Annealing to randomly perturb 
the schedule out of local maximums. 
 
Figure 2 shows how our algorithm incrementally builds a valid schedule by adding 
missions to the schedule, one-at-a-time, starting with the highest-valued missions.  To 
successfully schedule a mission, we must schedule all of its tasks.  Initially we attempt to 
insert each task into the schedule without moving any previously scheduled tasks.  If a 
task won’t immediately fit into the schedule, we then proceed with Systematic Swapping 
in order to move around previously scheduled tasks to make room for the new one.  If 
some of the mission’s tasks were unable to be scheduled by Systematic Swapping, we 
then call on the Simulated Annealing routine to try and improve the schedule by adding 
some of unscheduled tasks from this and other missions that failed to be scheduled. 
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Figure 2: Flow-chart for top-level hybrid algorithm. 

 
In order to find the best possible schedule in the allotted time, the algorithm budgets the 
time that can be spent by any particular call to Systematic Swapping and Simulated 
Annealing.  The amount of time budgeted to any particular call is determined by the time 
remaining, the potential benefit of the call, and some other statistics about the time 
required to complete some fundamental scheduling procedures. 

Get highest valued 
mission not yet 

considered

Get one of mission’s 
tasks not yet 
considered

Allocate time budget

Systematic 
Swapping

Time 
left?

Tasks 
left?

Success
?

Get N most recent 
missions with failed 

tasks

Allocate time budget

Time 
left?

Simulated 
Annealing

Improve-
ment?

Keep new schedule

Any tasks 
failed?

YES

YES

YES YES

YES

YES

NO

NO

NO

NO

NO

NO

Easy Missions Hard Missions

Mission 
Scheduling 

Scenario

First try to 
simply insert

 



 Unclassified  
 

 Unclassified  
 11 

 
Systematic Swapping 
 
The purpose of the Systematic Swapping algorithm is to fit a single task into the 
schedule, within the budgeted time, without removing any previously scheduled task.  
We avoid unscheduling any tasks because doing so would invariably cause a scheduled 
mission to become unscheduled.  Since we order the missions based on their reward 
value, any previously scheduled missions must have a higher reward than the current one.  
Therefore unscheduling one mission so as to schedule the current one will always result 
in a worse schedule.  It may be the case that removing a higher-valued mission allows us 
to schedule multiple lower-valued missions with a greater combined value than the other, 
but Systematic Swapping is limited to a local view of the schedule that only includes the 
previously scheduled tasks and the single current task.  It, therefore, cannot recognize 
such situations.  Those tradeoffs will be addressed in the Simulated Annealing part of the 
algorithm. 
 
The basic idea behind Systematic Swapping is that it initially tries to fit the task without 
changing the schedule.  If it is unable to do this, then, as time permits, it attempts to move 
previously scheduled tasks that are in the way of the current task in order to make room 
for it.  The function works recursively, that is, when it tries to move a previously 
scheduled task it does so with the same Systematic Swapping procedure.  The result of 
this is situations where it may be trying to move a task to make room for a task to make 
room for a task, etc. 
 
To keep the Systematic Swapping procedure within the given time budget, care must be 
taken to divide the allotted time between the recursive calls.  Often more than one task 
must be moved in order to fit the new task, thus we do not want to spend our entire 
budget moving a single task.  We therefore employ a “ramping up” procedure that 
initially budgets very little time to deeper recursive calls, but increases that budget 
polynomially after each iteration of the algorithm.  Further more, the rate at which the 
recursive budgets increase is slower for deeper recursions.  This is consistent with our 
intuition that deeper recursions have less impact and should therefore have less time 
spent on them.   
 
Simulated Annealing 
 
As mentioned earlier, one limitation of the Systematic Swapping algorithm is that it 
cannot recognize situations where it may be beneficial to remove a previously scheduled 
task/mission from the schedule.  This algorithmic limitation translates into an upper 
bound on the achievable schedule quality.  In order to loosen (though not entirely 
eliminate) this bound and address the stated limitation of Systematic Swapping, we use 
Simulated Annealing. 
 
Simulated Annealing is a local search method for optimization where a suboptimal 
solution is randomly perturbed in each iteration.  The resulting new solution is then 
evaluated.  If it is better than the previous then it is accepted.  If it is worse than the 
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previous solution then it is accepted with some probability, otherwise the solution reverts 
to the previous one.  As the algorithm progresses, that probability decreases, such that by 
the end only improvements are accepted.  By accepting a worse solution the algorithm 
avoids local optima in its search for the global optimum. 
 
The fact that Simulated Annealing will temporarily accept a worse-off solution is exactly 
what allows it to avoid the mentioned limitation of Systematic Swapping.  Of course it 
has its own limitations, in that it cannot easily recognize when minor adjustments to the 
schedule will make a task schedulable.  Systematic Swapping is a focused technique for 
quickly identifying these minor adjustments, while the lack of focus in Simulated 
Annealing’s random perturbations is what makes it better at more complicated 
adjustments. 
 
On a call to Simulated Annealing, a list of unscheduled tasks is passed as input.  These 
are the unscheduled tasks of the failed missions we are trying to improve the schedule 
with.  The only tasks that we allow to be perturbed (moved) are those in the input and any 
previously scheduled task that is currently at a location that intersects with the valid 
scheduling window of an input task.  That is, only those tasks that are potentially 
blocking the input tasks from being scheduled can be moved.  All other tasks in the 
schedule will stay where they are scheduled throughout the run of Simulated Annealing.  
For all tasks that can be moved, we limit the ways that it can be perturbed (that is, the 
locations it can be moved to) to either locations (resource/timeslot pairs) where it can be 
validly scheduled, or it can be unscheduled. 
 
One iteration of Simulated Annealing progresses as follows: 

1. a task is chosen at random from those that are allowed to be perturbed 
2. if it is currently scheduled, then it is moved to one of the available locations 

(chosen at random) where it can be validly scheduled, or it is removed from the 
schedule 

3. if it is not currently scheduled, then it is moved to one of the available locations 
(chosen at random) where it can be validly scheduled 

4. if the resulting schedule is an improvement, then keep it and go to the next 
iteration 

5. if the resulting schedule is not an improvement, then keep it with some probability 
and go to the next iteration 

 
The running time of Simulated Annealing can be strictly controlled by limiting the 
number of iterations.  We can do this by tracking the runtime of the algorithm and, at 
each iteration, estimating the time required by a typical iteration.  We can then use that 
estimate to determine how many more iterations can be completed in the budgeted time.  
Naturally, as the algorithm progresses, the estimate will get more accurate and the 
allowed number of iterations will stabilize.  One issue this raises is how to handle the 
transition probability, that is, the probability that we accept a new solution that is worse 
than the previous one.  We want this probability to begin very high (.99) and decay 
exponentially to a very small value by the final iteration (.0001).  With a fixed number of 
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iterations, nIters, we can do this by multiplying the probability value by a fixed delta 
after each iteration, where 

 nIterspfinaldelta
1

=  (6) 
and pfinal is the small final probability, like .0001.  Since we will not initially have an 
accurate estimate of the total number of iterations, we cannot set a fixed delta at the 
beginning.  Instead, at the end of each iteration, when we recompute nIter we also 
recompute delta.  The rate of our decay will change slightly throughout the run of the 
algorithm, nevertheless it will closely resemble an exponential decay of a fixed delta. 

5.3 Test Scenario 
 
To evaluate the performance and quality of our algorithm we use a testing scenario where 
the resources to be scheduled are individual sensors within a sensor network.  In our 
scenario, these networks require a 24-hour schedule with discrete timeslots of 100 
milliseconds.  The tasks that are to be scheduled on the sensors can range in duration 
from hundreds of milliseconds to several hours.  A mission is made up of from one to 
three tasks, and each task can be scheduled on from one to three different sensors.  
Typical requirements range from scheduling 50 to 300 missions, and thus, on average, 
100 to 600 tasks. 
 
In real life, missions come in different types, where different types of missions are made 
up of tasks that require seconds, minutes, or hours to complete.  Typically, all the tasks of 
a single mission have durations of comparable magnitude.  To simulate this in our testing 
scenarios we first determine the order of magnitude of the mission’s duration, and then 
randomly determine the task durations based on that magnitude.  To simulate different 
“types” of missions, we draw a mission’s order of magnitude from a normal distribution 
centered on half the order of the entire schedule.  Figure 3 shows a sample distribution of 
missions by order of magnitude of duration.  For the 24-hour schedule used, most 
missions take on the order of minutes to complete, though some take hours or seconds.  
Figure 4 demonstrates a typical testing scenario with 50 missions. 
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Figure 3: Distribution of the orders of magnitude of the missions in a sample scenario. 
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Comparisons with Greedy 
 
The central motivation behind our algorithm is the real-life need to find a good schedule 
in a predetermined amount of time.  While an algorithm that runs “as fast as possible” 
will suffice in many situations, a lack of a time goal means the algorithm may run too 
long or may not take full advantage of the time that it has.  One such naïve algorithm is 
the Greedy approach, which simply schedules missions, one-at-a-time, ordered by value.  
Once a mission is scheduled it cannot be moved or removed from the schedule.  While 
this algorithm will not find great schedules on hard scenarios, it will run very quickly. In 
fact, with a small enough time goal, our time-budget method will produce the same 
schedule that Greedy does. 
 
We compare our algorithm with Greedy, not to show that it can produce better schedules 
(which is hopefully obvious), but to give a feel for what we are buying with extra running 

 
Figure 4: A sample scenario. An outer box denotes a mission. The inner boxes denote a 
mission's tasks. A yellow (light) bar denotes a task's duration, and the green (dark) bar 
denotes slack in the task's window. 
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time.  Table 1 shows the improvement of our algorithm’s schedules over those found by 
greedy when given a time goal of one-, two-, four-, and eight-times the time required by 
Greedy. 
 

Error! 
Table 1: Average improvement in percent of total mission value scheduled compared to Greedy over 
50 Monte Carlo runs. 

Running time 
Scenario 

1xGreedy 2xGreedy 4xGreedy 8xGreedy 
50 missions, 

2 sensors 3.2% 8.3% 11.9% 15.1% 

100 missions, 
3 sensors 3.7% 6.6% 11.0% 13.9% 

200 missions, 
5 sensors 3.8% 7.7% 11.5% 14.8% 

300 missions, 
6 sensors 4.0% 7.5% 10.1% 13.5% 

 
 

6 Next Steps 
From a Mission Value perspective, the next step is to determine the revisit rate for 
computation of Mission Value.  This needs to be addressed in order to ensure that when a 
new mission is added to the schedule, it is not given undue priority due to staleness of the 
Cost value for a mission already on the mission schedule.  This may also be addressed by 
having Tgo be a fixed time rather than a relative time. 
 
To measure the quality of a mission schedule it is necessary to know the optimal solution, 
that is, the schedule with the highest possible combined reward value.  This solution will 
allow us the measure the suboptimality of a schedule and, thus, give us a tool for 
objectively comparing the performance of different algorithms.  Any optimal solver, as 
discussed earlier, will be extremely limited in the scale of problems that it can solve.  
Nevertheless, it would be an invaluable tool for measuring the performance of 
metaheuristic algorithms and possibly provide the means for developing more 
sophisticated heuristic solvers. 
 
The novelty of the mission scheduling problem means there are relatively few solvers for 
comparison.  It would undoubtedly be worthwhile to investigate employing other 
heuristic and metaheuristic approaches for further singular and hybrid methods. 
 
Finally, the computational complexity of MS is seemingly astounding, but a lack of 
formal analysis makes it difficult to speak definitively about the problem.  Future work 
on classifying the complexity of MS and identifying particularly hard or easy instances 
would make algorithm development a clearer process. 
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7 Summary 
Application of cost based scheduling is viable in the military C2 domain and provides a 
means to prioritize across warfare areas.  Although the examples given in this paper 
relate to naval ships, the basic equations could be tailored for other branches of service.   
 
References  
 
[Mott et al., 1996] Mott, Rex M, Kelly, Timothy V., Drabouski, Stephen J., June 13, 
1996.  “A Mathematical Model for the Derivation of Vital System Restoration Curves 
SC.21 COEA”  (Unclassified) 
 
[Becker and Smith, 2000] M.A. Becker and S.F. Smith. Mixed initiative resource 
management: The AMC Barrel Allocator. In Proceedings of the Fifth International 
Conference on AI Planning and Scheduling, pp. 32-41, Breckenridge, CO, April 2000. 
 
[Billups et al., 2005] S. Billups et al. Satellite payload scheduling with dynamic tasking. 
Mathematics Clinic, Univ. of Colorado, Denver. http://www-
math.cudenver.edu/clinic/reports/ClinicReportSpring2005.pdf.gz. Spring 2005. 
 
[Butchers et al., 2001] E.R. Butchers, P.R. Day, A.P. Goldie, S. Miller, J.A. Meyer, D.M. 
Ryan, A.C. Scott, C.A. Wallace.  Optimized Crew Scheduling at Air New Zealand.  In 
INTERFACES 31 : 1 January-February 2001, pp. 30-56.  http:// 
pubsonline.informs.org/feature/ Edelman/1526-551X-2001-31-01-0030R.pdf 
  
[Cheng and Gen, 1994] R. Cheng and M. Gen. Evolution program for resource 
constrained project scheduling problem. In Proceedings of the First IEEE Conference on 
Evolutionary Computational Intelligence, 2, pp. 736-41, 1994. 
 
[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis of time-dependant 
planning. In Proceedings of the Seventh National Conference on Artificial Intelligence, 
pp. 49-54, Minneapolis, Minnesota, 1988. 
 
[Dorn et al., 1996] J. Dorn, M. Girsch, G. Skele, and W. Slany. Comparison of iterative 
improvement techniques for schedule optimization. In European Journal of Operations 
Research, 94(2), pp. 349-61, 1996. 
 
[Hindsberger and Vidal, 1998] M. Hindsberger and R.V.V. Vidal. Tabu search for target-
radar allocation. Technical Report, IMM Publications, 
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/506/pdf/imm506.pdf, 1998. 
 
 [Johnson and Antunes, 1996] E. Johnson and A. Antunes. A high capacity object 
oriented mission scheduling system for XTE. In Astronomical Data Analysis Software 
and Systems V, pp. 463-466, 1996. 
 



 Unclassified  
 

 Unclassified  
 18 

[Mesghouni et al., 1997] K. Mesghouni, S. Hammadi, and P. Borne. Evolution programs 
for job-shop scheduling. In IEEE Transactions on Systems, Man, and Cybernetics, pp. 
720-25, 1997. 
 
[Mott et al., 1996] Mott, Rex M, Kelly, Timothy V., Drabouski, Stephen J., June 13, 
1996.  “A Mathematical Model for the Derivation of Vital System Restoration Curves 
SC.21 COEA”  (Unclassified) 
 
[Ozdamar, 1999] L. Ozdamar. A genetic algorithm approach to a general category project 
scheduling problem. In IEEE Transactions on Systems, Man, and Cybernetics—Part C: 
Applications and Reviews, 29(1), February 1999. 
 
[Peha, 1992] J. Peha. Analysis of Scheduling Algorithms for Integrated-Services 
Networks Using a Semi-Fluid Flow Model.  In Global Telecommunications Conference, 
1992, Conference Record., pp. 330-334, Orlando, FL, December 1992. 
 
[Rabideau et al., 1999] G. Rabideau, S. Chien, J. Willis, and T. Mann. Using iterative 
repair to automate planning and scheduling of shuttle payload operations. In Innovative 
Applications of Artificial Intelligence (IAAI), Orlando, FL, July 1999. 
 
[Russell and Zilberstein, 1991] S.J. Russell and S. Zilberstein. Composing Real-Time 
Systems. In Proceedings of the Twelfth International Joint Conference on Artificial 
Intelligence, pp. 212-217, Sydney, Australia, 1991. 
 
[Shi et al., 1996] G. Shi, H. Iima, and N. Sannomiya. A new encoding scheme for solving 
job shop problems by genetic algorithm. In Proceedings of the 35th Conference on 
Decision and Control, Kobe, Japan, December 1996. 
 
[Shtub et al., 1996] A. Shtub, L.J. LeBlanc, and Z. Cai. Scheduling programs with 
repetitive projects: A comparison of a simulated annealing, a genetic and a pair-wise 
swap algorithm. In European Journal of Operations Research, 88, pp. 124-38, 1996. 
 
[Yamada et al., 1994] T. Yamada, B.E. Rosen, and R. Nakano. A simulated annealing 
approach to job shop scheduling using critical block transition operators. In Proceedings 
of the IEEE International Conference on Neural Networks (ICNN), pp. 4687-92, 1994. 
 
[Zilberstein, 1995] S. Zilberstein. Optimizing Decision Quality with Contract 
Algorithms. In Proceedings of the Fourteenth International Joint Conference on 
Artificial Intelligence, pp. 1576-82, Montreal, Canada, 1995. 
 
[Zilberstein, 1996] S. Zilberstein. Using Anytime Algorithms in Intelligent Systems. In 
AI Magazine, 17(3), pp. 73-83, 1996. 
 


