
11th ICCRTS
COALITION COMMAND AND CONTROL IN THE

NETWORKED ERA
Title: Mechanisms for Agility
Topic: C2 Experimentation, C2 Architecture, Coalition Interoperability
Author 1 (POC): Author 2: Author 3:
David N Allsopp

QinetiQ plc

St Andrew’s Road
MALVERN
WR14 3PS
United Kingdom

Tel: +44 1684 897479
E-mail:
mailto:dnallsopp@qinetiq.com

This paper is based on research undertaken for the United Kingdom Ministry of Defence and is covered
in whole by Crown Copyright.

This paper is part of a set of papers by Dstl and QinetiQ which aim to bring together a number of
strands of work from the research area to identify the challenges (technical, cultural, organisational and
commercial) to building a coherent set of tools and processes for delivering compositional capability
for future conflict.

 (DSTL/QinetiQ Paper #11)

Abstract
Decision-makers are faced with a world that is uncertain and dynamic, where events and
courses of action unfold at “run-time” and do not follow predetermined or predictable
courses. However, the majority of the tools we use to influence and control this world are
frozen at the initial “design-time” stages of their development.

We argue that agility can be improved by shifting efforts from design-time “optimisation”
towards run-time reconfiguration, placing the tools for agility into the hands of military users
in theatre, rather than service providers at home. We demonstrate that such run-time tools are
possible via a proof-of-concept software application called Decision Desktop.

It is thus not technology that is the leading constraint or rate-determining step for agility. The
main challenges are instead organisational, concerning the procurement accreditation and
exploitation of agile software. We argue that open and bold experimentation is required to
promote novel approaches. Much remains to be learned about how agile software can best be
designed for, and with, people; putting the tools in the hands of users means that the tools
must make sense to them.

Introduction
Uncertainty and change are challenges in all spheres of endeavour:

• Military: facing asymmetry, insurgency, and post-Cold War doctrinal changes —
"war among the people" rather than industrial war1.

• Political: “A week is a long time in politics”2.

1 THE UTILITY OF FORCE: The Art of War in the Modern World, General Sir Rupert Smith
2 Attributed to Harold Wilson

mailto:dnallsopp@qinetiq.com

• Commercial: companies constantly seek to update their products, to gain
advantageous positioning over competitors, and to shape, cope with and exploit
volatile markets.

• Social/cultural: factors include the influence of the media on modern operations; the
changing expectations of recruits; the values considered worth fighting for; the
winning (or losing) of hearts and minds.

• Technical: examples include the unprecedented scale and rapidity of Internet attacks,
and rapid trends such as the adoption of mobile devices and peer-to-peer software —
with consequent social implications.

We live in a “runtime world” where approaches that assume a fixed threat, and provide a
fixed defence, are out of touch with reality. Whatever fixed zone our systems are designed for
(and limited to), an intelligent adversary will seek to push us out of that zone. It is also the
case that information systems are increasingly open and “always-on”; maintaining and
developing them can be compared to fixing an engine whilst it is running, or a living system
— more medicine than engineering.

To address these challenges, C2 systems need to be agile and flexible —reconfigurable at run-
time, and with minimal built-in assumptions. Rather than specialised systems optimised for
efficiency in one narrow problem space, we require more generalist systems providing greater
effectiveness by keeping our option space as open and large as possible.

This paper is primarily about agile software; however, it should be of interest from a military
operational perspective because (a) much of the challenge comes from how we are going to
exploit agile technology in organizational and socio-technical terms and (b) the world of
software is actually part of the environment in which military conflict is (and will
increasingly be) situated, giving rise to new operational & security threats, and indeed
opportunities for conflict prosecution.

Flexibility
At the most general level, previous work has shown that flexibility of complex systems-of-
systems as a whole is addressed indirectly via consideration of the integratability and the
modifiability of individual systems [1].

From these two quality attributes, one can identify a range of behaviours expected of systems
that contribute to flexibility. In software engineering such systems are frequently described as
“loosely-coupled”; they minimise unnecessary, often hidden, dependencies and assumptions
— in particular, reducing the risk that changes within one module will create unanticipated
changes within other modules. Such attributes and behaviours include:

• Absence of vendor-specific or platform-specific constraints on any of the
technologies or message formats used (open standards are used).

• The system is made up of components, with clearly defined interfaces. The interface
of a component is separated from its implementation details.

• Components can discover one another dynamically by querying a directory, registry
or broker. This enables adaptable systems where components can be added, upgraded,
or removed easily.

• The system is composable; components can be assembled or interconnected into
larger structures to achieve a task. Components are provided with “connectors” to
enable them to interact with as-yet unknown and unforeseen components.

• A component is not required to be on a specific piece of hardware, or at a specific
network address (no reliance on fixed, “hard-coded” addresses) and is not assumed to
be always available (“treat failure as a normal condition”).

It is helpful to relate such behaviours to three perspectives on complex systems, namely
design-time, assemble-time, and run-time. These perspectives are discussed in more detail in
P. Beautement’s paper in the same series [2]. The components created at design-time, and the

connectors and interfaces they are equipped with, affect the potential combinations that can
be put together at assemble-time. The mechanisms for describing, finding, monitoring,
managing and manipulating components affect the run-time changes that can be executed.

It is believed by some that technology is the obstacle/limiting factor in agility; we shall argue
that this is not really the case. In the next section we present a proof of concept software tool,
and discuss some technical mechanisms applied to address the flexible behaviours described
above.

Proof of concept: Decision Desktop
We have developed a proof-of-concept agile information tool that can be used to acquire,
visualise and manipulate diverse and dynamic battlespace information, then create flexible
visualisations according to the immediate military imperative. It thus enables decision-makers
to get the information they want, when they want it, in a form that makes sense for the task at
hand.

Our design philosophy was to minimise design-time assumptions in order to maximise the
run-time flexibility of the system. In practical terms, we needed to avoid placing arbitrary
limitations on:

• Where information comes from;
• What information is required;
• The level of detail of the information;
• When information must be transferred;
• Mode of information transfer (push or pull)
• How the information will be displayed

The system is based upon an open extensible architecture. Many systems claim to have such
architecture, but are typically only extensible at design/compilation time: they produce fixed
artefacts that cannot be extended immediately at run-time. Decision Desktop aims to provide
extensibility at all stages (design-time, assemble-time and run-time).

The software is platform-independent via the use of the Java programming language, and
XML-based standards for information transfer, yet does not assume universal adoption of
these technologies since translator components can readily be connected.

We adopted a technical approach with several strands described below: flexible
visualisations, “plug-and-play” components, ontologies, and software agents and services. As
illustrated in Figure 1, information sources plugged into the system feed into a “cloud” of
interlinked information, semantically annotated according to ontologies defined by a user
community. Other plug-in components are created, configured and directly manipulated by
the user, extracting relevant fragments of information and flexibly mapping them to visual
elements (icons, colours, locations and times). These elements are rendered in the user
interface by further plug-ins (Views) that can flexibly present the information at different
levels of detail.

Flexible, generic visualisations. Visualisations (such as maps or Gantt charts) need to be
able to usefully display almost any type of object, in a variety of ways. They need to be able
to show multiple possible values (where information is conflicting or changing), and show
objects at different levels of detail or granularity. The ability to transfer a visualisation from
one Decision Desktop to another person’s local display device is also valuable.

Users can customise all aspects of the visualisation (what information is displayed and how it
is represented) to fit with their current concerns.

Objects displayed in views do not form a static “picture” presented to the user as a finished
artefact, but are interactive, enabling drilldown to further information about the object, and
enabling the object to be displayed in other views to gain different perspectives on it.

Plug-in
info

sources
Palet tePalette Time

Decoder
Time

Decoder
Icon

Library
Icon

Library

Information

Context

Locat ion
Decoder

Locat ion
Decoder

Views:

Filter

Other plugins:

“Semantic cloud” of information

Filter

Figure 1:Summary of Decision Desktop architecture. Information sources feed into a “cloud”
of interlinked information, from which plug-in components extract information, and map it to
visual elements that are rendered in the user interface by further components.

 “Plug-and-play” components. The majority of the system’s functionality is provided by
plugging components into a minimal core framework. The design allows new components to
be plugged in on-the-fly whilst the system is still running, and also provides for the addition
of entirely new classes of component with negligible effort. This allows new, unanticipated
information sources to be connected to the system without affecting existing parts of the
software. New views (such as geographical maps, Gantt charts or more abstract information
visualisations) can be added. Arbitrary filters, colour codes or symbology can be added at any
time. New information formats can be understood through the addition of plug-ins, enabling
rapid and incremental interoperability with unforeseen partner systems.

The components are the main objects with which the user interacts; they are the building
bricks with which an analyst or decision maker can explore and construct their view of the
world. The actual user interface is merely a view onto these building bricks, enabling them to
be manipulated. Beneath both of these layers is a separate information layer, implemented
using semantic web (ontology) approaches.

A Decision Desktop user interface is shown in Figure 2. The tree-view (“overview panel”) on
the left shows the available information sources and the components loaded into the system,
whilst the central area contains a number of views onto the information, such as maps,
timelines (Gantt charts) and images. Objects in views act as links to underlying data, enabling
“drill-down” to further details and provenance.

Semantic Web (ontologies). Any information system for dealing with a particular task will
embody some assumptions and definitions of the types of object that are relevant to that task;
for example, a banking system knows about accounts and customers; a medical system knows
about patients and treatments. Each system thus has some model of the world in which it
operates.

Unfortunately, such models are usually implicit and hidden (“hard-coded”) within the
software, and thus very hard to change. Adapting such systems to new situations can be
almost impossible without completely re-writing them.

Figure 2: A Decision Desktop user interface.

Ontologies provide a way to write explicit models. These separate models are much easier to
change and verify for new situations, and facilitate the merging of diverse information from
multiple, unanticipated sources. Decision Desktop uses ontologies to store domain
knowledge, meaning that the software is independent of any particular domain and thus more
adaptable.

Interlinked ontology-based data (a “Semantic Web”) can be dynamically queried by Decision
Desktop components to locate the information they need. This aids the integration of diverse
and unanticipated information, and “incremental interoperability”: extracting and translating
only the basic, most important data elements at first, to save time.

Software agents and services. Rather than accessing a static, predetermined structure of
databases and servers, flexible tools should be able to dynamically access information
providers as required by current operations.

A service is a software component with a well-defined interface, accessible via a network.
Whilst a service is generally passive (it acts only in response to incoming requests), an agent
is often active, assigned an ongoing task which it carries out semi-autonomously,
communicating with other agents or services as required [4][5]. Services and agents provide
infrastructure and tools to interconnect systems, translate and exchange information in
flexible, robust ways.

With appropriate support, Decision Desktop can dynamically discover services and agents on
a network in order to access diverse and unexpected information sources.

Experimentation. Decision Desktop was originally developed as part of the UK contribution
to the Coalition Agents Experiment [3][6][7], within the DARPA Control of Agent-Based
Systems programme. This experiment carried out a series of demonstrations showing the
runtime interoperability of heterogeneous systems; for example, the integration and display of
unexpected data from a new coalition partner at short notice (days or hours). Decision

Desktop was later used in the Shared Tactical Ground Picture coalition programme to display
ground track data (Figure 3).

Figure 3:Simulated ASTOR ground vehicle tracks displayed in Decision Desktop for the
Shared Tactical Ground Picture coalition program.

The data were in a format not supported by Decision Desktop’s map view, so a component
was created (in one day) and plugged in, enabling the new data to be understood and
displayed. Decision Desktop was connected to the experimental service-oriented
infrastructure via a further plug-in component.

Figure 4 shows the display of data from the Coalition Agents Experiment scenario, achieved
by the combination of a number of plug-in components — a map view to plot locations, a
“decoder” to read in these locations, filters to select which data to display, and one or more
palettes to colour the graphics according to chosen criteria. Libraries of icons can also be
applied, allowing any symbology to be used, or multiple symbology standards to be run in
parallel. The decoupling of data from its processing and display provides great flexibility,
allowing an operator to manifest portions of the “semantic cloud” of information in limitless
different ways (Figure 4).

1 2 3

 4 5 6

Figure 4: Given a single set of data, a user can switch in seconds between a number of
different interpretations of that data (or maintain different interpretations in separate views):
1) Several sets of submarine detection points, colour coded by confidence values; 2) the
average of each set; 3) the bounding box of each set; 4) tracks generated from the sets by
sorting them into time order; 5) points filtered by confidence value; 6) bounding boxes of
filtered points.

We believe that this proof of concept demonstrates that agility can be improved by shifting
efforts from design time “optimisation” towards run-time reconfiguration, placing the tools
for agility into the hands of military users in theatre, rather than service providers at home. A
challenge in this type of approach is the development of mechanisms and user interfaces to
keep the options as open as possible, yet manageable and “intellectually tractable” to end-
users.

Discussion

Agility
Work towards agile information tools throws up many questions and challenges:

• If we place flexible components in the hands of users as well as software developers,
will we be making new demands on users? Undoubtedly, new systems require some
re-learning — no complex tool can be picked up and instantly used to full potential.
We believe that any new efforts required will be more than compensated for by a
better match between the way we want to work and the way our IT systems allow us
to work. People are active problem solvers, not dumb process-followers; tools need to
support the ways that individuals and groups naturally work [8].

• How will this form of technical agility be used? It seems very likely that
experimentation and early deployment of such tools will inspire new variations and
unexpected techniques.

• Is this the right sort of agility? It is certainly only part of the solution, since agility at
the hardware and network levels is also a fruitful area of research.

• How will this local, “bottom-up” agility interact with larger scale “top-down”
reshaping of the overall system such that neither over-rides nor impedes the other?
One approach is to implement components within an environment governed by high-
level policies [9].

• Is there such a thing as too much agility or flexibility? It is certainly the case that
customisable systems and interfaces can be made too complex to understand or
manage. However, it is also the case that if flexibility is built-in, it can be turned off
or limited if necessary, exposing only simplified options. If flexibility is not built-in,
it cannot suddenly be provided when required.

• Does technical systems agility merely increase the complexity of someone else's job
(for example, information management or process control)? It seems likely that
Information Age warfare will require entirely new roles to be staffed and new skills
sought.

We believe that clear answers to such questions are only likely to emerge through
experimentation and engagement between the technical and military communities.

Processes
Many military activities involve numerous interlinked and parallel process elements, which
are well-defined (at any given time, staff understand what actions should be carried out in
response to certain messages) but unstable, in that process elements can evolve and develop
under command control.

Traditionally, C2 software solutions have concentrated on process-centric problems, in a
relatively static way, via one-off analysis of business process chains and subsequent
implementation of these fixed processes in software (Figure 5, bottom left).

More creative, process-neutral tasks are poorly supported, generally via ad-hoc use of
general-purpose office and collaborative tools (Figure 5, bottom right); Decision Desktop
addresses process-neutral tasks in a more dynamic manner (Figure 5, top right).

Dynamic
(run-time)

Fixed
(design-time)

Process-
neutral

Process-
centric

Decision
Desktop

Office
automation tools

Conventional
C2 software

Agents, SOA?

Figure 5: Categorising software tools according to their degree of dynamism and the degree
to which they are sensitive to specific processes.

There has been a tendency to warp activities to suit software, rather than vice versa, resulting
in process for the sake of process. The ubiquitous call-centre script is a prime example, that
frustrates callers and disempowers call-centre staff. It is sometime claimed that it is necessary
to standardise processes to exploit IT, but this is making people subservient to software, not
vice versa.

Work addressing this issue includes “Expressive Systems” [8] which aim to dispose of such
“processes of convenience”3. An Expressive System methodology will typically use user-
centric approaches such as brainstorming and rapid prototyping to develop systems that are
based not on processes (verbs) but on the objects and concepts that the end-users are familiar
with (nouns). These objects are represented in the software such that they behave in the
“obvious” manner4 (for example, dragging the icon for an air unit onto the icon for a target in
an air planning tool will begin creating a new mission). However, the current approaches
produce a fixed system from these exploratory prototypes, which is not runtime adaptable.

We argue, therefore, that processes cannot be defined once-and-for-all and buried inside
software, if agility is to be attained. Foreground manifestations of process elements are
required, which can be manipulated and edited as situations change. The software should
shape itself around these visible processes, rather than the processes being shaped around
what can conveniently be implemented with existing software.

Software may need to be aware of relevant process elements, but not embody a process.

How can run-time process-aware systems (to address the gap in the top left of Figure 5) be
implemented? Promising ideas for “orchestrating” services have emerged recently in the area
of Service Oriented Architecture, but there is a risk that old ideas based on heavyweight, fixed
processes will overwhelm potential agility benefits. A variety of dynamic approaches have
been developed over some years by the agent-based computing community but have yet to
gain widespread adoption. The key common element in these approaches is to write external

3 That is, the convenience of the requirements gatherer and the software developer, not the convenience
of the person eventually using the software.
4 The concept of perceived “affordances” is often used; the ideal is to make software as intuitive as a
push-plate on a door that should be pushed, or a handle on a door that should be pulled. Sadly even
door-handles are often designed badly in the real world.

descriptions of processes that are read in dynamically by the software, thus reducing the
assumptions built into the code5.

How to get there?
Technology is not the main obstacle or the “rate-determining step” in the path towards agility
— but that is not to say that C2 technology is mature or complete. We have barely scratched
the surface of what may be possible in tactical IS and are only exploring the first generation
of such systems.

These early attempts may founder if we make the mistake of bending the technology to fit old
processes, then blaming that technology if little improvement in capability is achieved.
Process, doctrine, training and technology will need to evolve together to form a coherent
whole. Any transformation in one element may lead to an initial loss of capability until others
catch up.

The ongoing research issue is not so much to understand how military decision makers could
work in agile ways — they already do — but how to design and procure technology that helps
rather than hinders them in exercising their creativity.

Specific questions to address include the tools or building blocks that make sense for different
roles and tasks — and indeed identifying how to usefully categorise roles and tasks. It seems
likely that there is a common toolset applicable to many roles (office tools, searching,
collating, linking) but also specialised sets.

The obstacles are not primarily technical but centre around the specification, procurement,
accreditation and exploitation of agile systems, as discussed in the following sections.

Acquisition
UK MOD digitisation initiatives have consistently identified the problem of dealing with
requirements change (system evolution, modifiability, flexibility, etc). The fundamental
problem is that the timeframe of change (i.e. the timeframe of deployment) does not match
the timeframe of procurement. Agile systems that can deal with changes within days or weeks
do not fit well within the current URD/SRD approach or the current approach to through life
support which are all part of the Smart Acquisition process [13].

Flexibility of a whole enterprise is a function of the modifiability and integratability of the
component parts, and their connectivity to future unknown systems, but such quality
attributes, or “ilities” are not easily measured and do not figure prominently in procurement
requirements. Measurements based on architectural assessment and scenario based-
assessment have been developed for this purpose [1].

Making use of flexibility requires that the configuration, management, and programming of
evolving systems can be separately competed. If the skills required to make changes to a
system reside only with a single main contractor, then the flexibility actually available in the
field is severely limited. In addition to skills, specific software licenses, development tools,
and intellectual property rights may also be required, but such aspects are not factored in to
current competitions. Systems should not be evaluated purely on their capability on day one,
but on what they can be modified to do in the future, and by whom.

Getting value out of agile and adaptable CIS components will require significant
experimentation in prototype and development environments. However, such
experimentation is increasingly difficult with SMART acquisition because:

• The funding (and time) for concept phase activity is being reduced in favour of earlier
industrial involvement.

5 This raises issues including the stability and longevity of the language(s) in which the processes are
described.

• Barriers to research prototypes evolving into production versions remain and may,
indeed, have strengthened.

• The whole emphasis in CIS acquisition is on driving out uncertainty (in costs,
benefits, risks) whereas, to genuinely exploit the possibilities, we may have to let go
of the myth that we can achieve certainty.

• Existing experimentation is conservative to avoid the possibility of failure and
embarrassment of industrial participants, and thus does not push the boundaries of
what is possible.

• There is conflict between the openness required for genuine experimentation, and the
commercial competition that is central to current UK procurement.

Thus the current UK acquisition process will need refining in order to obtain value from agile
component-based software.

Some pointers for acquisition [12] include:
• Reduce the emphasis on specifying design-time requirements, focussing on the

flexibility to satisfy tomorrow’s requirements rather than rigid conformance with
yesterday’s requirements.

• Understand the approaches, and develop metrics, that apply to each of the three
perspectives (design-time, build-time and run-time) such that architectures can be
assessed for flexibility [1].

• Understand how to employ tools in the run-time environment. Some uncertainties
can only be dealt with at run-time. Acquisition will need to provide tools that can
alter behaviour on-the-fly to meet the changing demands as operations are executed.

• Embrace heterogeneity and complexity. The reality of coalition operations is that it is
not possible to mandate a single standard. Approaches using active interoperability
negotiation at run-time rather than pre-defined information exchange requirements
should be explored.

• Exploit a mix of novel architectures. A variety of paradigms such as publish-
subscribe and service-orientation can work together to provide better coalition-wide
shared understanding.

Bold experimentation with the real possibility of failure is required, together with early
deployment of prototypes to engage end-users and determine the real usage and requirements.

Accreditation
Conventional security accreditation requires off-line analysis of a fixed configuration of a
relatively stove-piped system. Such an approach is untenable in any kind of system suitable
for network-centric working. Other changes in working, such as proposals to involve NGOs
inside military HQs, further break down traditional fixed security boundaries.

Any complex open system can manifest emergent properties – and one cannot ask questions
of the whole system since its boundaries are undefined and changing. However, one can
analyse each individual’s contribution to the whole, and the quality attributes of individuals
that will generate desirable behaviours of the whole. By analogy, how can one guarantee that
a nation’s entire armed forces will operate as expected? There are no guarantees, but we
tackle the problem by selecting and nurturing the qualities of individuals and the ethos of
groups, and by imposing rules, policies and penalties.

The shortcomings of existing approaches are acknowledged by many researchers, and efforts
are being made to extend or migrate approaches (including some formal methods) from
design-time to run-time, where possible. However, an overall culture shift may be required to
accommodate network-centric agile approaches.

There are new opportunities as well as new challenges. Component software can provide
more disciplined architectures, with less internal “spaghetti” interdependencies than
monolithic software. Security privileges can be granted to individual components rather than

entire systems, reducing the risk of information leakage. Unused components can simply be
removed, reducing the number of potential vulnerabilities. Components can be run in
environments that can enforce dynamic user-defined policies at run-time [3][6][7].

In a run-time configured system, an attacker has reduced confidence to proceed – the system
is not in any standard configuration and thus can’t so easily be attacked in an off-the-shelf,
“script-kiddie”6 fashion. There is no fixed, determinate model of the system and there may be
unknown “tripwires”. There is defence in diversity.

The Dependable Dynamic Distributed Computing project (D3C) is developing policy-based
run-time approaches for risk management of military security requirements [14]. It is
developing knowledge technologies that make more explicit, and improve, the dependability
of information systems. To date, a novel Domain Based Security semantic model and editor
have been developed. These allow security requirements to be formalised, providing a basis
for knowledge transfer between users and a means for machine reasoning support. These
provide commanders with a better understanding of the risks they face, and may enable more
complex and dynamic systems to be accredited.

An interim approach to mitigate security issues is to hold the flexibility back one level from
the front line, making the full power of systems available indirectly through a rapid delivery
cycle. Operation-specific components, queries, or web portals could be created and tested in a
safe “sandbox” environment, then deployed. However, the lack of interactivity and the
potential bottlenecks of such an approach may be unacceptable.

Conclusions
We inhabit a “run-time” world of uncertainty and change. This implies that C2 systems need
to be agile and flexible — reconfigurable at run-time, and with minimal built-in assumptions.

Agility can be improved by shifting efforts from design-time “optimisation” towards run-time
reconfiguration, placing the tools for agility into the hands of military users in theatre.

We have demonstrated that such run-time tools are possible via a proof-of-concept software
application called Decision Desktop, using component-based software development, and
ontologies.

It is thus not technology that is the leading constraint or rate-determining step for agility. The
main challenges concern the procurement, accreditation and exploitation of agile software:
open and bold experimentation is required to promote novel approaches and learn how agile
software can best serve people.

Acknowledgements
QinetiQ work was carried out under the UK MOD research programme, the Data &
Information Fusion Defence Technology Centre (DIF DTC) and also part funded by DARPA.
We gratefully acknowledge all those who contributed to the CoAX project. The views
contained herein are those of the author and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or implied, of the UK MOD,
DARPA, or QinetiQ.

6 http://en.wikipedia.org/wiki/Script_kiddie

http://en.wikipedia.org/wiki/Script_kiddie

References
[1] R. Taylor, P. Millington, B. Potter, Analysis methods for achieving desired emergent

properties in a complex system-of-systems, QinetiQ report
QINETIQ/KI/SEB/CR020597, March 2002.

[2] P. Beautement, Agile and Adaptive Coalition operations – Leveraging the Power of
Complex Environments, 11th ICCRTS.

[3] D. N. Allsopp, P. Beautement, M. Kirton, J. M. Bradshaw, N. Suri, A. Tate, M. Burstein,
The coalition agents experiment: network-enabled coalition operations, Journal of
Defence Science, Vol 8 No 3 (Sept 2003), pp 130–141.

[4] M. J. Kirton and N. R. Jennings, Software Agents and Interoperability, QinetiQ report
QinetiQ/KIS/SEB/CR020183/1.0.

[5] N. R. Jennings, K. Sycara, M. Wooldridge, 1998. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1:275–306.

[6] D. N. Allsopp, P. Beautement, J. M. Bradshaw, J. Carson, M. J. Kirton, N. Suri, A. Tate,
Software agents as facilitators of coherent coalition operations, 6th ICCRTS, 19-21
June 2001, US Naval Academy, Annapolis, MD, USA.

[7] D. N. Allsopp, P. Beautement, J. M. Bradshaw, E. H. Durfee, M. Kirton, C. A.
 Knoblock, N. Suri, A. Tate, C. W. Thompson, Coalition Agents Experiment: Multiagent
Cooperation in International Coalitions, IEEE Intelligent Systems special issue on
Coalition Operations, May/June 2002, pp 26–35.

[8] J. Hollan, E. Hutchins and D. Kirsh, Distributed cognition: Toward a new foundation for
human--computer interaction research. ACM Transactions on Computer-Human
Interaction, 7(2), June 2000, pp. 174–196.

[9] J. M. Bradshaw, S. Dutfield, P. Benoit, J. D. Woolley (1997) KAoS: Toward an
industrial-strength generic agent architecture, In J. M. Bradshaw (Ed.), Software
Agents, (pp. 375–418), Cambridge, MA: AAAI Press/The MIT Press,
http://www.ihmc.us/research/projects/KAoS/ .

[10] R. Pawson, Expressive Systems: A Manifesto for Radical Business Software, 2001, CSC
Computer Sciences, ISBN: 0953974405.

[11] M. Greaves, H. Holmback, and J. M. Bradshaw. What is a conversation policy? In
Greaves and Bradshaw, editors, Proceedings of the Autonomous Agents '99 Workshop
on Specifying and Implementing Conversation Policies, 1999.

[12] P. Beautement, The coalition agents experiment: a prototype for network-enabled
coalition capabilities, RUSI Defence Systems, July 2004, Vol. 7, No. 1.

[13] J. Satchell, R. Taylor, N. Howden, Scripting language practice and potential
applications in MOD computing systems, QinetiQ report
QINETIQ/KI/SEB/CR020279/1.0, February 2002.

[14] N. J. Briscombe, T. A. Sheppard, G.M. Watson, Dependable Dynamic Distributed
Computing (D3C): Annual Report, QINETIQ/05/00536/1.0, 30 April 2006.

http://www.ihmc.us/research/projects/KAoS/

	Abstract
	Introduction
	Flexibility

	Proof of concept: Decision Desktop
	Discussion
	Agility
	Processes
	How to get there?
	Acquisition
	Accreditation

	Conclusions
	Acknowledgements
	 References

