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Abstract:
 
This paper presents further development and extension of the ideas presented at the 
2004 CCRTS. The challenges and issues involved in measuring effectiveness are 
further explored and a method is proposed to guide its measurement based on 
approaches currently applied within the discipline of Decision Science. The 
proliferation of Networked systems has increased the importance of being able to 
model networked systems and to incorporate both quantitative and qualitative 
measures.  
 
Effectiveness is defined emphasising that it is a problem domain measure which needs 
to support the comparison of systems. A simple thought experiment clarifies and 
illustrates various issues associated with aggregating measures of performance (MoP) 
and comparing MoEs. This experiment highlights the difficulty in creating MoEs 
from MoPs and prompts a mathematical characterisation of MoE which allows 
Decision Science techniques to be applied.  
 
Value Focussed Thinking (VFT) provides a disciplined approach to decomposing a 
system and Bayesian Network (BN) Influence Diagrams provide a modelling 
paradigm allowing the effectiveness relationships between system components to be 
modelled and quantified. The combination of these two techniques creates a 
framework to support the rigorous combination measurement of effectiveness. 
  
The paper concludes with a tabulation of the types of systems to which this approach 
can be applied. 
 



 

Introduction  
 
Earlier investigations by the authors [1, 10] and others [2,3,4,5,6,7,8,9] revealed 
various issues which are still to be resolved when attempting to define and measure 
system effectiveness. Many of these issues are becoming increasingly important as 
systems are networked together. The major ones are:  
• the need to deal with a system in its broader system context (as part of a system of 

systems);  
• the failure to predict the effectiveness of disruptive technology; 
• the increasingly important need to combine both quantitative and qualitative 

measures (particularly in Networked systems) and  
• the relationship between performance measures and effectiveness measures and 

how to aggregate these measures.  
 
In addition, it is becoming just as important to be able to deal with uncertainty. This 
uncertainty can occur in the effectiveness measures, the interactions between system 
components and even in the contributions of system components to overall 
effectiveness.  
 
A simple thought experiment suggests that many approaches to mapping performance 
measures to effectiveness measures are inadequate, especially as systems become 
more networked and complex in behaviour. To overcome the shortcomings of 
traditional approaches to measuring effectiveness it is proposed that it is critical to 
measure effectiveness in the problem domain and an approach from Decision Science 
is used to produce a clear distinction between the problem and solution domain. The 
problem domain objectives are used to create a Bayesian Network model of the 
interactions between elements in such a way that the effectiveness of the elements can 
be combined to indicate overall effectiveness.  
 

MoE definition 
Various definitions have been proposed, beginning in the 1950’s and progressing 
through MORS and NATO definitions in the 1980’s [6]. These definitions are largely 
hierarchical and have yet to resolve how to aggregate and propagate performance and 
effectiveness measures through the hierarchies. These definitions tended to focus on 
measurement and effectiveness criteria. Sproles (2002) [2, 3] refocussed the 
discussion of effectiveness back to the more general question of “Does this meet my 
need?” and hence defined Measures of Effectiveness (MoE) as  
 
“standards against which the capability of a solution to meet the needs of a problem 
may be judged. The standards are specific properties that any potential solution 
must exhibit to some extent. MoEs are independent of any solution and do not 
specify performance or criteria”.  
 
Needs can be satisfied by various solutions. The solutions may be unique or may 
share aspects of other solutions. Each solution may (and usually will) have different 
performance measures.  



 
Sproles distinguishes between Measures of Performance (MoP) and MoE by declaring 
that MoP measures the internal characteristics of a solution while MoE measure 
external parameters that are independent of the solution – a measurement of how well 
the problem has been solved.  
 
The primary focus of the framework proposed here is to compare systems and to 
produce a rank ordering of effectiveness, as suggested by Dockery’s (1986) MoE 
definition [8]  
 
“A measure of effectiveness is any mutually agreeable parameter of the problem 
which induces a rank ordering on the perceived set of goals”.  
 
The goal is not to derive absolute measures as they do not support the making of 
comparisons between disparate systems whose measures may be based on totally 
different characteristics and produce values with different ranges and scales. 
 
The two aspects of these definitions of MoE were emphasised in the definition of 
MoE by  Smith and Clark (2004) [1]  
 
“A measure of the ability of a system to meet its specified needs (or requirements) 
from a particular viewpoint(s). This measure may be quantitative or qualitative and 
it allows comparable systems to be ranked. These effectiveness measures are 
defined in the problem-space. Implicit in the meeting of problem requirements is 
that threshold values must be exceeded”.  
 
In common with Sproles [3], it is accepted that effectiveness is a measure associated 
with the problem domain (what are we trying to achieve) and that performance 
measures are associated with the solution domain (how are we solving the problem). 
 

A Simple Thought Experiment  
To investigate the challenges of measuring effectiveness a simple thought experiment 
[10] was developed and various measurement ideas were tested. This experiment had 
the important characteristics that: (1) everything was measurable, (2) effectiveness (in 
the problem domain) was easily specified and (3) various measurement regimes could 
be tested. The experiment consisted of various simple computer programs which all 
produce identical outputs (except for a deliberately incorrect one). For the purposes of 
this experiment a computer program can be viewed as a sequence of activities which 
use and manipulate resources (computing variables, memory, power etc). This is 
directly analogous to any system which sequences activities and manipulates 
resources.  
 
Within the context of computer programming, an effective program is one which 
produces the correct outcome, based on various constraints. Given correctness, it is 
generally accepted that a program which is faster and uses less resources (whatever 
this may mean) is more effective. Five programs were developed, for brevity only 
three will be discussed (MoE3 is deliberating incorrect). The programs (Figure 1) 
have the following form: 
 



Program Program 
     MoE3(in,out); 
Var X,Y,Z : real; 
   K: integer; 
Begin  
    X :=0; Y:= 0;Z :=0; 
    While (X<101) do 
 Begin 
         Z := – Y; 
    Y := Y + X;  
   X :=  X + 1; 
   Out(Z); 
 End; {of while } 
End. 
Figure 1 Simple programs 
 

     MoE4(in,out); 
Var X,Y,Z : real; 
   K: integer; 
Begin  
  X :=0; Y:= 0;Z := 0; 
  While (X<101) do 
     Begin 
       Z := – Y; 
       X :=  X + 1; 
       Y := Y + X; 
       Out(Z); 
    End; {of while } 
  End.

Program 
     MoE5(in,out); 
Var X,Y,Z : real; 
   K: integer; 
Begin  
  X :=0; Y:= 0;  
 For K:=0 to 100 do 
  begin 
     Z := – Y; 
     Y := Y + K; 
     Out(Z); 
  End; {of for K} 
End. 
 

In terms of correctness, the variable Z in Out(Z) defines a correct and hence an 
effective program. In common with most approaches to measuring effectiveness, the 
effectiveness of these programs can be characterised by simple measures based on 
variable usage (that is, memory reference to the variable) and be formulated as an 
aggregate of these base level measures (MoPs). The MoEs chosen (without loss of 
generality) were average variable usage and weighted average variable usage (biased 
towards X or Z).  The variables of interest (within the programs) are K X, Y, Z and 
the measures chosen are (for a single loop of the code): 
 
 (usage(K) + usage(X) + usage(Y) + usage(Z) ) /4   average 
 (2/3 usage(K)+ 2/3 usage(X) + 2/3 usage(Y) + 2 usage(Z) ) /4  weighted Z 
 (2/3 usage(K)+ 2 usage(X) + 2/3 usage(Y) + 2/3 usage(Z) ) /4  weighted X 
 
These measures have been chosen to be consistent with Utility Theory approaches 
(that is, Utility is a weighted sum of utility with weights constrained to be between 0 
and 1 and summing to 1). Usage is a simple count of the use of the variable. This 
formulation of effectiveness parallels the approach taken by many authors [11, 12]. 
The variable usage and MoEs are shown in the Figure 2 where it can be seen that 
MoE3 and MoE4 have identical values even though MoE3 produces an incorrect 
output and hence is not effective.  
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Figure 2 MoE comparisons for thought experiment  



This simple experiment highlights a critical aspect of comparing effectiveness 
between systems, namely that at the low level (performance) two systems can have 
identical measures and hence produce identical aggregate effectiveness measures even 
though one system is actually not effective. As an aside, based on any measure used, 
MoE5 uses fewer resources and hence is comparatively more effective. 
   
Although it is obvious that MoE3 is not effective because the lines of code have been 
switched (X needs to be incremented before Y is updated). This comparison is not so 
obvious or easy when complex, networked, or future (vaguely defined) systems are 
compared. Due to complexity or uncertainty we cannot compare systems based on 
outcomes (which maybe unknown) but we continue to measure effectiveness on the 
assumption that internal measures aggregate to indicate effectiveness. This simple 
experiment provides a counter-example to the validity of this approach and suggests 
that further thought needs to be devoted to deciding how to measure effectiveness. 
 
Even within the constrained circumstances of this simple experiment various 
observations can be made: 

• Choosing appropriate measures is non-trivial:  Even with clearly identified and 
measurable elements there is no obvious candidate for which internal 
attributes to use or at what level of granularity.  

• Even though everything is measurable, the choice of aggregation method is 
challenging: is any particular form superior or doesn’t it matter? At the 
performance level no aggregated measure will distinguish between MoE3 and 
MoE4. MoE5 appears to be best but could some alternative choice of measure 
have changed this outcome? 

• Identical performance measures can be aggregated to give identical 
effectiveness measures even though one system is not effective. Measures in 
the solution domain can provide misleading indications of effectiveness in the 
problem domain. Just creating a measure from MoP’s does not guarantee an 
adequate MoE. 

• Given the failure to distinguish effectiveness based on internal measures, 
maybe more holistic measures (like structural complexity, or runtime) which 
are in the problem domain should be considered: MoP5 is best, based on any 
measure. This strongly suggests that, based purely on internal performance 
measures, it is most effective solution and it would be expected that holistic 
measures would confirm this view. 

• Given compliance, comparative effectiveness makes sense. In other words, 
given the achievement of requirements, other attributes can enable the ranking 
of systems. 

 
 

Measuring Effectiveness  
The simple thought experiment suggests that, for ranking of comparable systems, 
effectiveness measures need to capture the problem domain requirements and map the 
solution back to this problem domain.  This mapping will not always be direct, as 
shown above. MoE needs to compare and aggregate effectiveness measures in the 
problem domain and these measures may be influenced and quantified by measuring 
attributes in the solution domain. Measurement Theory [13, 14] highlights the 
challenges and constraints on the validity of this mapping process. 



 
MoE Properties 
To achieve the aims of the definition of effectiveness (Smith and Clark, above), 
effectiveness measures should have the following properties: 

1. The measure needs to increase as effectiveness increases (not all weighted 
sums will do this), 

2. The measure needs to be bounded above by an ideal system and bounded 
below by zero for non-compliance, 

3. To manage complexity and allow for system decomposition, any measure 
needs to represent and support system decomposition and aggregation (for 
equivalent systems aggregate measures must be equivalent regardless of level 
of decomposition). 

4. To facilitate comparisons between systems (which may have different internal 
characteristics and differing primary purposes) it is necessary to normalise the 
final effectiveness scores. The range [0,1] is chosen (with 0 denoting an 
ineffective system and 1 denoting a perfectly effective system)  

5. Ideally the measures should be ratio scales [13, 14] which means that they 
have a natural zero point and numbers which are multiples of each other 
directly indicate their value.  (For example, a system with an effectiveness 
measure of 0.8 is twice as effectiveness as a system with a measure of 0.4). 
Ratio scales directly support the achievement of properties 1 to 4. 

 
 
These properties should be used to choose amongst alternative approaches to defining 
MoEs. Two approaches from Decision Science meet these mathematical requirements 
and are considered as candidates for measuring effectiveness: 
1. Multi-attribute Utility Theory (MUAT) [11, 12, 15] and Value Focussed Thinking 

(VFT) [15, 16]. 
2. The probabilistic modelling technique of Bayesian Network and Influence 

Diagrams (BN) [10, 17, 18].  
Both these approaches deal with measures between 0 and 1 with MUAT measuring  
utility and BN using probability. 
 
MAUT and VFT 
 
Multi-attribute Utility Theory (MAUT) is used to formulate and evaluate utility 
functions and Value Focussed Thinking (VFT) is used to determine the fundamental 
objective and value hierarchy used to derive the utility function. Values are the 
attributes that the fundamental objectives are measured against to confirm their 
attainment. VFT also creates a means-end network indicating how the fundamental 
objective will be attained. The value hierarchy is derived from the problem domain 
whilst the means-end network of a system is determined in the solution domain.  
 
To measure effectiveness the fundamental objectives are critical as they provide the 
values against which effectiveness will be assessed; VFT dictates that fundamental 
objectives should have these properties: 

• Essential: indicate consequences in terms of the fundamental reasons for 
interest in the situation 

• Complete: include all fundamental aspects of consequences 



• Measurable: to define objectives precisely and to specify the degree to which 
objectives may be achieved 

• Operational: to render the collection of information required for an analysis 
reasonable considering the time and effort available 

• Decomposable: to allow separate treatment of different objectives in the 
analysis 

• Non-redundant: to avoid double counting 
• Concise: to reduce no. of objectives needed for analysis 
• Controllable: address consequences influenced by choice of alternatives 
• Understandable: to facilitate generation and communication of insights. 

 
Expected Utility, Figure 3, expresses the worth of a consequence. Expected utility is 
the probabilistically weighted sum of the utilities. In Decision Science under 
uncertainty, it is considered “rational” to choose between a’ and a” based on the value 
of expected utility. MUAT provides a basis for measuring expected utility but the 
formulation of the utility function is dependent on many complex independence 
conditions being established. These independence conditions are difficult to establish 
and verify and consequently MUAT is considered unsuitable for measuring 
effectiveness in complex domains, like NCW. (Often these conditions are assumed to 
be true, thus weakening the validity of the measure). The MUAT formulation is 
directly analogous to the approaches used in the simple thought experiment, described 
earlier. 

  
Figure 3 Expected Utility 
 
So in summary, VFT provides a well-grounded, consistent mathematical framework 
to analyse and model the problem domain to produce a value hierarchy and a means-
end network. This is achieved by focussing on the fundamental objective and the 
values that allow their attainment to be measured. As such it is an ideal first step in an 
approach to decompose systems to facilitate effectiveness measurement. 
 
 
Influence Diagrams and Bayes Networks 
 



The VFT model and values provide the characteristics against which effectiveness 
should be measured. But it is still necessary to provide a mechanism that can 
aggregate these measures, derived from the value model. Since the VFT describes 
relationships it is appropriate to find a paradigm which can model relationships and 
allow their causative effects to be aggregated. Such an approach is Influence 
Diagrams based on Bayesian Inference (commonly called Bayesian Networks, BN). 
In common with MUAT, BN provides a well-grounded, consistent mathematical 
framework which (in addition) supports the forward and backwards propagation of 
evidence1. So it is able to answer the questions: 
If I observe something  

• what may have caused this?  
• what outcomes will this influence? 
 

So within an effectiveness context, this rule can be used to answer the question “what 
is the effectiveness of a system given the effectiveness of another system?” 
 
BN are acyclic directed graphs [19] with each node representing a variable and each 
arc representing a causal relation between two nodes [20, 21]. Arcs (or their absence) 
represent the conditional dependence or independence between nodes.  The strength 
of influence is quantified by a conditional probability distribution for each node given 
its predecessors [19]. A BN is able to update the probabilities in uncertain nodes 
(using Bayes rule) given evidence obtained from related nodes. This property and the 
intuitive way BN model complex relationships among nodes make them a suitable 
technique for building causative models [17, 18]. There is evidence [22] to suggest 
that their predictive value is robust against incorrect estimates of the probability 
values populating the nodes as long as the causative links are correct and have 
appropriate weighting. 
 
For military systems, and particularly networked systems based on new technology, 
there is often insufficient data (or operational experience) to quantify a system’s 
effectiveness. So recourse is often made to expert judgement to guestimate 
effectiveness. In addition, to classical statements of effectiveness, such subjective 
(qualitative) judgement needs to be handled. Cox’s work [23, 24] is accepted as the 
justification for the use of subjective probability2 within a Bayesian framework [18]. 
Cox derived Bayes’ rule (and other probabilistic rules) from the rules of logic and two 
axioms3 without reference to the frequentist definition of probability. He thus argued 

                                                 
1 Bayes law states: Pr(a|b) = Pr(b) x Pr(b|a) / Pr(a). 
The notation Pr(a|b) means the probability of a given b.  
And by simple rearrangement:  Pr(b|a) = Pr(a) x Pr(a|b) / Pr(b).  
This justifies forward and backward propagation of evidence.  
 
2 Cox (1946) claimed that probability theory, in essence, has involved two ideas: “the idea of frequency 
in an ensemble and the idea of reasonable expectation”. Reasonable expectation is the probability of an 
event which is not based on extensive trials but more on subjective judgement and expert opinion. It 
provides a “measure of the reasonable expectation of an event in a single trial”.  
3 These axioms (1961) are:  
 (1.i) “the probability of an inference on given evidence determines the probability of its 
contradictory on the same evidence”; and 
 (1.ii) “the probability on given evidence that both of two inferences are true is determined by 
their separate probabilities, one on the given evidence, the other on this evidence with the additional 
assumption that the first inference is true”.  



that subjective probability is equally valid for modelling causal relationships under 
uncertainty [18]. 
 
So by measuring effectiveness and using values between zero and one it is possible to 
aggregate their effects as long as their causative relations can be established. The 
outputs from VFT provide both these components so it is possible to build a BN to 
model effectiveness in such a way that total system effectiveness can be inferred from 
subsystem effectiveness [17]. This assessment of effectiveness can be performed in 
both a “forward” and “reverse” direction; that is, given subsystem effectiveness total 
system effectiveness can be determined or if a system is effective, measures of 
required subsystem effectiveness can be inferred. 
 
The significant outcome from this two stage framework (VFT followed by BN4, 
Figure 4), is that MoE (from the Values Hierarchy) is assessed by aggregating MoEs, 
not MoPs (which are described by the means-end network). That is, the BN models 
the impact of one component on the effectiveness of another component. To reduce 
the complexity of the models produced, it is recommended that the high level BN be 
defined purely in terms of effectiveness nodes5. This separation of concerns (only 
working in the effectiveness domain) greatly simplifies the system model. This 
simplification is supported by Keeney’s argument [15] that many decision 
assessments fail because the means-end network is intertwined with the value 
hierarchy.  
 

 
Figure 4 Framework for Measuring Effectiveness 

                                                                                                                                            
Both these “axioms” can be considered to be valid in the domain of measuring effectiveness; that is, 
effectiveness and its inverse are related and the effectiveness of a two systems combined is dependent 
on the effectiveness of the first system, if the systems are causally related. 
4 Maxwell et al [16] describes an approach to using VFT to build BN to assist military decision-makers 
which proposes a method of eliciting and transforming fundamental objectives hierarchies into BN. 
Their approach has not been used in the examples that illustrate the framework proposed in this paper 
as decision-making considers different parameters to effectiveness. 
5 If performance measures can be causatively mapped to an effectiveness measure then the BN 
approach can be also used to calculate this measure but this mapping should be done within a 
subsidiary model. 



 
To illustrate this framework, two examples are presented. One is from the domain of 
film photography where a pre-existing value model is directly mapped into a BN. This 
example is used to test the validity of MoE aggregation, in a domain that is well 
understood. The second is from the military domain where VFT is used to define a 
value hierarchy that is used to develop a BN. Software supporting BN (GeNIe, [25]), 
is used to illustrate this approach.  
 
Example 1: Feininger’s Perfect Negative 
 
Feininger [26] presents a succinct model6 describing the vital operations and the 
control devices used in photography to produce a “perfect negative”, Figure 5. The 
arrows indicate cause and effect relations where the node at the head of the arrow is 
influenced by the node at the start of the arrow. 
 

 
Figure 5 Feininger perfect negative 
 
This model can be directly modelled as a BN as it satisfies the requirement of being 
acyclic, that is, no successor node links back to a predecessor node. The nodes within 
the enclosing box express the values (and fundamental objective) required to give a 
perfect negative. It is particularly interesting that this model is absent of traditional 
performance measures. The model is very much in the problem domain and largely 
eschews solution issues, that is, it doesn’t specify performance measures like 
resolution (sharpness), tonal range (contrast, density) etc. These may be used to 
quantify the value nodes but the value nodes can just as usefully be specified by 
subjective judgments7.  
 
                                                 
6 It exemplifies a good model in that it clearly identifies the critical aspects of making a negative and is 
multi-layered with causative connections which “jump” layers (ie has some complexity). That is, it is 
sufficiently rich to accurately describe the process without being so complex that it cannot be 
understood. 
7 In the case of subjective judgment, the validity of the BN is largely judged against the BN producing 
outcomes which match expert expectations. 



Feininger’s model is largely timeless in the sense that it is just as applicable to the 
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first cameras as it is to the last of the film cameras. His causal model has decompos
the problem space such that at any level, effectiveness can be judged by reference to 
its preceding nodes, that is, a perfect negative is based on sharpness, density and 
contrast being correct, etc.  
 
T
values in the nodes show the probabilistic characterization of the states. They sho
be interpreted as effectiveness measures. These states, within a node, need to be 
exhaustive and sum to one (100% in GeNIe)8. 
 

 
Figure 6 All control devices ineffective 
 
B
stop) etc) and the contribution of each node to its successors (including joint 
contributions) it is possible to measure the extent to which a perfect negative 
attained. Because a BN supports backwards propagation (of evidence), the assig
of effectiveness to the perfect negative node can be used to indicate the effectiveness 
required of the predecessor nodes9.  
 
T
following figures illustrate what can be achieved by experimenting with various 
values in the nodes. In Figure 6 all the vital operations are set to failure. The outc
is not 100% “imperfect” as the transfer of effectiveness allow for some imprecision in 
the measures. In this case, the Bayesian propagation of effectiveness is consistent with 
intuition.  
 

 
8 Any minor discrepancies are due to display issues associated with numerical rounding 
9 In a practice, both forward and backward propagation are used to get the values to a steady state (so 
the assignment of values to some nodes will allow the unassigned nodes to be updated) 
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(thermometer & timer node) correct, Feininger’s model indicates (Figure 7) that 
contrast has improved, but an imperfect negative is still produced because the density
and sharpness are still inadequate. This example shows how the effectiveness impacts 
flow through the BN by the process of evidence propagation. 
 

.  
F
 
T
perfect negative. 

 
Figure 8 Good Inputs 

 good model needs to be a fair representation of the relationship between nodes and 
  

 
A
the probabilistic values used to indicate the strength of the causal relationship between
the nodes need to fairly represent their impact on system effectiveness. Given that this 
is the case, Feininger’s model provides a mechanism to explore the impact on 



effectiveness of changing the effectiveness of the nodes.  Feininger’s model10 r
the maturity of the photographic field, but its simplicity belies the complexity which 
would be present if both the MoP and MoE were intermingled. 
 

eflects 

he goal should be to derive comparable models within the defence domain, by 
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xample 2: Surveillance and Response 

 military example involving multiple systems (both human and technological) 
 

 

al 

his model is not complete, but shows that the hierarchy is decomposed through 

ased on this VFT analysis of surveillance, the following causal model (Figure 10) 

irect 

                                                

T
focussing on the problem domain and the relationships between the problem elem
 
E
 
A
networked together is surveillance and response. For surveillance a VFT analysis
could produce a decomposition as shown in Figure 9. Note that the arrows here are
interpreted as saying that the node at the head of the arrow is composed of or uses 
nodes at the tail of the arrow. That is, the value hierarchy is not a necessarily a caus
structure. The land and littoral nodes are not expanded for brevity. 

 
Figure 9 Partial VFT decomposition for surveillance  
 
T
complete enumeration of sub-factors influencing a value node (fundamental 
objective) as dictated by VFT. 
 
B
can be developed (using GeNIe [19]). To include the response node it has been 
necessary to introduce interpretation to the model. The yellow nodes indicate a d
causal chain from persistent surveillance through to some response. The blue nodes 
indicate activities or attributes which can influence this causal chain. Treating each 
node as having an effectiveness measure in the range [0, 1] and aggregation rules 
based on its predecessors allows the model to be quantified. 
 

 
10 The preceding example was predefined by Feininger (without reference to VFT, based on his 
photographic expertise) and satisfied the conditions applicable to VFT decomposition. 



 
Figure 10 Causal chain for surveillance  
 
To convert Figure 10 to a BN the following assumptions shown (in annotation boxes) 
in Figure 11 have been made.  
 

 
Figure 11 Assumptions used to derive causal BN 
 
The BN nodes are populated with discrete states but they do not need to be binary; 
more states can be included to increase the fidelity of the model. Extra states increase 
the effort involved in quantifying impacts (fusion algorithm has three states). These 
nodes are populated with effectiveness values between 0 and 1 (0%-100%) and they 
need to sum to 1 (100%) to conform to the probabilistic requirements of BN, as 
shown in Figure 12. 



 
 
Figure 12 Impact of effective response 
 
By instantiating the model with effectiveness values the reasonableness of the model 
can be evaluated. By running the BN in reverse (that is, only setting response to 100% 
effective, the effectiveness requirements of the other nodes (to achieve this outcome) 
are calculated, as shown in Figure 12. By setting the available assets to unavailable, 
Figure 13, and using the default values, the BN shows how this would affect the 
effectiveness of the other nodes. Note that the response is now ineffective.  

 
 

 
Figure 13 No assets available 
 
A more realistic example of this approach could test the impact of the fusion 
algorithm on the effectiveness of the response when some nodes are given fixed 
values: namely, appropriate sensors (excellent), timeliness (on time). The outcomes 
are shown in Figure 14, Figure 15 and Figure 16. These permutations of the 
effectiveness values are presented to show the propagation of effectiveness values 
through the BN and confirm the reasonableness of the effectiveness predictions. This 
example shows response improving as the fusion algorithm improves. 



 
 

 
 
Figure 14 Impact of Poor Fusion Algorithm  

 
Figure 15 Impact of Good Fusion Algorithm  
 

 
Figure 16  Impact of Superior Fusion 
 



 
The assignment of effectiveness values to the nodes will be derived from expert 
knowledge or observation, by reference to subsidiary effectiveness models (other BN) 
or by aggregating performance measures11 to indicate a node’s effectiveness. 
 
A simple BN for surveillance and response has been presented which supports the 
assessment of effectiveness based on the effectiveness of the nodes which contribute 
to response. With this model it is possible to determine the impact of changing system 
effectiveness values to observe their impacts on total system effectiveness. These 
variations are equivalent to performing (high level) comparisons between alternative 
system configurations. For example:  what is the impact on achieving an effective 
response if no assets are available to provide surveillance on demand or what would 
be the impact of using a system with inferior data fusion capability.  
 
This approach provides an alternative to other approaches to measuring effectiveness 
which supports a mathematically valid method for incorporating uncertainty and 
propagating the impact of effectiveness through a networked system12. 

                                                 
11 As illustrated by the thought experiment described earlier in the paper, this aggregation of MoP’s can 
only be done when the process is consistent with the tenets of Measurement Theory. This process can 
be done using BN as long as the causal links and impacts between the measures can determined. 
12 The BN developed is not just a simple network connectivity diagram; it is based on the fundamental 
objectives of a system and their causal relations. 



 

Applicability of Framework 
Table 1 correlates the applicability of this framework to systems according to their 
characteristics. It defines the system type by nature of the technology, whether a VFT 
approach can determine its value structure, and whether a MoE which can be 
developed. 
 

MoE characterization    
     

system type 
Values 
Determined 

Model 
Determined MoE possible Example 

          

well defined 
interactions 
(causal 
relationships 
known) 

yes yes yes 

well known physics; 
known physical laws, 
for example:  ballistic 
missile 

undefined 
interactions yes partial 

only at high 
level NCW (now) 

disruptive 
technology  

yes(but 
wrong value 
structure) partial 

yes, but 
measures wrong 
attributes 

digital versus film 
cameras.  

sustaining 
technology yes yes yes 

improving radar 
technology 

new approaches 

partial (no 
experience 
to determine 
values at 
low level) 

partial 
(lack of 
knowledge)

partial(maybe at 
higher level, 
using value 
from 
comparable 
systems) 

early stage of radar, or 
totally new surveillance 
technique. Automated 
reasoning system 

evolving needs 
(assured 
technology) 

yes yes 
yes(but value 
trade-off 
difficult) 

stealth fighter (how is 
effectiveness of stealth 
combined with existing 
attributes)    

 
Table 1 Applicability of Approach 
 
Within the context of this framework it is surmised that an inability to create a value 
model (fundamental objectives and values) means that effectiveness cannot be 
modelled and measured. Sproles [3] gives examples of surrogate measures of 
effectiveness, but, within this framework, such measures cannot be validated and 
verified to be correct.  
 
For the undefined interactions category, it may be possible to determine the value 
structure but the causal (means-end) relations may be difficult to determine. 
 
Disruptive technology (and disruptive processes, like NCW) provide an interesting 
example of the problems of measuring effectiveness and particularly with placing too 



much emphasis on performance measures. That is, disruptive technology can be 
compared to current approaches but are often poorly placed because the traditional 
performance measures do not capture the value provided by the disruptive technology.  
 
For new approaches, high level value structures may possibly be defined but the 
creation of a means-end network to describe how the value will be created is a major 
challenge. Consequently it will be difficult to establish the causal relationships. 
 
Evolving needs describes systems where the initial values are no longer challenging 
and, in fact, the challenge may be the integration of new needs without destroying 
current value. Such systems create particular challenges in measuring effectiveness. 
That is, how do you weight the importance of traditional measures against the new 
measures, particularly as needs are being refined and evolve. 
 

Conclusion 
 
Consistent with the effectiveness definition used in this paper it is critical to maintain 
a focus on the “needs” of the system stakeholder. These needs define what is required 
for a system to be effective.  
 
A simple thought experiment highlighted the difficulty in mapping MoP to MoE. This 
difficulty suggests that there are two problems in measuring effectiveness; one is the 
mapping of MoP to MoE and the other is: given MoEs, how can they be combined to 
indicate the overall effectiveness of a system. This later problem is addressed in this 
paper and the former needs to be developed using the principles of Measurement 
Theory (which is outside the scope of this paper13). 
 
This thought experiment suggested that MoEs should have particular properties that 
support their aggregation. Given these properties, two approaches from Decision 
Science were investigated to support this aggregation: VFT with MUAT and BN. 
Given a VFT decomposition of a system, a BN allows the rigorous propagation of 
effectiveness values between causally connected nodes. In addition, BN support the 
use of both qualitative and quantitative effectiveness measures. This is particularly 
important as new technologies, scenarios and approaches are used by the military. 
  
The increasing complexity and uncertainty created by NCW demands that methods of 
measuring effectiveness be developed which ensure that a focus is maintained on the 
problem domain. This is particularly important as technology changes at a rapid pace 
and existing performance measures lose their relevance. Complexity and uncertainty 
also increase the importance of being able to combine objective measures and 
subjective judgement into the process of measuring effectiveness. The framework 
described here supports both of these goals with broad applicability to military 
systems. 
 

                                                 
13 The approach described here is applicable to mapping MoP to MoE as long as causality and the 
mathematical requirements of BN are met. 
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