
   

Title:  Facilitating Flexible and Versatile Centrally 
Administered Community of Interest (CACOI) Organization 

and Control  

Topic:  C2 Concepts and Organizations 

Authors:  Aaron Hatcher, Kevin Foltz, and Coimbatore 
Chandersekaran 

POC:  Kevin Foltz 

Name of Organization:  Institute for Defense Analyses 

Address:  4850 Mark Center Drive, Alexandria, VA 22311 

Telephone:  703-845-6625 

Fax:  703-845-6848 

Email:  kfoltz@ida.org 



   

Facilitating Flexible and Versatile Centrally Administered 
Community of Interest (CACOI) Organization and Control 

Abstract 
In a Command and Control (C2) environment, we are seeing an increasing trend 

toward the dynamic creation of small networks with a focused purpose, commonly called 
communities of interest (COIs).  As this trend continues we are likely to see many 
different combinations of systems assembled dynamically as needed.  These systems will 
not just send data back and forth, but also share services and essentially act as one 
network to provide integrated and timely C2 functionality.   

 
The Centrally Administered Community of Interest (CACOI) model was defined 

to cover many of the requirements of a COI in [1].  It was suggested that Microsoft .NET 
Server be used as the underlying operating system, specifically Windows Server 2000.  
The model had a few shortcomings that we seek to cover in this paper by switching to 
Windows Server 2003. 

 
We propose enhancements to the CACOI model that allow the contributing 

communities to share data that remains under their local control and also to control the 
flow of data using Microsoft’s Rights Management Server, a capability not present in any 
of the other COI models. 

1 Introduction 
We study collaboration among different organizations using the idea of a 

community of interest (COI).  We consider not just sharing of data, but collaborations 
requiring tight integration of all elements of the collaborating organizations.  Rapid 
assembly of collaborating partners is required, so these COIs must be established 
considerably more quickly and efficiently than setting up an entire new network.  
However, they must still be complete enough to provide the proper functionality and 
security measures to ensure safe interaction and sharing of resources.   

 
There has been work in collaboration.  The Department of Defense Goal Security 

Architecture (DGSA) [2] gives a high-level view of resource sharing over different 
physical networks.  Peer-to-peer (P2P) networks have been studied as a simple way to 
share resources.  In addition, some concerted efforts at collaboration have been 
undertaken. 

 
The Secure Virtual Enclave (SVE) model [4] retains the primary features of a P2P 

COI.  Resources remain under the control of the individual member domains, while each 
“enclave” contains architecture that maintains a list of its members.  Members share these 
lists and use them to authenticate and authorize users from outside their local domain.   

 
In a University of Maryland Model Dynamic Community (MDDC) [3], separate 

identity and authorization servers from multiple member domains combine for resource 



   

access.  Credentials are issued locally, but authorization credentials may be transferred 
from one domain to another.  The MDDC model also includes a threshold cryptographic 
mechanism for joint administration, and a method for prompt removal of members from 
the community. 

 
These models each address some requirements for a COI, but none fully satisfy 

them.  The DGSA is not feasible in its current state, as there are no practical designs for 
implementation.  The P2P, SVE, and MDDC models do not address confinement.  The 
P2P and SVE models offer no internal controls for group-based management.   

 
Some commercial DC models are available, but the sharing of complex resources 

such as databases and applications is difficult.  These application level models are also 
subject to lower level attacks, which could undermine their security. 

 
In [1], the idea of a Centrally Administered COI (CACOI) was introduced as a 

solution addressing many of the problems of previous COI models.  Rather than join 
community members on a P2P basis, this model creates a new domain from the member 
domains, which allows the community administration to be centralized. In general, this 
model does not achieve the transparency of the P2P approaches, since users require a 
separate authentication for the COI.  However, by encapsulating policy within the COI it 
offers a functionally richer model and simplifies several aspects of community operation. 
 
In [1] the general issues of setting up COIs were discussed in depth along with detailed 
comparisons of various models.  The rest of this section is a brief summary of the key 
COI requirements discussed in that paper and how the CACOI fulfills them. 
 
We suggested using Microsoft .NET servers, specifically Windows Server 2000, to 
implement the CACOI model.  The assumptions were that: 
1. Many businesses are using Windows 2000-based operating systems, and  
2. Active Directory (AD) and domain-based computing concepts allow for ready-made 
solutions to a lot of the COI issues. 
 
With this, we were able to address the major requirements of a COI. 
 

1.1 Secure Rapid Assembly 
An effective COI model must be able to be created quickly and securely.  We define 
“quick” setup to mean substantially faster than the creation of an organization’s full 
network.  If two large companies merge together, the setup for the final network may take 
a long time to plan out and implement.  If it is essential that the companies are able to 
work together immediately, a COI could be created to allow for rapid data sharing and 
cooperation between critical departments. 
 
The CACOI model uses the notion of a Windows Domain to satisfy this requirement.  
Setting up an isolated domain is very fast and, by use of Global Policy Objects (GPOs), 
the COI policy can be applied quickly and uniformly (once they have been decided upon 



   

by participants).  While the hardware required to set up the CACOI is a prohibitive 
factor, we suggest using a program like Virtual PC or Virtual Server to create the new 
Windows Domain Controller (DC) on simulated hardware. 
 
This Virtual PC configuration can be saved so that you have a ready-made domain 
controller requiring minimal configuration when a new community must be set up, 
dramatically reducing setup time and complexity. 

1.2 Data Isolation 
 
The CACOI model dictates that a participating organization must copy over or move the 
shared data to the newly created Windows Domain.  This very simple model enforces 
strict isolation; an organization puts what they want into the community and nothing else.  
Doing so does not grant any additional privileges to data that has not been uploaded and 
thus isolation is maintained. 

1.3 Data Confinement 
Because the data is all present in the domain representing the community, only a user 
with a login account in that domain can access the data.  Since the data is in one place, 
we can also enforce access control and can audit resource usage, both successful and 
unsuccessful attempts.   

2 Enhancements to the Data Sharing Model 

2.1 Shortcomings of CACOI Data Sharing 
One flaw of the CACOI model is the requirement that all shared data be either moved or 

copied to a central domain, or that the server holding the data must be joined to the domain.  In 
either case, data must be moved.  Moving or copying the data is a workable and fast solution for 
small or moderate amounts of data, but this solution does not scale well when there is a very large 
amount of data to be shared.  If two research organizations are collaborating on a project and need 
to share the results of a few simulations, there may be terabytes of data involved.  Joining their 
data servers to the CACOI domain is an option, but as it is currently implemented machines can 
only be a member of one Windows domain at a time. Users in the organization’s domain that are 
not in the COI would lose access to that information, which is not desirable.   

Also, when the data is shifted to the CACOI, the original organization loses control of 
their data.  If the organization seeks to withdraw from the agreement they do not have the power 
to withdraw the resources they shared with the rest of the community.  This may be viewed as a 
positive feature for the community as a whole but may be a very large negative for the individual 
organization who wants to leave the community.  Organizations may not be willing to enter into 
the community unless they know that they can share their data yet retain the power to deny access 
to it at a later date.  In the current model, once access is granted to that data by putting a copy in 
the CACOI it is forever granted.  A simple example of this would be a large and sensitive 
database.  A company might wish to allow queries to the database, but not access to the raw data 
itself.   

A major requirement mentioned above was that a COI must be easily and quickly 
configurable and this requirement that data be copied may interfere with that.  While we proposed 



   

using Virtual PC or Virtual Server to get around the hardware cost of setting up a new domain, 
what about storage space for large amounts of data?  It may still be necessary to purchase large 
amounts of storage equipment and join it to the domain, thus making the setup and configuration 
of a CACOI more expensive and potentially more complicated. 

2.2 Strengths of CACOI Data Sharing 
Whatever the flaws may have been, this shifting of data to a central location took care of 

many problems for us.  Isolation was no longer a question; if an organization only wants specific 
pieces of information shared with the COI, they need only upload those specific pieces.  It is 
impossible for users in other organizations, by virtue of being part of the COI, to gain access to 
any other data.  This level of isolation is very desirable for organizations with proprietary or 
sensitive data that they need to control, especially organizations that may be in limited 
cooperation with a competitive rival of theirs.  This level of separation in the CACOI model is 
something that we seek to maintain. 

Once the data was part of the CACOI domain, we could exercise a lot of control over it.  
In Windows Server 2000 domains, a user is able to share specific folders with the rest of the 
domain, dictating which principals can access the data through an Access Control List (ACL).  
Also, the user could dictate exactly which permissions these principles had (read, write, execute, 
modify, etc).  Principals can represent users or groups, allowing for either individual or role-
based authorization policies.  This level of granularity granted users a large amount of control in 
how they chose to share their data.  A user could implement a policy like “Share this folder with 
these three people from my domain with read/write privileges and members of the ‘Marketing’ 
group with read-only privileges”.  Such controls can be applied by group policy within the 
CACOI so, once the data was all gathered into one domain, we could implement effective 
confinement. 

2.3 Modifications to the Data Sharing Model 
While the sharing model mentioned above is used for isolation and containment once the 

data has already been moved to the CACOI’s domain, it may be possible to use this functionality 
to remove the requirement that data be moved in the first place.  To do so requires that we move 
from Windows Server 2000 to Windows Server 2003. 

Even in Windows 2000, this information sharing model can be extended across domain 
boundaries through trust relationships to encompass any principal in the domain’s forest due to 
the distributed nature of AD.  If the COI was created from separate domains within the same 
forest, we could relax the requirement that all data be moved into the new domain and simply 
require that access be granted to the data for principals in the CACOI.  This way, the domain that 
originally had ownership of the data can maintain ownership yet grant access (possibly even read-
only) to members of the COI. 

The issue is that often the COI will encompass organizations that aren’t part of one 
Windows forest.  In this situation, Windows Server 2000 hits its limits.  A user setting an ACL 
for a file can only name principals within that organization’s forest; any other user or group 
names are semantically meaningless.  For this reason, we suggested upgrading the operating 
system to Windows Server 2003. 

Windows Server 2003 extends the functionality of Windows Server 2000 by allowing a 
subset of the Administrators in a forest (members of the Enterprise Admins group) to set up trusts 
that cross forest boundaries.  In practice, this means a user in a Windows 2000 domain can name 
a principal in another domain within their forest because Windows Server automatically creates 
2-way trust relationships between domains created within the same DNS tree (like 



   

research.fake.org and marketing.fake.org—they share the same DNS suffix).  These trust 
relationships allow authentication requests to flow between the DCs for our fictitious marketing 
and research domains (AD uses DNS to allow the various DCs to find each other).  When a user 
tries to access a resource in the marketing domain using credentials from the research domain, the 
DC that handles authentication requests for marketing forwards the request to the DC in the 
research domain.  If the research domain DC says that the person supplied valid credentials, the 
marketing domain can trust this information (even though it didn’t authenticate the user itself) 
and move on to making an appropriate authorization decision.  Since the domains are able to get 
an authentication decision for principals whose records they don’t have locally, they can allow 
users to list those principals in their ACLs and enforce the policy. 

When a CACOI is created, it likely will encompass multiple, separate organizations and 
thus will be created as an independent domain in its own forest.  Windows 2000 limits trust 
relationships to one forest, so sharing data with the independent domain representing the CACOI 
must be done by copying or moving the data to its domain.  Since Windows Server 2003 allows 
servers to extend trust relationships across forest lines, a participating organization can establish a 
cross-forest trust with the CACOI.  Once this trust is established, the organization can grant 
access to principals in the CACOI with the same granularity it had in granting access to users 
within the domain.  Since all members of the COI have been assigned accounts in the CACOI, the 
participating organization can, by granting access only to their CACOI accounts, avoid having to 
set up complicated webs of trust with each participating organization.  Since a participating 
organization can grant access to a large amount of data by simply sharing that folder with 
restricted access, there is no need to copy very large amounts to the CACOI’s domain minimizing 
the hardware costs and setup time. 

Since the mechanism for sharing the data with the COI is the same mechanism that is 
used within the COI to share data, there would be no loss of access control or granularity.  This is 
preferable to joining the data server holding the information to the domain because, if the entire 
server shifts forests, the users who are part of the home organization lose control of the data.  
Also, this would allow the participating organization to maintain control of its data.  It can audit 
access from COI members locally and, if it chooses to leave the community, it could remove 
access to its data by simply severing the trust relationship with the CACOI’s domain. 

Sharing the data through a cross-forest trust with the CACOI is not the only option, just 
an additional one.  An organization can move or copy groups of files over to the CACOI’s 
domain and share others.  This allows the organization to judge the amount of control it needs to 
retain on a given datum and the only options are no longer “share completely” or “don’t share”.  
Now an organization can choose to share some files fully and permanently by copying them over 
and grant access to some more sensitive data yet retain more control over it.  In the case where an 
organization shares data that may frequently change, sharing the local copy will ensure that the 
view the COI has is always up to date.  The alternative is for an organization to create snapshots 
of the changing data and continuously upload them to the CACOI server.  This may or may not 
be feasible and would certainly cost more bandwidth. 

 

3 The Controlled Dissemination of Data within a COI 
Our updated CACOI model uses Windows Server 2003 which introduces another 

possibility—data flow control using Microsoft’s Rights Management Server.  To see why this is 
desirable, we should point out the shortcomings of the current models. 

If an organization wanted to participate in a COI (any model) it would likely share 
resources, possibly just a few Word documents, with select members of the other organizations.  



   

If the organization has very sensitive data, it may be important that only the specified people see 
the documents.  Isolation will ensure that only the documents that want to be shared are shared, 
and confinement can ensure that only the people who are supposed to have access to the 
document can access it. 

3.1 A Hole in the System 
This may sound like a solved problem, but this is not technically the case—

“confinement”, as implemented in most COI models, only ensures that the resource will be 
accessed from a given server by the people who are allowed to access it.  There is no protection 
against the person passing the document to someone else by copying it onto a memory stick or 
simply emailing the file over the internet.  Also, a compromised computer (worm/virus) could 
make very sensitive data available to people who aren’t meant to see it. 

If we encrypt the documents we can ensure that, in the case of a worm, the data will be 
useless to those not authorized to view it.  However, there is a problem with just encrypting a 
document; if the document is intended to be shared with someone, they’re going to need to be 
handed a decrypted form of the document or the decryption key (so that they can produce a 
decrypted form).  Once they have the decrypted document, nothing can stop them from passing 
that on to others. 

To gain true confinements, what is needed are “sticky rights”, rights that are passed with 
the document and enforced at every access attempt.  The document should be encrypted so that 
the file by itself is not useful and decryption should occur in a controlled manner.  By using a 
trusted program, we can also pass along privileges with the document (stating that it may or may 
not be copied, printed, saved, etc) which now severely limits the ability of a malicious insider to 
pass on the information to an unintended source. 

This is concept behind RMS.  When a document is to be protected, it should be encrypted 
so that nobody can read it without the right key.  To determine who has the rights to read it, an 
XML (specifically XrML) tag should be permanently attached that records the creator and the 
privileges they dictate to various principals.  In the next section we cover how it affects common 
usage. 

 

3.2 Controlling Data Flow Control in the CACOI Using RMS 
To get RMS functioning in a new domain, an administrator needs to install the RMS 

Server on a member server.  Once the RMS Server is configured and provisioned, any computer 
that’s going to connect to the CACOI need only have RMS aware applications, like Microsoft 
Outlook or Office, and install the RMS client software.  As we’re using Windows Server 2003 as 
our server and assuming Windows 2000 or XP as the client machines, the assumption that 
Outlook and Office will be used is a small one, and not even fully necessary.  Any RMS enabled 
word processor and email client can stand in their place but, as RMS is a new technology, there 
are currently few RMS enabled applications to choose from. 

While a Microsoft Exchange Server is not necessary for RMS to function, it is necessary 
to send and protect email.  Also, installation of the Exchange Server creates the Global Address 
List (GAL) that RMS can use to make naming principals easier.  Thus, we recommend 
installation of an Exchange Server in the CACOI domain. 

It is worth noting that producing and sharing unprotected documents is not hindered in 
any way.  When the RMS client software is installed, Word continues to make unprotected 
documents by default.  The noticeable change is that a button (and menu item) for permissions 
becomes active and, if you click on it, your account and your machine automatically contact the 
RMS Server, register themselves, and gain the keys necessary to produce protected data. 



   

The protected file can now be passed around like any other file but is not useful to 
someone who is not authorized to view it.  If you attempt to open it in Word, Word will display 
an error message telling you that you don’t have permission to view the file and tell you how to 
contact the author of the content.  Attempting to bypass the restrictions by viewing it in a hex 
editor, you can see the XrML header that specifies the location of the RMS server that protected 
the document, the owner, the public key of the server, and lots of other metadata.  However, you 
cannot view the actual contents of the document because it is encrypted.  The XrML header 
includes a digital signature as well so attempting to simply make yourself the document’s owner 
by changing fields in the header won’t work either. 

Flow control can be applied not just to documents that may be sent off via email but to 
emails themselves because sometimes sensitive information is present in the contents of an email.  
It is possible to compose an email in Outlook, list the recipients from the GAL, and dictate that 
they cannot forward (or print or copy) the email to others.  They will not be able to open the 
protected email until they’ve been authenticated to the RMS server (usually occurs automatically) 
and Outlook will enforce the distribution policy once the email has been decrypted. 

 This added layer of protection to documents and emails adds effective flow control to the 
CACOI model so that true containment is possible.  We hope that this extra protection will make 
organizations that have sensitive or proprietary material more likely to share it with other 
members of the COI. 

3.3 Possible Configurations 
In the domain of our CACOI, we suggest placing an Exchange Server and also an RMS 

server to allow for document protection.  When a participant creates a document that they want 
protected, they can create it using their account from the CACOI and apply RMS protections to it.  
As they can specifically name the principals from the CACOI that they want to grant access to 
and exactly which privileges they seek to grant, this creates a very powerful setup. 

However, it may be the case that organizations usually produce documents in their own 
domain and later send them to the CACOI.  If this is the case, the user may have to send a copy of 
the document unprotected, open it with the account the user has there, and then apply protections.  
While this is possible, it does not keep the document protected the entire time; there is a window 
in which someone else could access the file without restrictions.  If even such a small window is 
unacceptable, there are other configuration options available. 

RMS, like Windows Server 2003 itself, has the ability to create trusts with other RMS 
servers that cross the Windows forest boundary.  This means that an organization that already has 
an RMS server present in its home domain can set up a trust with the RMS server in the CACOI.  
This would allow the user to create the document using the account in their home domain, add 
principals from the CACOI to the ACL, and then send it to the CACOI fully protected.  All users 
or groups within the COI can be granted privileges without separately having to establish trusts 
between every home domain involved. 

4 Conclusion 
The updated CACOI Model using Windows Server 2003 not only enhances the 

capabilities of the original but adds features not present in any of the other models.  Due to the 
addition of cross-forest trusts, organizations not have the option to share data with the COI using 
the CACOI model but without having to copy or move the data over.  An organization would be 
able to maintain full control over its data because it has the ability to sever the trust relationship at 
any time. 



   

The presence of technology that can apply and enforce “sticky rights” in Windows Server 
2003 also allows us to enforce true confinement and controlled data dissemination.  Sharing data 
with the COI need not be as much of a risk, which hopefully will make organizations with highly 
sensitive data (proprietary, classified, etc) more comfortable taking part in such communities. 

5 Future Work 
We plan to review the robustness and scalability of the architecture and the richness of 

the policies.  As an example, when sharing data with a COI through Cross-Forest trusts, it is not 
clear who owns the auditing and other metadata associated with the resource and access attempts.  
This gets more complicated as the number of COIs and organizations grows.  We’d also like to 
perform an analysis of how these new modifications (organizations being able to withdraw their 
data, etc) affect the rules and dynamics of the community. 

6 References 
 
[1] Kevin Foltz, Coimbatore Chandersekaran, "Sharing Resources through Dynamic 

Communities," in Proceedings of The Tenth International Command and Control 
Research and Technology Symposium (ICCRTS 2005), Falls Church, VA, June 
2005. 

 
[2] Department of Defense (DoD) Goal Security Architecture (DGSA), Center for 

Information Systems Security (CISS), Defense Information System Security 
Program (DISSP), Version 3.0, 30 September 1995. 

[3] H. Khurana, “Negotiation and Management of Coalition Resources,” Ph.D. Thesis, 
2002, Department of Electrical and Computer Engineering, University of 
Maryland, College Park, MD. 

[4] D. Shands, R. Yee, J. Jacobs, E. J. Sebes, “Secure Virtual Enclaves:  Supporting 
Coalition Use of Distributed Application Technologies,” Proceedings of the 
Network and Distributed Systems Security Symposium, San Diego, February 
2000. 



   

Appendix 
Included here are diagrams illustrating the changes to our CACOI model.  

  

DDoommaaiinn  AA  
  

RReessoouurrccee  

AAddmmiinniissttrraattoorr  

CCDDAA  ((AAddmmiinniissttrraattoorr))  

DDoommaaiinn  BB  

CCAACCOOII 

Original CACOI Structure 

PPrriinncciippaall  

RReessoouurrccee  CCooppiieedd  

RReessoouurrccee  MMoovveedd  

PPrriinncciippaall  ggiivveenn  
CCAACCOOII  IIDD  

Figure 1: Structure of a CACOI. Note that all community 
resources are moved or copied into the community domain, and 
principals have new identities in the CACOI.  

  



   

 
 

 

  

DDoommaaiinn  AA  
  

RReessoouurrccee  

AAddmmiinniissttrraattoorr  

CCDDAA  ((AAddmmiinniissttrraattoorr))  

DDoommaaiinn  BB  

CCAACCOOII 

Modified CACOI Structure 

PPrriinncciippaall  

RReessoouurrccee  CCooppiieedd  

RReessoouurrccee    
MMoovveedd 

PPrriinncciippaall  ggiivveenn  
CCAACCOOII  IIDD  

Figure 2: The updated CACOI. Note that some resources are 
made accessible to the community but remain in their original 
domains. Resources with dark blocks are RMS protected 

  

RReessoouurrccee  MMaaddee  
AAvvaaiillaabbllee  vviiaa  
FFoorreesstt  TTrruusstt  

RRMMSS  SSeerrvveerr  

 
 


	1 Introduction
	1.1 Secure Rapid Assembly
	1.2 Data Isolation
	1.3 Data Confinement

	2 Enhancements to the Data Sharing Model
	2.1 Shortcomings of CACOI Data Sharing
	2.2 Strengths of CACOI Data Sharing
	2.3 Modifications to the Data Sharing Model

	3 The Controlled Dissemination of Data within a COI
	3.1 A Hole in the System
	3.2 Controlling Data Flow Control in the CACOI Using RMS
	3.3 Possible Configurations

	4 Conclusion
	5 Future Work
	6 References
	 Appendix

