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Abstract. 

Most military decision making requires a sequence of actions.  These actions may include 
aspects of intelligence gathering, troop movement, artillery fire, etc.  Typically these actions are 
tied to a specific goal that might include securing a region or disrupting the enemy forces.  
Furthermore, when making the necessary decisions to reach the specific goal, there may be a 
great deal of uncertainty about the situation.  Where exactly are the enemy troops?  What is their 
objective?  The use of Bayesian statistics makes it possible to compute optimal performance for 
military-like situations.  This research develops a model that provides the theoretical best 
performance that can be achieved in the task. An example task that can illustrate this condition is 
a seek-and-destroy mission in which there is an enemy at an unknown location within a certain 
region.  Using reconnaissance that is imprecise and artillery that is not always accurate the 
mission is to destroy the enemy.  Each action (intelligence gathering and artillery) comes at a 
specific cost. Furthermore, succeeding at destroying the enemy generates a reward and declaring 
“Mission Accomplished” when the enemy is still alive generates a significant cost.   

The current paradigm for the description and understanding of the nature of command and 
control (C2) system (C2S) operations and performance within the U.S. Army is undergoing a 
radical change.  Tactical battlefield C2 is extremely complicated to orchestrate and conduct in an 
effective manner.  With the introduction of a myriad of new information systems, sophisticated 
new weapons with unprecedented capabilities for lethality, new requirements for battlefield 
integration, and the total reorganization of force structures into a new modular concept, the need 
for effective understanding of how this force structure can work effectively as a system entity 
increases dramatically.  Indeed, the C2S has become complicated to the point as to escape the 
ability for intuitive understanding of how individual components or subsystems can improve or 
degrade the operation of the overall system.  The goal of this research is to understand the 
cognitive limitations associated with sequential decision making with uncertainty in these types 
of situations through predictive computer simulation.  By combining empirical research 
investigating optimal decision making under uncertainty with evolving simulations of military 
command and control, the potential now exists to correlate optimal decision making performance 
with actual outcomes on the battlefield.  The benefit of these simulations will be to enable the 
evaluations of new command and control subsystems that take into account optimal decision 
making performance as an evaluation metric.  
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1. Introduction. 
The traditional paradigm for the description and understanding of the nature of command and 
control (C2) system (C2S) operations and performance within the U.S. Army is currently 
undergoing a radical change.  The U.S. Army Field Manual FM 6-0 (Army, 2003) defines the 
C2S as “the arrangement of personnel, information management, procedures, and equipment and 
facilities essential for the commander to conduct operations.”  Tactical battlefield C2 is an 
extremely complicated action to orchestrate and conduct in an effective manner in its own right.  
However, with the introduction of of new information systems such as the Army Battle 
Command System (ABCS) (Army, 2002), sophisticated new weapons now exist with 
unprecedented capabilities for lethality and requirements for battlefield integration.  As they are 
contributing to a total reorganization of force structures into the new modularity concept, the 
need for effective understanding of how this system can work effectively as a system entity 
increases exponentially.  The fact is that the complexity of the modern C2S has surpassed the 
ability for an intuitive understanding of how individual components or subsystems can improve 
or degrade the operation of the overall system.  This situation poses the question of how to 
further develop and improve the performance of the C2S without making changes that might 
actually degrade its effectiveness.  From this it becomes apparent that some systematic approach 
is needed to predict and evaluate the effects of changes, additions, and improvements on this 
system will have on its overall ability to conduct battlespace management.     

1.1. The Command and Control System’s Demands for Decision Making. 

Previous research on this topic (Middlebrooks, 2003; Middlebrooks et al., 1999a; Middlebrooks 
and Stankiewicz, 2006; Wojciechowski, Plott, and Kilduff, 2005) has developed a paradigm for 
the systematic evaluation of the C2S from the system level viewpoint.  A basic premise of this 
approach is that all observable characteristics of live tactical operations centers (TOCs) in the 
field can be used in the development of quantitative predictive models of various system 
components for use in a simulation of the complete C2S.  Some of these characteristics include 
such things as the quantity and quality of communications messages through the TOC from 
various digital systems, quality and timeliness of intelligence information about the enemy, 
numbers and expertise levels of team members present in the TOC at any given time, individual 
and group interactions, physical layout of the TOC, and environmental conditions, to name a 
few.  However, a striking limitation of this approach is in its inability to simulate and predict 
cognitive performance of individuals and teams in areas such as situation awareness, knowledge 
elicitation, error generation, individual vs. team performance, and decision making.  An ability to 
predict the optimal decision required for success can be extremely useful as a performance 
measure for use in describing the overall effectiveness of the system. 

1.2. The Model of Optimal Decision Making.  

This research integrates basic research in decision making being conducted at the Psychology 
Department of the University of Texas with applied research in Unit of Action (UA) TOC 
operations being conducted at the Fort Hood Field Element of the U.S. Army Research 
Laboratory.  It is the goal of this research to develop predictive simulations of the C2S UA 
performance that can be used in the evaluations of changes to the system or the addition or 
modification of system subcomponents.  For example, what might the effect be on the overall 
ability of the UA TOC to conduct battlespace management from the addition of a new 
intelligence system that allows information about the enemy to have a maximum age of one hour 
before it becomes obsolete versus a maximum age of 4 hours?  One intuitive conclusion that 
could be deduced from this new capability is that it would significantly increase the 
commander’s understanding of the enemy situation because the information is always more 
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current than before.  However, this intense stream of information might cause the commander to 
become more focused on the instantaneous situation on the battlefield and lose situation 
awareness of longer term developments with a resulting degradation in the ability to make 
effective decisions on how to react to the threat.  The effective ability of predictive simulations 
of these types of environments is based on how well they account for the myriad of variables 
stemming from both physical activities and the human’s cognitive ability to react to those 
variables.  This current research is a first step in allowing simulations of system performance to 
account for limitations in human cognitive performance abilities. 

2. Method. 
The methodology used in the operation of this model involves two components.  The first is what 
is defined as the belief vector.  This represents the current knowledge that the operator has about 
the system.  Utilizing this knowledge the operator decides what to do next or what action to take 
in the pursuit of the mission goal.  This model is generalizable to many different decision 
oriented situations where the operator is confronted with a goal directed task.  In the pursuit of 
this task the operator may decide to seek information about the condition of the current situation, 
they may decide to take some action to achieve the goal, and at some point they will make a 
decision that they have achieved the goal thus terminating the decision mission sequence.  An 
example of this scenario is provided in the hospital emergency room where a doctor is faced with 
the mission goal of successfully treating a sick patient.  The doctor may administer a medication 
(take an action) or may perform a medical test (seek information) to attempt to identify the 
patient’s condition.  A complete series of medications and tests may be performed before the 
doctor achieves the belief that the patient has been cured.  If the doctor terminates the sequence 
before the patient is cured the patient may die.  If the doctor prolongs the sequence beyond the 
point that the patient is cured a substantial unjustified cost is the result.  This medical sequence is 
an illustration of gathering information and taking actions until a belief is achieved that the goal 
has been reached.  Another example is provided in the military context where a ground force 
commander is given an order to seek out and find and destroy an enemy that is located at an 
unknown location.  The commander may seek information, an example being to fly an unmanned 
aerial vehicle (UAV) reconnaissance mission, or they may take a direct action to destroy the 
enemy, an example being to fire artillery at a suspected location occupied by the enemy.  An 
entire sequence of UAV and artillery missions may be performed in some goal directed order 
until the commander achieves a belief that the enemy has been destroyed.  At this point the 
commander decides that the mission is complete because the enemy is believed destroyed and 
decides to terminate the action.  Modeling this process is accomplished through the use of 
Markov decision process analysis to determine the belief vector and the use of conditional 
probability logic to determine the next action to take based on an evaluation of the current belief 
vector. 

2.1. Determination of the Belief Vector. 

It is important to recognize that most decisions that are made are not “one off” decisions in 
which the decision is made and then the rewards reaped or the punishment endured.  Instead, 
most decisions that are made have future ramifications and affect the options and decisions that 
are available later.  One challenge faced by any decision maker is the uncertainty that the 
decision maker has about the true state of the system.  In most circumstances the true state of the 
system is unknown or hidden.  That is, it cannot be directly observed.  For example, in military 
decisions often there is uncertainty about an enemy’s position, strength and morale.  Given that 
the true state is hidden, there are things that can be done to reduce the decision maker’s 
uncertainty about these states.  For example, the decision maker may attempt to determine the 
enemy’s position by sending reconnaissance to a location where the enemy is believed to be 
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located.  When the reconnaissance returns with either an “enemy sighted” or “enemy not 
sighted” report the decision maker must update their belief about the location of the enemy.  

If the observations and actions were all deterministic, updating a belief would be relatively 
simple.  However, in almost all conditions, the observations and actions are probabilistic.  That 
is, the probability of getting an observation given the true state of the environment is not 
necessarily 0.0 or 1.0.  Or, in the example above, there is a certain non-zero probability that the 
reconnaissance mission was sent to the right location and will miss the enemy and send a report 
of “enemy not sighted”.  Furthermore, there may be a non-zero probability that the 
reconnaissance mission falsely sent a report of “enemy sighted” (or false-alarmed) when the 
enemy was not actually at the location.  

Given that the observation and actions are probabilistic, updating a belief given an observation 
and an action can become cognitively difficult.  Furthermore, evaluating the added benefit of a 
specific piece of equipment that changes these probabilities can also become difficult.  This 
research focuses on a task that is commonly faced by decision makers in the military — namely, 
the seek-and-destroy task. In this task the decision maker is trying to localize and destroy an 
enemy within a specific region. At the decision maker’s disposal are actions that allow 
information to be gained about the true state of the system (i.e., the location of the enemy) in 
addition to changing the state of the system (for example, moving the enemy from being at a 
specific location to the state of Destroyed). The former actions are reconnaissance actions and 
the latter are artillery actions. The outcomes of these actions are probabilistic. That is, 
reconnaissance actions will not always detect the enemy when a sensor is sent to the enemy’s 
location. Furthermore, the reconnaissance may also falsely report that the enemy is seen at a 
location in which the enemy is not located. In addition, the artillery will not always kill the 
enemy when striking it which is characterized as moving the enemy from being alive at a certain 
location to the “Destroyed” state.  

2.1.1. The Optimal Observer. 

To best evaluate performance in a task that leads to uncertainty and probabilistic actions, it is 
useful to define the optimal performance within the task. The optimal performance can be 
calculated using Bayesian statistics. However, due to the nature of the current type of task, 
simple Bayesian statistics are insufficient. That is, with simple Bayesian statistics the likelihood 
of the true state of the system can be optimally estimated.  However, this likelihood does not 
indicate what action should be selected. In order to do action selection, not only must the current 
state be calculated given the previous actions and observations, but also the optimal action to be 
performed in a given belief state must be calculated.   This is done to verify whether a belief state 
has a particular probability distribution across all of the possible states in the environment. 

A variation on classical Bayesian statistics that may well add some additional predictive power  
for sequential decision making under uncertainty is the Partially Observable Markov Decision 
Processes (POMDP) (Cassandra, 1998; Cassandra, Kaelbling, and Kurien, 1996; Cassandra, 
Kaelbling, and Littman, 1994; Kaelbling, Littman, and Cassandra, 1998; Sondik, 1971).  By 
defining the State Space, Observation Vector, Transition Matrix and the Reward Structure, the 
expected reward for a particular action can be computed. In the following sections a description 
of these actions is provided.  In addition, a description of how to optimally update an individual’s 
belief (Belief Updating), given these definitions, is provided. 

      An Ideal Observer Model provides optimal performance given the information available in 
the task. Typically ideal observers are not proposed as models of human cognition.  Instead, the 
ideal observer provides a benchmark by which to compare human performance. More 
specifically, these models illustrate what optimal performance should look like.  When human 
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performance matches that of the ideal-observer model, it can be concluded that the human is 
making use of all of the information in the task.  When the human under-performs the ideal 
observer, specific discrepancies between the human data and the ideal data may illuminate the 
constraints imposed by the human information-processing system. 

      Ideal observer analysis is not new to this research and has been previously used to understand 
perceptual functions from the quantum limits of light detection (Hecht, Shlaer, and Pirenne, 
1942) to many forms of visual pattern detection and discrimination (Geisler, 1989), to reading 
(Legge and Hooven, 2002; Legge and Klitz, 1997) object recognition (Liu and Knill, 1995; Tjan, 
Braje, Legge, and Kersten, 1995; Tjan and Legge, 1998) eye movements (Najemnik and Geisler, 
2005) and also in reaching tasks (Trommershäuser, Gepshtein, Maloney, Landy, and Banks, 
2004).  

2.1.2. Defining the State Space. 

In all problems that are solved using a POMDP architecture, there are a set of states that the 
problem can be in. In a POMDP problem, the true state (StateTrue) is not directly observable (i.e., 
it is hidden). For the work in this project, the hidden state is defined as the enemy’s current 
position within a 2 dimensional grid.  This grid of location state spaces is supplanted by an 
additional “Destroyed” state that the enemy could transition into following an action to destroy it 
such as an artillery strike at its current position.  Thus, the size of the grid can be characterized 
as: 

     (X + Y) + z, where both X & Y > 1 and z = 1. 

In this case, X is the size of the location grid in the X dimension, Y is the size of the location grid 
in the Y dimension, and Z is the dead state which is always equal to 1.  Using this nomenclature 
a 5x5 location grid state space this yields a 26 state space.  A 4x4 location state grid gives a 17 
state space, a 3x3 location state gives a 10 state space, a 2x2 location state gives a 5 state space, 
and so on. These differing state space sizes are illustrated in Figures 1 and 2.   

 
 

Figure 1 – 2x2 Location State Space 
 

 
 

Figure 2 – 2x1 Location State Space 
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2.1.3. Defining the Belief Vector. 

Although the true state is hidden, the operator typically employs actions and observations that 
provide information about the true state of the problem. In a 26 state space as shown in Figure 1, 
the operator can fire artillery at a specific position or conduct reconnaissance to a particular 
location within the environment (i.e., one of the 25 location states). In this model a 
reconnaissance action provides two possible observations: “Enemy Sighted” or, “Enemy Not 
Sighted”.   An artillery strike only provides an observation of “No Information” meaning that 
while the artillery strike was conducted this action provides no information on the resulting 
condition of the enemy resulting from it as only a reconnaissance mission can observe the 
condition of the enemy. This replicates the fact that the artillery firing unit does not see the 
effects of its fires because it is an indirect firing unit and is not able to see where the artillery 
rounds fall.  It must rely on forward observer assets to report back what is termed ‘battle damage 
assessment (BDA)’ in military jargon.  An illustration of a reconnaissance asset might be a 
forward observer (FO) on the ground or an unmanned aerial vehicle (UAV) that provides the 
BDA. 

This model assumes that the observer has a belief probability between 0% and 100% that the 
enemy exists in one of the states within the total state space at any given period in time.  It is 
noted that residing in one of the location states is mutually exclusive of residing in the destroyed 
state.  I.e., if the enemy is ‘alive’ in one of the location states it cannot be ‘dead’ in the destroyed 
state and vice versa.  The destroyed state is considered to be an “absorbing state” in that once the 
enemy transitions from being alive in a location state to being dead in the destroyed state it 
cannot return to a live location state.  The set of the belief probabilities for all the states in the 
state space is termed the belief vector (BV).  For the simple 3 state space example in Figure 3 
the BV could be represented as: 

[BLocation 1, BLocation 2, BDestroyed] 

For this case assume that the enemy is alive with an equal probability of residing in one of the 
location states.  Thus, the BV becomes: 

[0.5, 0.5, 0.0]. 

2.1.4. Defining the Transition Matrix. 

In this Seek and Destroy problem, the observer, in this case the military commander, has a 
number of possible different actions that can be taken. For actions in a 5x5 location grid state 
space there are 25 possible reconnaissance actions (one to each of the 25 locations in the 
environment), 25 possible artillery actions (again, one to each of the 25 locations within the 
environment) and the action to declare ‘mission complete’ when it is believed that the enemy has 
been destroyed for a total of 51 possible actions. The transition matrix defines the probability of 
the resulting state given that the observer executes a particular action in a specified state (i.e., 
p(s'|s,a)) where s’ is the resulting state, s is the existing state, and a is the action taken. In the 
static form of the Seek and Destroy problem there is only one state transition that can occur for 
any of the possible actions.  

When the commander fires artillery to where the enemy is located, the enemy may be killed with 
a certain probability which will cause it to transition into the “Destroyed” state.  Sample 
probability estimations for use in this discussion are shown in Tables 1-3.  These values are 
estimates only and are not to be construed as factual.  The probabilities to be used in actual 
analyses are dependent on the scenario conditions at the time of the actual action sequence and 
are left as model input parameters to be employed during the course of simulation studies that 
use this model. 
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Table 1 – The set of actions and their observations for the current Seek & Destroy task. 
(The observations for the reconnaissance action are dependent upon whether the enemy is actually 
within the viewing region of the reconnaissance. Thus, the two possible states are “Enemy Present” 
and “Enemy Not Present”.) 

Action Observation Condition Probability 
Recon Enemy Sighted Enemy Present 0.75 
Recon Enemy Not Sighted Enemy Present 0.25 
Recon Enemy Sighted Enemy Not Present 0.2 
Recon Enemy Not Sighted Enemy Not Present 0.8 

 
Table 2 – Probabilities for Observation from Artillery Strike 

Action Observation Condition Probability 
Strike NoInfo Enemy Present 1.0 
Strike NoInfo Enemy Not Present 1.0 

 
Table 3 – Probabilities for Killing Enemy from Artillery Strike 

Action Result Condition Probability of Dead 
Strike Probability of Enemy 

being killed. 
Enemy Present 0.75 

Strike Probability of Enemy 
not being killed. 

Enemy Present 0.25 

Strike Probability of Enemy 
being killed. 

Enemy Not Present 0.0 

 
2.1.5. Updating the Belief Vector. 

Given an initial probability distribution over the state space, the Observation Matrix and the 
Transition Matrix, hypotheses can be generated about the current state of the problem following 
an action and the returned observation.  The general form of Bayes’ rule (Trueman, 1977; 
Walpole, Myers, and Myers, 1998; Wine, 1964), as shown in Equation 1, is used as a basis to 
develop this relationship. 

P(Br | A) = P (Br ∩A  ) =  P (Br ) P (A | Br )  for r = 1,2, … k 
 Σ i=1,k P(Bi ∩A) Σ i=1,k P(Bi ) P (A | Bi ) 
 

Equation 1 – General Form of Bayes’ Rule 
where, 

P - probability 
A - State A 
B -  State B 
| - ‘such that’, or, ‘given’ 
∈  -  Probability theory - all state spaces  
∩  -  Boolean AND 
∪  -  Boolean OR 

2.1.5.1. Bayesian Updating Rule. 

Using Bayes’ Rule POMDP expressions are derived to simulate sequential decision making with 
uncertainty.  An updated BV is computed by performing a particular action to account for the 
current condition of the State Space, a Transition Matrix for moving from one state to the next, 
the application of a BV generated by the results of past actions, and an Observation Vector of 
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past information elements obtained from previous observations of the state space.  This Bayesian 
Updating Rule is expressed as: 

p(s’|b,o,a) = p (o|s’,b,a) p(s’|b,a) 
   p(o|b,a) 

 
Equation 2 – Bayesian Updating Rule 

where 
s’ = true state (of the condition being present within the total of all 

states, S), represented as:  s’ ∈ S 
b = prior belief vector 
o = observation 
a =  action that was generated 

 
nomenclature.  The term p(s’|b,o,a), is read as: 
  The probability of s’ being true, ‘such that’ or ‘given’ the Boolean conditions of 

‘b’ AND ‘o’ AND ‘a’. 

Equation 2 specifies how the ideal observer would update the belief that s' is the true state given 
the prior belief (b), the observation (o) and the action that was generated (a). 

2.1.5.2. Update the Belief Vector for 1st Action- Perform Recon1 at State1. 

To illustrate the process of belief updating the simple 2x1 location state space of Figure 3 will be 
utilized.  Here, the enemy will be associated with one of three states:  State1,  State2,  or StateDead.  
For this case assume that the enemy is alive with an equal probability of residing in one of the 
location states.  Thus, the BV becomes:   

[0.5, 0.5, 0.0] 

meaning that there is a 50% probability of the enemy being believed to be in State1, a 50% 
probability of the enemy being believed to be in State2, and a 0% probability of the enemy being 
believed to be in StateDead.  Assume that the enemy actually is located in State1 and that the 
observer decides to do a reconnaissance to State1 and receives a “Enemy Sighted” observation. 
The first task is to determine what the observer’s belief is resulting from this action for the 
enemy being located in State1, State2 and StateDead. 

Using Equation 2 the belief likelihood that the enemy is in State1 is computed. That is, the desire 
is to compute the belief probability that the enemy is in State1 given the current BV, the current 
observation, and the current action, or:   p(State1| [0.5, 0.5, 0.0], “EnemySighted”,Recon1). 

Computing the separate components of Equation 2: 

First, compute p(o|s',b,a) or p(“EnemySighted”|State1, [0.5, 0.5, 0.0],Recon1).  To do this the 
likelihood of obtaining an observation of “Enemy-Sighted” if State1 was the true state is needed.  
From Table 1 above, the likelihood of correctly identifying the enemy as 0.75 is selected. 

Next, compute p(s’|b,a) or the likelihood of the true state being State1 given the previous belief 
and the action of Recon1.  Because there is no transition possible to StateDead from a recon 
mission these remain at the prior probabilities of 0.5.   

Finally, compute p(o|b,a) the likelihood of receiving the observation “EnemySighted” when 
reconnaissance is made at State1 or p(‘EnemySighted’|[0.5,0.5, 0],Recon1). 

These calculations are: 
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p (o|s’,b,a) , for State 1 = p(‘Enemy Sighted’ | True State Belief, [0.5, 0.5, 0.0], Recon1) 
  
  = Probability of Enemy sighted given Belief that enemy was at State1  
  and Recon1 was performed at State1 =  
  = 0.75,  
   from Table 1 
 
p(s’|b,a) , for State 1 = p( State1 is true state | ([0.5, 0.5, 0.0], Recon1))   
  
  = Probability of State1 being the true state given Belief that State1  
  is true state and Recon1 showed enemy present in State1 = s’ =  
  = 0.5,  
   from assumption of equal probability that the enemy has an  
   initial probability of being at one of the 2 location states. 
 
p(o|b,a) , for State1 = p(‘Enemy Sighted’ | ([0.5, 0.5, 0.0], Recon1))     
  
   =  ( Probability of Enemy in State1 x Probability of Enemy Sighted  
    When Present) + ( Probability of Enemy in State2 x Probability of  
    Enemy Sighted When Not Present) + (Probability of Enemy Being  
    Dead x Probability of Enemy Sighted When Not Present) 
 = 0.5x0.75 + 0.5x0.2 + 0.0x0.2 = .375 + 0.1 = 0.475 
 
Thus,   p(State1 | [0.5, 0.5, 0.0], “EnemySighted”,Recon1)  =  
 
p(s’|b,o,a)  = p (o|s’,b,a) p(s’|b,a) = 0.75 x 0.5 = 0.7895 
  p(o|b,a) 0.475 
 

Likewise,   p(State2 | [0.5, 0.5, 0.0], “EnemySighted”,Recon1)  =   
= 0.2 x 0.5 = 0.2105 
 0.475 

 
And,  p(StateDead | [0.5, 0.5, 0.0], “EnemySighted”,Recon1) =  
   0.2 x 0.0 =  0.0 
   0.475 
 
Thus, if the first action is to observe, i.e., perform a UAV reconnaissance mission, at State1, the 
new belief vector would be: 

      [0.7895, 0.2105, 0.0]. 

The interpretation of this BV is that the enemy has a 0.7895 probability of being believed to be at 
State1 (present in Cell1), a 0.2105 probability of being believed to be at State2 (present in Cell2), 
and a 0.0000 probability of being believed to be at State3 (Dead).  Since these probabilities must 
account for the total belief state of the operator they must therefore sum to 1.0.  Performing this 
check sum: 

  CS = 0.7895 + 0.2105 + 0.0000 = 1.0000,  therefore Checksum verification passed.  
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2.1.5.3. Update the Belief Vector for 2nd Action- Perform Strike1 at State1. 

Now assume that the second Action is to conduct an artillery strike at State1 which is represented 
as Strike1.  In order to update the BV with the belief that the enemy is in State1 as a result of this 
new action, determine the probability that the enemy is at State1 given the BV from the first 
action (Recon1), [0.7895, 0.2105, 0.0], and the new Action, Strike1, recognizing that the only 
observation from an artillery strike is that the strike was fired which provides the observation 
‘NoInfo’.  Thus, the new probability 

    p(State1|[0.7985, 0.2105, 0.0], “NoInfo”, Strike1)  

is computed.  Calculating the components for the updated BV component for State1 from 
Equation 2: 

p (o|s’,b,a)  = p (‘NoInfo’ |  True State Belief, [0.7895, 0.2105, 0.0], Strike1) =  
  = Probability of ‘NoInfo’ given current Belief Vector and Strike1 was  
   performed at State1 =  
  = 1.0,   
   because an artillery strike will always return a report of ‘NoInfo’  
   simply meaning that the artillery strike was fired with no other  
   information provided. 

p(s’|b,a)   = p( State1 | [0.7895, 0.2105, 0.0], Strike1) 
= Probability of ‘Enemy Not Dead’ being the true state given the 

current Belief Vector and the Action of Strike1 being fired.   
From Table 3, the probability of the enemy being transitioned to dead 

if artillery is fired at the location containing the enemy, or in this 
case, Strike1 being to State1 is = 0.75.  

Conversely, if the artillery strike, Strike1, into State1 does not kill the 
enemy with the enemy remaining in a state of ‘Enemy Not Dead’, 
from Table 3 the probability becomes (because of the 3 states in 
the state space which are State1 (present or not present in cell 1), 
State2 (present or not present in cell 2), and State3 (belief that the 
enemy is Dead or Not Dead), the deduction is that the enemy is 
believed to be alive (i.e., Not Dead) in State3) = 0.25. 

Thus, the probability that the enemy’s state will not change, or that 
they will remain alive in State1 is equal to 0.25 times the 
probability that the previous Recon1 sighted the enemy in State1, or 
0.7895 from p(State1| [0.5,0.5,0.0], ‘Enemy Sighted’, Recon1), 
above. 

Therefore, p(s’|b,a) , for State1, following Strike1 is: 
 p(s’|b,a)  = 0.7895 x 0.25  

 =  0.1974 
 
p(o|b,a)    = p((‘NoInfo’ | ([0.7895, 0.2105, 0.0], Strike1))   
  = Probability of ‘NoInfo’ given current Belief Vector and Strike1 being  
   performed at State1 =  
  = 1.0,  because an artillery strike will always return a report of ‘NoInfo’  
    simply meaning that the artillery strike was fired with no other  
    information provided. 
 
Employing equation 1 to determine the BV: 
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p(s’|b,o,a)  = p (o|s’,b,a) p(s’|b,a) = 1.0000 x 0.1974 = 0.1974 
  p(o|b,a)  1.0 
 

Thus,   p(State1   | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.1974 
Likewise,  p(State2  | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.2105 
Likewise,  p(StateDead | [0.7895, 0.2105, 0.0], “NoInfo”,Strike1)  =   0.5921 
 
Thus, after the 2nd iteration, where the action was to fire artillery strike #1 into Cell1 (State1), 
called Strike1,  

the BV now becomes =  [0.1974, 0.2105, 0.5921] 
 

which is interpreted to mean a 0.1974 probability of the enemy being believed to be alive in 
State1 (Cell1), a 0.2105 probability of the enemy being believed to be alive in State2 (Cell2), and a 
0.5921 probability of the enemy being believed to be Dead or in StateDead.  Performing the check 
sum verification: 

 CS = 0.1974 + 0.2105 + 0.5921 = 1.0000,  therefore Checksum verification passed. 
 
2.2. Determination of the Action Sequence. 

The determination of which action to take at each iteration of the model is made in order to 
create the statistical optimal end state effect.  The optimal end state is defined as the end state 
reached by the fewest action sequences with the most optimal reward value possible.  Reward 
structure will be discussed later in this paper.  Thus, the selection of the action sequence is 
achieved through a deterministic evaluation of the previous Bayesian state space and BV 
utilizing conditional probability logic.  To begin this discussion the following definitions are 
made: 

Δ ≡ (Delta)   Declare Threshold; if the Belief Probability of Enemy Destroyed ≥ 
Δ, then Declare.  Δ only refers to the DEAD state. 

σ ≡ (Sigma)  Shoot Threshold;  if the Belief Probability of Enemy Destroyed ≥ 
σ, then Shoot, otherwise perform Recon.  σ only refers to the LOCATION states. 

Contrast ≡  The probability of the enemy being in one state relative to all other (location) 
states (Dead state is therefore excluded from the Contrast determination).  This is 
a calculated value referred to as a Conditional Probability (CP). 

Thus, if the belief probability of the enemy being Destroyed ≥ Δ, then the action decision will be 
to Declare mission complete and end the mission.  However, if Δ ≤ 0.9 then go through Recon 
vs. Shoot logic according to the σ threshold.  Note that the Δ threshold only applies to State3, the 
Dead State, and the σ threshold only applies to the location states, State1 and State2.  Therefore, 
the Δ and σ thresholds are independent and not directly related.  For the purposes of discussion 
the following assignments are made.  These are for reference only as were previous assignments 
in Tables 1-3 and are left as input parameters to the model to set its level of tolerance and to 
reflect the scenario conditions in effect at the time of the model invocation. 

Assume the following assignments: 

Δ = 0.9. 
σ = 0.75. 
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2.2.1. Conditional Probability Logic. 

For the case under investigation here the action decision logic can be viewed as a Conditional 
Probability (CP).  The probability of the enemy being in one of the 2 location states (State1 or 
State2), given that the enemy is not destroyed, i.e., not present in State3, can be represented as: 
 
P (S1 | Enemy Not Destroyed) = P(S1 | !S3) , where the ! symbol represents Boolean ‘NOT’ 
 
Employing the form of Bayes’ Theorem above (Equation 3), this becomes:  

 
P(S1 | !S3) = P(!S3 | S1) P(S1)   

 P(!S3) 
 

Equation 3 – Conditional Probability Initial Form 
 
Since the probability of the enemy not being dead if they are in State1 is equal to 1.0, meaning 
that he is alive, is represented as:   

P(!S3 | S1) = 1.0, 
 

And the probability of the enemy not being dead, P(!S3) is equal to the sum of the probabilities 
of being in one of the location states, or in this case [P(S1) +   P(S2)], Equation 3 now becomes: 

     P(S1 | !S3) = 1.0 x P(S1)   =      P(S1)  
       P(S1) +   P(S2)   P(S1) +   P(S2) 
 

Equation 4 – Conditional Probability Expression 

2.2.2. Calculation of Example Action Sequence Using Conditional Probability. 

The action decisions made by the model during each iteration of the logic are made by evaluating 
the CP using the σ and Δ thresholds.  After each action a new BV is calculated to be used in the 
next action decision.  For the sample σ and Δ threshold values of 0.75 and 0.90 the action 
sequence for the first 5 actions is computed for verification of the computer simulation runs that 
will be made using this model.  These parameter choices provide for an action sequence for the 
first 5 actions of: 

1) Recon1 to S1. 
2) Strike1 to S1. 
3) Recon2 to S2. 
4) Strike2 to S1. 
5) Recon3 to S2. 

See the Appendix for tables that illustrate the action calculations that determine this sequence. 

2.3. Implementation in C3TRACE. 

To implement this model in a computer simulation, the programming environment of Command, 
Control, and Communications: Techniques for the Reliable Assessment of Concept Execution 
(C3TRACE) (Kilduff, Swoboda, and Barnette, 2005; Plott, 2002; Plott, Quesada, Kilduff, 
Swoboda, and Allender, 2004) is employed.  C3TRACE, developed through funding by the 
Human Research and Engineering Directorate of the U.S. Army Research Laboratory, is an 
adaptation of the commercial discrete event programming language Micro Saint Sharp™ 
(Schunk and Plott, 2004).  While the basic Micro Saint Sharp™ programming language allows 
task based computer simulations of real world systems and processes to be represented, 
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C3TRACE has embedded data structures that augment Micro Saint Sharp™ to allow for detailed 
representation of U.S. Army command and control systems. 

The optimal decision making model described in this paper allows existing computer simulations 
of command and control systems configured around task performance analysis (Middlebrooks, 
2001; Middlebrooks, 2003; Middlebrooks, 2004; Middlebrooks et al., 1999a; Middlebrooks et 
al., 1999b; Middlebrooks and Williges, 2002; Wojciechowski et al., 2005), to now be structured 
to incorporate optimal decision making as a performance metric using the belief updating model.  
The steps in this process resemble the well known Observe-Orient-Decide-Act (OODA) model 
(Belknap, 1996; Boyd, 1982; Salas, Morgan, Glickman, Woodard, and Blaiwes, 1986).  The 
decision actions in this model consist of gathering information, updating the belief about the 
environment or state space, taking an action to accomplish an objective in the state space, and 
then making a decision of whether to continue the mission or terminate it with an assessment of 
either mission success or failure.  An example in a military command and control scenario 
employs a unmanned aerial vehicle (UAV) to gather the intelligence, artillery to take an action to 
destroy an enemy somewhere within the state space, and belief updating to evaluate the situation 
after each action and then either repeat the sequence or declare ‘mission complete’.   

2.3.1. Design of the C3TRACE Simulation. 

C3TRACE programs are implemented using discrete event language constructs common to any 
Micro Saint Sharp™ simulation program.  The top level of a command and control sub-
workgroup within a sample organization is shown in the example depicted in Figure 4.  Here 
messages received by the radio operator are distributed according to their subject content.  
Situation Reports (SITREP) are passed to the S3 Operations officer, Logistics Reports are passed 
to the S4 Logistics officer for action and so on.  If, for example, a mission directive such as seek 
out and destroy an enemy, is received it is passed to the commander for action.  There are 
different reactions that might be experienced to such a directive.  The commander might 
communicate back to the originating authority to clarify information, an initial estimate of the 
situation before taking action might be performed, an updating of the situational awareness 
before taking action might be performed, or, the mission might be undertaken as directed.  In this 
case, as depicted in the green box in Figure 4, what is referred to as the Decision Making under 
UnCertainty (DMUC) process would be initiated to execute the mission. 

Figure 5 illustrates the optimal decision process that is modeled.  As stated, this process is very 
similar to the OODA model.  This diagram represents an iterative process where the decision 
maker makes an initial estimate of the situation and then begins an iterative process of either 
gathering additional information (flying a UAV mission) or taking an action to destroy the 
enemy (firing artillery).  When the commander believes that the enemy has been destroyed, a 
mission complete decision is made and the results of the decision are realized.  If the enemy was 
destroyed and the decision maker made that correct assessment, then a positive reward resulting 
from a good decision is applied to the performance of the overall system.  If the enemy was not 
destroyed and the decision maker believed that it was destroyed, then a negative battlefield 
outcome is applied to the simulation.  Likewise, if the enemy was destroyed but the decision 
maker believed it was not, then the results of poor decision making are applied.  This process of 
iterative action can be generalized to similar scenarios where information is gathered (Observe), 
belief updating occurs (Orient), decisions are made for mission success (Decide), and actions are 
taken to accomplish the mission (Act).  The examples of employing a UAV and firing artillery 
are used here to simply provide a tangible example of how this type of activity might occur.   
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Figure 3 – C3TRACE Command and Control Simulation Vignette 

 

Referring to Figure 5, the top level logic for this model can be examined.  After initiating the 
decision sequence and performing an initial estimate of the situation, the commander updates the 
BV, defined as the belief about the current situation regarding the enemy, and then begins an 
iterative process of looking for information or taking an action to accomplish the mission.  When 
this process has reached some level of belief that the mission is accomplished, the commander 
terminates the action and completes the decision process by declaring that the mission is either a 
‘success’ or a ‘failure’. 

If the initial desire is to obtain additional information, a UAV is sent to a specified location to 
attempt to locate the enemy.  The UAV is the information gathering or battle damage assessment 
(BDA) tool available to the commander to update the BV about the enemy.  If the target is 
already dead from previous artillery action, then there is no correct location for the enemy 
because it does not exist as it is dead.  If the enemy is alive and the UAV is sent to the correct 
location then it has a probability, according to Table 1, of either detecting or not detecting the 
enemy according to the accuracy of the UAV.  From this it will either correctly or incorrectly 
report that the enemy was found.  Likewise, if it is sent to a location where the enemy is not 
located, or if the enemy is already dead, it may correctly or incorrectly report the enemy sighted 
again according to Table 1.  The values in Table 1 are only sample estimates for use in the 
development of this model and do not represent any actual system currently in existence.  During 
actual use of this model these parameters are set to represent the actual detection characteristics 
of the information gathering entity being evaluated.  After the UAV mission is flown the 
commander evaluates the report from the UAV through the process of updating the BV and, 
using this new information, decides what process to invoke next. 
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Figure 4 – Optimal Decision Making Under Uncertainty Model  
 
If the commander decides to fire artillery (which is representative of taking a positive action to 
do something to accomplish the mission) then the probability exists that either the right or wrong 
location will be fired upon.  If the artillery fires on the wrong location then the only outcome will 
be to miss the target.  If the correct location is fired upon then the artillery will either kill or not 
kill the enemy according to the circular area of probability for the type of artillery fired.  
Independent of where the artillery is fired, the only report that is sent back to the commander is 
that the artillery fired upon the location specified or ‘No Information’ concerning BDA.  This 
represents the fact that artillery is an indirect fire weapon and the firing unit never actually sees 
the target.  It is up to the forward observer, or in this case the UAV, to report back as to the 
actual target situation, i.e., to provide the BDA.  It is then up to the commander to evaluate the 
firing data and information from previous UAV reconnaissance missions to decide if to continue 
the mission or declare the enemy is dead and end the mission.   

When the commander believes that the enemy has been destroyed, then mission complete is 
declared.  Then the commander is faced with either the rewards of a successful, i.e.,  good 
decision sequence where the enemy was killed meaning that the mission accomplished, or the 
effects of a bad decision where the enemy was not killed meaning that the mission was not 
accomplished. 
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2.3.2. Belief Updating Logic. 

Figure 6 illustrates the inputs feeding the sequence of evaluating the current situation, and 
updating of the belief vector and the resulting choice for the next action. 

 
Figure 5 – Task Diagram for Belief Updating 

The code script in the beginning effect of C3TRACE task ‘Update Belief Vector’ of Figure 6 
closely follows the BV updating logic described above.  An annotated description of this logic as 
implemented in the C3TRACE computer simulation takes the form: 

Definitions: 
BV - Belief Vector 
Variables in Equation 2: 

s’ - True state within the total state space. 
b - Prior belief for that state. 
o - Current observation. 
a - Action that was generated. 
In-State -  Probability of a state being transferred in to.  This is equal to 0 for location states because 

for a static enemy condition a location state can never be transferred in to. 
Out-State - Probability of a state being transferred out from.  This is equal to 0 for the dead state 

because once the enemy is dead it can not be transferred back to alive. 
 Components of Equation 2: 

PoGs’ba - Probability of o Given s’ & b & a. 
Ps’Gba - Probability of s’ Given b & a. 
PoGba - Probability of o Given b & a. 
Ps’Gboa - Probability of s’ Given b & o & a =  (PoGs’ba * Ps’Gba) / PoGba => Eq. 2. 

 
If the action generated was to recon, then update the BV from the recon mission: 
 Do for each state: 

 Calculate PoGs’ba from Table 1 lookup. 
 Calculate Ps’Gba from previous belief probability of the enemy in the state occupied. 
 Calculate PoGba from: 
  (Probability of Enemy in State Action To * Table 1 Lookup for that State) +  
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  (Probability of Enemy in State Action Not To * Table 1 Lookup for that State) + 
  (Probability of Enemy in State Dead * Table 1 Lookup for condition applicable to State Dead) 
 Calculate Ps’Gboa  from:  (PoGs’ba * Ps’Gba) / PoGba 
 Equate the BV component for that state = Ps’Gboa. 

 End Do 
 
Else if the action generated was to Shoot, then update BV from the shoot mission: 
 Do for each state: 

 Calculate PoGs’ba from Table 2 lookup which will always = 1.0. 
 Calculate Ps’Gba from: 
  [Probability (In-State) x (previous probability for State Struck] +  
  [(1.0- Probability (Out-State) x (previous probability for State Occupied)] 
 Calculate PoGba from Table 2 lookup which will always = 1.0. 
 Calculate Ps’Gboa  from:  (PoGs’ba * Ps’Gba) / PoGba 
 Equate the BV component for that state = Ps’Gboa. 

 End Do 
 
End 

 
2.3.3. Action Decision Making Logic. 

The code script in the beginning effect of C3TRACE task ‘Evaluate Report’ of Figure 6 closely 
follows the CP logic described previously.  An annotated description of this logic as 
implemented in the C3TRACE computer simulation takes the form: 

Definitions: 
CP - Conditional Probability 
Sigma - σ, Shoot Threshold;  if the Belief Probability of Enemy Destroyed ≥ σ, then Shoot, otherwise 

recon.  σ only refers to the LOCATION states. 
Delta - Δ, Declare Threshold; if the Belief Probability of Enemy Destroyed ≥ Δ, then Declare.  Δ only 

refers to the DEAD state. 
 
Variables in Equation 6: 
PS1   - Previous BV component for S1. 
PS2   - Previous BV component for S2. 
Ps1GNs3 - Probability of S1 given NOT S3 = probability of the enemy not being dead  
 - PS1  / ( PS1  + PS2 )       => Eq. 6. 

 Do 
  Calculate CP1 = PS1  / ( PS1  + PS2 ) 
  Calculate CP2 = PS2  / ( PS1  + PS2 ) 
 End Do 
  If ((CP1 & CP2) < σ) then 
   If (CP1 > CP2) then Recon at S1 
   If (CP1 < CP2) then Recon at S2 
   If (CP1 = CP2) then Recon at Random pick of S1 or S2 
  End If 
  If (CP1 > σ) then SHOOT at S1 
  If (CP2 > σ) then SHOOT at S2 
  If ((CP1 > σ) & (CP2 > σ) ) then SHOOT at Random pick of S1 or S2 
 Calculate new BV 
 If ( (BV component for S3) > Δ) then 
  Declare mission complete 
 Else continue processing and go to next iteration 

 
3. Discussion / Results. 
The simplest version of the POMDP model state space design as shown in Figure 3 is used in 
this paper to evaluate and demonstrate the logic through the computer simulation in C3TRACE.  
While the state space that consists of two location states, State1 and State2, and one status state, 



18 

StateDead, can seem trivial and unrelated to any actual human performance condition, even this 
simple arrangement can relate to actual performance.  The seek and destroy mission looking to 
destroy an enemy residing at some unknown location can be characterized as looking or shooting 
at the enemy at the right or wrong location before declaring that the enemy has been destroyed.  
Thus, a simple form of the state space such as this can form the basis for developing logic that 
can be expanded after verification to much larger location state spaces.   

A means for evaluating the performance of the simulation is to implement a reward structure 
(RS) consisting of an explicit cost for taking different actions.  There would be a certain cost for 
conducting a reconnaissance, another greater cost for conducting an artillery strike.  There would 
also be a reward if the mission complete declaration is made when the enemy has actually been 
destroyed and a corresponding large cost assessed when mission complete is called when the 
enemy has not been destroyed.  

3.1. Control Parameters. 

The Δ and σ control parameters for the BV and CP calculations allow the model to respond to 
settings for aggressiveness by the operator in making decisions to recon or to shoot and to reflect 
the operator’s confidence on when a successful mission has occurred.  The σ control parameter is 
used to set the recon versus shoot threshold criteria for the performance of the simulation.  
Values of σ during analytical runs of the simulations can be varied to represent the complexity 
and decision threshold conditions of the scenario being simulated.  The Δ control parameter is 
used to set the decision threshold criteria for the performance of the simulation.  Values of Δ 
during analytical runs of the simulations can be varied to represent the complexity and decision 
threshold conditions of the scenario being simulated. 

3.2. Action Sequence Assessment. 

In order to examine the CP logic associated with actions in this state space, an example of 
actions and the resulting belief vectors will be examined.  The assumptions are that the enemy is 
located in State1 and that it is static, i.e., not moving.  Initially, there is an equal probability in the 
belief of the commander that the enemy could be in either of the location states and a belief that 
the enemy is alive.  The initial belief vector is thus [0.5, 0.5, 0.0], meaning a 50% chance of 
being in location State1, a 50% chance of being in location State2, and a 0.0% chance of being in 
StateDead, i.e., the enemy is alive.   

Assume that the control parameter values are initially set to: 

σ = 0.75,  i.e., if the Belief Probability of Enemy Destroyed (in regard 
to a location state) ≥ σ, then Shoot, otherwise Recon. 

Δ = 0.90,  i.e., if the Belief Probability of Enemy Destroyed (in regard 
to the dead state) ≥ Δ, then Declare mission complete. 

These assumed values are for example only and are not to be construed to represent any actual 
system. 

Applying these parameters to the BV and CP logic generates the sequence of actions as shown in 
Figure 7 and Table 9.  Even though the BV component for StateDead exceeds Δ at iteration 5, the 
model run was continued for 20 iterations to illustrate the action sequence asymptotic 
relationships.  
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Sequence (w/Enemy @ S1):  Conditional Probability Action Decisions
▲ = 0.9; σ = 0.75
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Figure 6 – 1st 20 Action Decisions for Δ = 0.90 & σ = 0.75 

 
Activating the Δ control parameter causes the simulation to declare mission complete after 
iteration 5 shown in Table 9 with a StateDead BV component = 0.9137 which is just over the Δ 
threshold of 0.90. This results in a five action sequence of Recon-Shoot-Recon-Shoot-Recon to 
Declare.  If a reward structure (RS) is implemented with a cost of 10 combat power points to 
Recon and 100 combat power points to shoot then the cost of this action sequence would be 
(3x10) + (2x100) = 230.   

3.3. Reward Structure. 

Evaluation of the RS as σ is varied from 0.00 to 1.00 provides an indication of the ‘cost of doing 
business’ based on how aggressive the decision maker is in making action choices.  Figure 10 
shows a profile of the RS over this range with σ being incremented in increments of 0.10.  Table 
11 showing an expanded view of the information in the X axis. 
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Reward Structure by Sigma (σ)
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Figure 7 – Action Cost from Reward Structure Varied by σ 

 
The intent is to minimize the cost of doing business by performing the least costly sequence of 
actions to achieve the desired belief that the enemy has been destroyed.  In an analytical use of 
this model tailoring the reconnaissance and strike asset capabilities so that they support an action 
sequence of Recon-Shoot-Recon-Shoot-Recon to achieve the belief threshold specified would 
allow the system to be tailored for optimal performance along this parameter.  Here, the optimal 
performance occurs over the range of σ ≅ 0.59 to 0.75 with a resulting action cost of 230.   

4. Conclusions / Future Work. 
The current work has established a model that supports a computer simulation capable of 
determining and optimizing optimal decisions under conditions of uncertainty according to 
evaluations of the Belief Vector about the current state, action decisions based on Conditional 
Probability logic, and optimal performance determination through the evaluation of action cost 
from the Reward Structure.  Thus, the C3TRACE simulation employing this model has the 
ability to make action decisions based on conditional probability evaluations of the belief state 
representing the current situation which are oriented toward a goal directed optimal outcome and 
then recognize when the belief has been achieved that the outcome has been reached.   

This paper demonstrates the logic of this model through the evaluation of the most simple of 
state spaces which consists of a 2x1 location state matrix and a single status state of the dead 
condition for a total 3 state space system.  Future work will expand the location state space 
matrix to 2x2 and 5x5 as shown in Figures 1 and 2 along with more sophisticated enemy actions 
for moving versus static operations and goal directed movement activities. 
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7. Appendix – Conditional Probability Calculations for First 5 Action Sequences. 

7.1. Action #1:  Make Choice to Perform Recon1 to S1. 

The first action decision to be made by the model is whether to recon or shoot at S1 or S2.  This is 
based on the initial conditions of the state space where the BV has been previously defined as 
[0.5, 0.5, 0.0].  It is also noted that the enemy is occupying State1.  Using Equation 6 the 
numerical evaluation of the CP, based on the limitations of the σ and Δ thresholds, is performed 
resulting in a first action to perform a reconnaissance mission to State1.  The results of the action 
is to generate a new BV = [0.7895, 0.2105, 0.0000]. 

Table 8 – Conditional Probability Calculations for 1st Action:  Recon1 to S1 

Initial Belief 
Vector CP 

Exceed Δ 
Threshold 

? 

Exceed σ 
Threshold 

? 
Choice Observation 

      

 
[0.5,0.5,0.0] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡     0.5     ,      0.5       ⎤ 
⎣0.5+ 0.5   0.5+ 0.5⎦ 

 
= [0.5 , 0.5] 

 
∴For Action where 
Dead = 0.0, the 
denominator must 
sum to 1.0, and the 
total contrast must 
sum to 1.0. 

 
NO 
 

Because 
DEAD state 
with a BV 
value = 0.0 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither 
location cell 
has a value > 
0.75 as each 
cell has a 
contrast ratio 
value = 0.5. 

 
As both S1 
& S2 meet 
recon 
criteria with 
value = 0.5, 
Select, RAN 
(i) 
Assuming 
Random 
Pick=1.  
∴ Choice = 
RAND 
recon (S1), 
or perform a 
recon to S1, 
or perform 
RECON1. 

 

ENEMY 
SIGHTED 
From this action of 
RECON1 to S1 
when enemy @ S1.   
 
Generating a Belief 
Vector = 
[0.7895,0.2105,0.0]. 
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7.2. Action #2:  Make Choice to Perform Strike1 to S1. 

Using the BV from Action #1 of  [0.7895, 0.2105, 0.0000],  the CP is now evaluated to select  
Action #2 to be to perform an artillery strike to S1 generating a new BV =  
[0.1974, 0.2105, 0.5921]. 

 
Table 9 – Conditional Probability Calculations for 2nd Action:  Strike1 to S1  

Previous 
Belief Vector CP 

Exceed Δ 
Threshold 

? 

Exceed σ 
Threshold 

? 
Choice Observation 

      

 
[0.7895, 0.2105, 

0.0] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.7895          ,            0.2105     ⎤ 
⎣0.7895+0.2105   0.7895+ 0.2105⎦ 

 
= [0.7895 , 0.2105] 

 
∴For Action where Dead 
Belief = 0.0, the 
denominator must sum to 
1.0, and the total contrast 
must sum to 1.0. 

 
NO 
 

Because 
DEAD state 
with a Belief 
Vector value 
= 0.0 is less 
than Δ 
which is 
equal to 0.9. 

 
YES 

 
Because cell 
S1 has a 
Contrast 
Ratio value 
> 0.75  

 
Because  S1 
and only S1 
meets 
SHOOT 
criteria, 
Select, 
Shoot S1 
because  S2 
@ 0.2105 is 
<  σ at 0.75.  
For future 
cases where 
there might 
be multiple 
location 
states 
exceeding σ, 
set up the 
general 
selection of 
RAND 
Shoot (S1).  
In this case 
the choice is 
to SHOOT  
at S1. 

 

NO INFO 
 

(From this action 
of STRIKE1 to 
S1.) 
 
Generating a 
Belief Vector = 
[0.1974, 0.2105, 
0.5921] 
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7.3. Action #3:  Make Choice to Perform Recon2 to S2. 

Using the BV from Action #2 of  [0.1974, 0.2105, 0.5921],  the CP is now evaluated to determine 
Action #3 to be to perform a reconnaissance mission to S2 generating a new BV =  
[0.2308, 0.0769, 0.6923]. 

 
Table 10 – Conditional Probability Calculations for 3rd Action:  Recon2 to S2   

Previous 
Belief Vector CP 

Exceed Δ 
Threshold 

? 

Exceed σ 
Threshold 

? 
Choice Observation 

      

 
[0.1974, 0.2105, 

0.5921] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.1974          ,            0.2105     ⎤ 
⎣0.1974+0.2105   0.1974+ 0.2105⎦ 

 
= [0.4839 , 0.5161] 

 
∴For Action where Dead  
Belief ≠ 0.0, the 
denominator will not sum to 
1.0, but the total contrast 
must still sum to 1.0., or 
0.4839 + .5160 = 1.0 

 
NO 
 

Because 
DEAD state 
with a Belief 
Vector value 
= 0.5921 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither cell 
has a CR 
value > 0.75 
with S1= 
0.4839 and 
with S2= 
0.5160  

 
Because 
neither S1 or 
S2 meets σ 
criteria, 
select, RAN 
(i) of set of 
cells w/ 
largest 
contrast 
value, in this 
case only S2 
@ 0.5160 is 
in the set of 
cells 
containing 
the largest 
contrast 
value,  
thus select a 
recon into 
S2, i.e.,  
perform 
RECON2 
into S2. 

 

ENEMY 
NOT 

SIGHTED 
 
From this action 
of RECON2 to 
S2 when enemy 
@ S1. 
 
Generating a 
Belief Vector = 
[0.2308, 0.0769, 
0.6923] 
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7.4. Action #4:  Make Choice to Perform Strike2 to S1. 

Using the BV from Action #3 of  [0.2308, 0.0769, 0.6923],  the CP is now evaluated to 
determine Action #4 to be to perform an artillery strike to S1 generating a new BV =  
[0.0577, 0.0769, 0.8654]. 
  

Table 11 – Conditional Probability Calculations for 4th Action:  Strike2 to S1  

Previous 
Belief Vector CP 

Exceed Δ 
Threshold 

? 

Exceed σ 
Threshold 

? 
Choice Observation 

      

 
[0.2308, 0.0769, 

0.6923] 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.2308          ,            0.0769     ⎤ 
⎣0.2308+0.0769   0.2368+ 0.0769⎦ 

 
= [0.75008 , 0.2499] 

 
∴For Action where Dead  
Belief ≠ 0.0, the denominator 
will not sum to 1.0, but the 
total contrast must still sum 
to 1.0., or 
0.750081 + .249919 = 1.0 

 
NO 
 

Because 
DEAD state 
with a Belief 
Vector value 
= 0.6923 is 
less than Δ 
which is 
equal to 0.9. 

 
YES 

 
Because cell 
S1 has a 
Contrast 
Ratio value 
= 0.750081 
which is > σ 
at 0.75. 

Because  S1 
and only S1 
meets 
SHOOT 
criteria, 
Select, Shoot 
S1 because  
S2 @ 0.0769 
is <  σ at 
0.75.  For 
future cases 
where there 
might be 
multiple 
location 
states 
exceeding σ, 
set up the 
general 
selection of 
RAND 
Shoot (S1).  
Thus select  
SHOOT  at 
S1, i.e., 
perform 
STRIKE2 at 
S1. 

 
NO INFO 

 
(From this 
action of 
STRIKE2 to 
S1.) 
 
Generating a 
Belief Vector = 
[0.0577, 
0.0769, 0.8654] 
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7.5. Action #5:  Make Choice to Perform Recon3 to S2. 

Using the BV from Action #4 of  [0.0577, 0.0769, 0.8654].,  the CP is now evaluated to 
determine Action #5 to be to perform a reconnaissance mission to S2 generating a new BV =  
[0.0609, 0.0254 ,0.9137].  As the new BV component for State3 at 0.9137 now exceeds the Δ 
threshold of 0.90, the model makes the decision to terminate with a declaration of ‘Mission 
Complete’ with the belief that the enemy has been destroyed. 

Table 12 – Conditional Probability Calculations for 5th Action:  Recon3 to S2  

Previous 
Belief Vector CP 

Exceed Δ 
Threshold 

? 

Exceed σ 
Threshold 

? 
Choice Observation 

      

 
[0.0577, 0.0769, 
0.8654] 

 

⎡   S1     ,      S2      ⎤ 
⎣S1+ S2   S1+ S2⎦ 

 
⎡        0.0577          ,            0.0769     ⎤ 
⎣0.0577+0.0769   0.0577+ 0.0769⎦ 

 
= [0.4287 , 0.5713] 

 
∴For Action where Dead 
Belief  ≠ 0.0, the 
denominator will not sum to 
1.0, but the total contrast 
must still sum to 1.0., or 
0.4287 + .5713 = 1.0 

 
NO 
 

Because 
DEAD state 
with a Belief 
Vector value 
= 0.8654 is 
less than Δ 
which is 
equal to 0.9. 

 
NO 

 
Because 
neither cell 
has a CR 
value > 0.75 
with S1= 
0.4287 and 
with S2= 
0.5713  

 
Because 
neither S1 or 
S2 meets σ 
criteria, 
select, RAN 
(i) of set of 
cells w/ 
largest 
contrast 
value, in this 
case only S2 
@ 0.5713 is 
in the set of 
cells 
containing 
the largest 
contrast 
value,  
thus select a 
recon into 
S2, i.e.,  
perform 
RECON3 
into S2. 

 

ENEMY 
NOT 

SIGHTED 
 
From this 
action of 
RECON3 to S2 
when enemy @ 
S1. 
 
Generating a 
Belief Vector = 
 
[0.0609, 
0.0254, 0.9137] 
 
 

 Note: 
Δ threshold now exceeded with DEAD state Belief Vector value = 0.9137 which is greater than Δ at 0.9, 
therefore next action will be to DECLARE. 
 


