

11TH ICCRTS

COALITION COMMAND AND CONTROL IN THE NETWORKED ERA

Experiences from implementing dynamic and secure Web Services

Topics: C2 Experimentation, C2 Architecture, Information
Operations/Assurance

Authors: Raymond Haakseth, Dinko Hadzic, Ketil Lund, Anders Eggen
and Rolf E. Rasmussen

Point of Contact: Raymond Haakseth

Organization: Norwegian Defence Research Establishment (FFI)

Complete Address: P.O. Box 25, NO-2027 Kjeller, Norway

Telephone +47 63807000 / Fax +47 63807115

E-mail: raymond.haakseth@ffi.no; dinko.hadzic@ffi.no;
ketil.lund@ffi.no; anders.eggen@ffi.no; rolf.rasmussen@ffi.no

Abstract

The principles of Network Enabled Capability (NEC) highlight the need for seamless
and secure information exchange. To achieve this, Service Oriented Architecture
(SOA) has been recognized as one of the key enablers. At the same time Web Services
has become the de-facto technology for implementing a SOA.

This paper presents our approach to and experience from implementing a proof-of-
concept C2 system using Web Services standards. The goal has been to develop a
system that provides secure and dynamic web services, with dynamic discovery of
services and effective information exchange. The focal points of the developed
architecture are end-to-end security, Service Registry and communication using
publish/subscribe patterns in Web Services.

This paper also briefly surveys the theories and standards that our work is based on,
and it describes the considerations and delimitations that had to be made to achieve a
system that could actually run. Further we describe the unclassified results from the
use of this experimental system for demonstrations during NATO CWID 2006.

Finally we present our preliminary evaluation of the successfulness of the approach
of demonstrating a dynamic and secure SOA using Web Services.

 1

1 Introduction

The principles of Network Based Defence (NBD) have been adopted by the
Norwegian Defence as the basis for future development of communication and
information systems. NBD is the Norwegian equivalent of Network Enabled
Capability (NEC). The Norwegian Defence Research Establishment (FFI) has for
several years conducted experimental work to clarify the needs of the future NBD.

Dynamic sharing of information is among the most important core functionalities
within NBD. While operational aspects of NBD have been the focus of experiments
described in [23] and [8], this paper describes an effort which is primarily
technologically focused, although having support of NBD ideas as the overall goal.

The military context of our experiment is the process of compiling a situational
picture, and sharing it between military units. A NBD-related description of this
process can be found in [9]. Technically the system is based on a synthetic
environment and a number of autonomous Picture Compilation Nodes (PCN). The
PCNs are interconnected in a Peer-to-peer (P2P) manner [6], but connections are
individually configurable by users to form desired information exchange structures.

This experimental implementation study is founded on the use of Web Services and
the open standards that exist or are being developed in this area. The idea is to use
leading edge technologies to build a system that can be evaluated against military
criteria. Starting in the lower end when it comes to time and resources, our work
should be regarded as proof of concept and it only considers simple technological
evaluations. However, the development of good operational criteria for military
evaluation may very well be a subsequent activity.

Security is often thought of as a limitation with respect to NBD, making sharing of
information difficult. In our experiment we focus on end-to-end security, as described
in [5] and also highlighted as the long term goal in the NATO NEC Feasibility Study
[14]. End-to-end security solutions do not exclude traditional transport level security,
but in this paper the latter will not be emphasized.

Besides security, bandwidth restrictions are very much a limitation when it comes to
fully deploying NBD principles. Those restrictions will remain, and as a means of
reducing network traffic, the concept of publish/subscribe may be valuable. Simply
speaking, publish/subscribe means that only those who have subscribed to the
information will get it, and only when new events occur. Compared to a traditional
”push” mechanism there are obvious benefits, and ”pull” principles are not able to
notify listeners when events occur.

The remainder of this paper is organized as follows. In Section 2 we outline the
theories and standards used in our work (a more elaborative description can be found
in [22]). Section 3 describes the demonstrator architecture, while Section 4 elaborates
on our experience gained during the implementation phase of the demonstrator. Here
we focus on our major research issues defined; service registry, publish/ subscribe
message exchange pattern, security and data exchange model. Other issues identified
during the development phase are also presented. In Section 5 we provide a discussion

 2

of the technologies and the work performed, including highlighting the value added,
pointing to potential challenges. Finally, in Section 6, we conclude our work and
outline areas in need of further research.

2 Relevant Theories and Standards
In this section we give a brief introduction to the principle theories and standards
forming the foundation of the work presented in this paper.

2.1 Dynamic Service Discovery

A Service Oriented Architecture (SOA) may be described as ”A collection of services
that communicate with each other” (simplification of the definition given in [3]). In
NBD, the ultimate goal is that all resources in the network are accessible as services.
The NBD infrastructure itself can be thought of as an advanced SOA (see Figure 1).
Being able to find and invoke these services is vital to a system operating in a NBD.
This implies support for environments ranging from static to highly dynamic. In
contrast to the fairly stable service availability found in static environments, services
and even networks may come and go in a non-deterministic fashion in a dynamic
environment.

Figure 1: Service orientation using Web Service technologies

Lookup services exist in many different technologies (e.g. Jini, JXTA and CORBA).
For Web Services the most commonly used lookup registry is the Universal
Description, Discovery and Integration (UDDI) [16], and this was chosen as the basis
for our experiment.

2.2 Publish/Subscribe
The publish/subscribe pattern is well known and is applied within several different
technologies. We have chosen to rely on the Web Services related specifications
given by OASIS [15], namely WS-Topics and WS-BaseNotification [19]. OASIS also
specifies WS-BrokeredNotification, which we so far do not use.

 3

Figure 2: Publish/subscribe basic elements

As shown in Figure 2 the publish/subscribe pattern fits well into the SOA and Web
Services picture in Figure 1. The basic functionality of publish/subscribe is that a
Service Consumer performs a “subscribe” operation for a given topic on a Service
Provider, resulting in a series of “notify” operations the other way. The notifications
are the actual deliveries, and the notification messages include the information
subscribed to. More details are provided in Section 3.3.

2.3 Secure Web Services
All of the Web Services specifications are based on XML and the use of SOAP
(Simple Object Access Protocol) messages. Therefore, XML security specifications
may be used for securing the different Web Services components.

Many specifications have been written for securing XML documents, and some of
them have become standards. The major standardization organizations in this area are
the W3C [26], OASIS [15] and IETF [10]. In addition, Microsoft and IBM have
developed the Web Services Security Road Map [28], which describes a set of
security specifications building on the OASIS WS-Security standard [20].

The OASIS WS-Security standard specifies how to extend the SOAP message header
in order to achieve message integrity, confidentiality, authentication of originator, and
replay protection. It is based on the use of the security standards XML Signature [31]
and XML Encryption [30] and supports a variety of security token formats (e.g.
X.509, SAML and XrML).

What is missing in the wide variety of XML specifications and standards is an XML
specification for security labeling of information objects. Security label specifications
have earlier been developed for X.400 messaging (X.411 [29]) and SMTP (IETF
S/MIME ESS [11]) and these may be used as a basis for the development of an XML
Security Label specification.

 4

2.4 Data Exchange Format
The initial focus of our work was on secure SOA and publish/subscribe, and the
actual information exchanged was not an issue. However, as the work provided a nice
opportunity to experiment with data exchange on an interoperability level (i.e.
between nations), the scope was extended to include this aspect.

For this, we chose the data model defined by the Multilateral Interoperability
Programme (MIP)[13]. This is an effort towards providing a common understanding
of the battle space between different countries, and independent of doctrines,
procedures, and tactics. The MIP model has been developed over many years of work,
starting as a land model, and it is currently being extended to cover joint
environments. The aim of the MIP is to achieve international interoperability of
Command and Control Information Systems (C2IS) at all levels, in order to support
multinational operations.

The MIP is primarily intended for database replication using the Data Exchange
Mechanism (DEM) specified within MIP, and it covers a spectrum of interoperability
requirements:

• Both structured and unstructured (text, video, graphics, etc.) information
• Information exchange through pulling, pushing, and collaboration
• Information management

We are only using the data model from MIP and have chosen the C2 Information
Exchange Data Model (C2IEDM) from MIP Baseline 2. Instead of using database
replication as defined in DEM, we are using Web Services as the information
exchange mechanism.

3 Architecture
In this section we present the architecture for our demonstrator, and give rationales for
the design choices made.

3.1 Architecture Overview
For experimenting with dynamic and secure Web Services, the architecture outlined
in Figure 3 was used. This architecture includes an in-house developed experimental
C2 system with distributed and independent Picture Compilation Nodes (PCN) which
cooperatively generates a Common Operational Picture (COP). Data to the PCNs are
generated using a synthetic environment.

Within the national domain, the PCNs exchange data using an internal COP format
and protocols. The COP can be exposed by each PCN via the Service front-end,
which transform the internal COP format, using the Translator, to the MIP format.
The actual data exchange is performed via a WS-Notification service. Conversely,
MIP format messages can also be consumed by using WS-Notification. Other Web
Services may also be exposed by the PCNs, e.g. ordinary request-response services.

 5

Figure 3: High level demonstrator architecture

All services are registered with the Service Registry in order to enable discovery and
each service registration contains enough information to be able to connect to the
service. The service registration entry should reflect the access level to the service,
e.g., services within the national domain should only be accessible for national clients.

In addition, Figure 3 depicts a Security Management component, which includes a
PKI with a Certificate Authority (CA) and an LDAP server for storing certificates and
certificate revocation lists (CRLs). All other components, including Service registry
and PCNs, implement the Security component, which provides end-to-end security
services like security labeling, encryption, and signing.

This architecture also proves how legacy systems can be wrapped to provide and
consume services in a Service Oriented Architecture by e.g., extending the Service
Front-End to include data exchange on other formats than MIP.

3.2 Service Registry
The need for an operational service registry was realized early in the process and the
choice was made to go for an implementation of the UDDI version 3 specification
[17]. UDDI v3 was considered to be best suited for our needs due to improvements
such as support for digital signatures, better search API, a subscription API, as well as
other new or improved features. The lack of open source implementations of the
UDDI v3 specification combined with the need for both performance and stability
guided us to use a commercial UDDI registry from Systinet [25].

The UDDI data model consists of the four data types depicted in Figure 4, together
with relationships. Note that tModels can be used to represent metadata about any of
the service or business entities in addition to the bindingTemplate, thus allowing for
customization of the registry context. The tModel constructs give UDDI a very
flexible means to represent any content within the registry. The drawback however is
that this often tends to become very complex as numerous customizations are
performed.

 6

Figure 4: UDDI Data Model [17]

To enable better search and identification of services, an agreed set of metadata was
used in the demonstrator. BusinessEntities were used to represent nations and assets
to reflect the national organizations. By using the publisherAssertion mechanism of
UDDI these were associated with each other, thus providing a graph representation
which can be traversed. Other entities, like Communities Of Interest (COIs), could
also have been modeled as businessEntities to provide easy access to the services
associated with a COI. The businessService and bindingTemplate were used to
represent the actual service and binding details. In addition, a predefined set of
canonical tModels were used to represent metadata in relation to both business and
service entities.

The choice of using UDDI left us with the need to develop additional functionality for
the areas of security, service termination policies and extended search capabilities.
Service termination policies are needed to ensure that the content of the registry does
not become stale, i.e., remove services from the registry that has suffered an
ungraceful death. Extended capabilities are needed in order to handle both
geographical search and SOAP level security. Finally, extended Access Control is
needed in order do improve Need-to-know separation.

Figure 5: UDDI Registry with Abstraction Layer

To implement the additional functionality identified above we have developed an
Abstraction Layer in front of the UDDI registry. This provides a middle tier and no

 7

clients will access the UDDI directly – the Abstraction Layer will stand in between,
see Figure 5. The functionality could have been included in the registry itself, but
since the Systinet registry is a commercial product, the lack of access to source code
made it impossible to do the necessary modifications.

In addition to the original operations of the Publishing API defined in UDDI v3 we
have defined two operations, namely publishService and resetRegistry. The
publishService method is used to provide a means for publishing WSDL files to the
UDDI registry as businessServices entities, a service that is compliant with the
OASIS technical note found in [18]. Additional information, such as e.g. geographical
coverage area of a service, can also be registered. The publishService operation is
transformed to a save_service operation by the AL. The resetRegistry operation is
used to delete the services of a given businessEnitity and is transformed to a UDDI
delete_service operation.

3.3 Publish/Subscribe
Publish/subscribe is a well known communication pattern for event-driven,
asynchronous communication. Our goal was to use the WS-Notification specifications
family [19] to realize dynamic service management and efficient point-to-multipoint
message distribution.

Using WS-Notification terminology, a service wanting to publish data becomes a
NotificationProducer by offering messages at a specified Topic. The data format of
each topic is well defined by an XML schema (XSD). A client, called a
NotificationConsumer, first creates a subscription to the service. The client will
subsequently receive notifications as they are produced by the NotificationProducer
(see Figure 6).

Using this publish/subscribe pattern, we established a standardized way of
communication and communication management (pausing, resuming, creating,
destroying and renewing the subscriptions) into our C2 system, which, in turn, is a
significant advantage for interoperability.

NotificationConsumer

Subscribe 1

NotificationProducer

Notification(s) 2

. . .

Topic A

Figure 6: Publish/Subscribe overview: a client creates a subscription and starts receiving

asynchronous notifications

 8

We have defined 3 topics in our scenario:

• ACP_MaritimePictureTopic provides maritime area tracks in MIP format
• ACP_LandPictureTopic provides land area tracks in MIP format
• ACP_MTITracksTopic provides tracks in MTI (Moving Target Indicator)

format
WS-Notification supports hierarchical aggregation of topics into topic trees. We have
omitted using this feature, leaving our topics flat – each topic representing all
messages from a single service. However, topic trees could be introduced as a fine-
grained filtering of messages to receive, and several subtopics could be defined for the
ACP_MaritimePictureTopic, e.g.:

• Based on unit classification: A subtopic called “Frigate” would deliver tracks
for all observed frigate units

• Based on location: A subtopic could be defined to deliver maritime tracks for
a specified geographical area

3.4 Security
In order to provide Web Services with end-to-end security at the information object
level, it was necessary to implement the functionality outlined below:

• All SOAP messages are attached a security label, encrypted, and signed
• A “Domain XML Guard” filters all SOAP messages leaving the domain based

on the security label
• All advertisements in the Service Registry have security labels attached and

are signed before storage
• Before any notifications or UDDI records are sent to a requestor, her security

privileges are checked against the security label of the information objects.
• A PKI and an LDAP Directory are used for providing the security

infrastructure for exchange of certificates and certificate revocation lists.

This functionality is based on the OASIS WS-Security with extension for XML
Labeling of SOAP messages. The SOAP messages exchanged are all labeled,
encrypted, and signed to provide the integrity and confidentiality security features.
The Security Label gives flexibility in marking the information, and is an XML
translation of the IETF S/MIME ESS [11] security label. Due to the lack of
standardization for XML security labels this also had to be developed within our
project.

To serve these mechanisms we used a PKI system consisting of Certificate
Authorities, Certificates, and LDAP servers. The commercially available KeyOne
product from Safelayer [24] was used as CA and OpenLDAP [21] was used for
directory services. This provided us with the necessary means for distributing security
tokens. In short, each user is issued a certificate (X.509), which is extended to include
her security privileges, in form of an XML security label. These privileges are used to
control access to information objects by comparing them to the security label of the
given object. It should be noted that storing the privileges in the certificate of a user is
not a very dynamic solution, and is only used for demonstration purposes. In addition,
LDAP synchronization between nations was performed using a special purpose WS-
Notification service. Smartcards were also used to store user certificates.

 9

As shown in Figure 3, all components that provide or consume services must contain
the security component. This component will handle all parts of the security
processing, i.e., perform certificate validation, create and validate signatures, encrypt
and decrypt, and do access control based on the security labels. Thus, in our
architecture security is handled in an end-to-end fashion.

3.5 Data Exchange Model
To be able to create a common operational picture (COP), the observed objects are
described using tracks. A track contains all information about an object, i.e., the
perceptions from the reporting units, represented as reports, as well as the estimates
produced by the Picture Compilation Nodes (PCN). The tracks are exchanged
between the PCNs, enabling all participants to establish the same COP.

For exchange of such tracks between the national PCNs, we use a proprietary format,
designed specifically for our national needs. To be able to exchange information
between countries, it is necessary that the parties agree upon a standardized format for
the data to be exchanged, and since our work is performed within a military context,
we have found it appropriate to use the data model defined by the Multilateral
Interoperability Programme (MIP) [13]. This model has been developed over several
years, starting as a land-oriented model, and later expanded to cover joint
environments. However, the MIP Data Exchange Mechanism (DEM) is essentially a
replication mechanism between similar MIP-relational databases, which is a context
different from ours.

In order to adapt the model to our needs, we have defined a suitable subset of the MIP
model, called a miniMIP, and we exchange information using an object-oriented (OO)
XML-version of this model. This solution requires a message-oriented exchange
mechanism, in our case WS-Notification (described in Section 3.3), and the idea is
that the OO XML-version may provide data structures that will be easy to use for
demonstration purposes.

The miniMIP
In the Entity-Relationship (ER) diagram for the original MIP, there are approximately
240 entities. Using expertise on MIP and taking our internal data model into
consideration, we selected 30 of these entities, sufficient to represent the information
present in the internal model. Out of these 30 entities, there are six independent
entities, i.e., entities that do not depend on other entities for identification. These are
1) object_item, which represents an object, either materiel or organization; 2)
object_type, which describes the type of an object item; 3) affiliation, which denotes
the nationality of an object item; 4) location, which denotes the position of an object
item together with 5) vertical_distance; and finally 6) reporting_data, which provides
information (metadata) about reports. All other entities are dependent on one or more
of these six entities.

The ER diagram of these 30 entities provides a good human-readable description of
the information exchange contents, but such a representation is inherently tied to
storage of information in a relational database. Therefore, it was necessary to
transform this representation into something that was more suitable for message

 10

exchange. Given that the information to be exchanged was about physical objects
present in the battlefield, our approach was to use object items as the fundamental
entity, and then include all relevant data connected to that entity. Using an object-
oriented XML-version of the MIP model, the result is an object item XML structure
containing all other relevant structures.

This approach makes every object item structure self-contained, including type,
location, and affiliation, as well as all associated reporting data. On the positive side,
this makes the message content easily interpretable by the recipients. An obvious
disadvantage is the redundancy introduced, since object type information will be
repeated for every object item. However, further enhancements of this approach have
been defined as out of scope in this first version.

Implementation
Given the exchange format, the next step was developing a means of translation
between the internal data model and the miniMIP. Note that this is a two-way process;
object reported by our PCNs should be translated to the miniMIP-format and
transmitted to other countries, and observations reported by other countries are
received and translated to our internal format before being submitted to the PCNs.

For this work, we used a “brute-force” approach: Our internal data model is
represented using Java classes, and the reported tracks are thereby represented as
instances of these classes. The miniMIP model, on the other hand, is defined by an
XML schema, and described in an XSD-file. We then use this file to create a set of
Java classes, using Sun’s Java Architecture for XML Binding (JAXB) version 2.0
[12]. Within our national system, object items (and their associated elements) can now
be represented as instances of the generated classes, and the translation process is
therefore a question of copying data between object attributes of the two models,
possibly adapting the values to accommodate different data types.

Having built a complete object item with all associated information elements (type,
location, etc.), and populated these with correct values, this object structure must be
serialized and translated into the object-oriented XML-version of the miniMIP. The
tool for doing this is provided by JAXB, as each of the generated classes offers a
“serializer” method that transforms the object structure into the correct XML-format.

4 Experience and Lessons learned
In this section we go into more detail of our experience of working with the standards
and summarize our lessons learned from this.

4.1 Service Registry
The Abstraction Layer tier implements the UDDI v3 APIs using Java, JAXB, Apache
Axis [1], and Apache Tomcat [2]. The Abstraction Layer (AL) acts as a proxy or
SOAP forwarder to the UDDI server and will do any extra processing on a received
request and forward the request to the corresponding API at the UDDI server. This
includes security processing for requests and replies, such as decryption, validation of
signatures, and performing access control based on user privileges and security labels
(see Section 4.3 for further details on the security handling).

SOAP replies originating from the UDDI Inquiry API are passed through a filtering

 11

process. This process includes filtering on geographical information and service
expiration and access control to the entries. Access control is performed by comparing
the security label attached to each UDDI entity to the privileges of the client. Service
termination policy filtering and geographical search filtering is performed when
searching for services. If a service has expired, it is removed from the result set and
deleted by the AL. Likewise, if a service is not within the specified geographical area
it is also removed from the result set. Note that it is optional to register a coverage
area for a service and provide a coverage area to service searches. Originally we
planned to do filtering directly on the UDDI result set. However, due to the nature of
the result sets provided by the UDDI server, it is often necessary for the AL to interact
with the UDDI server several times to retrieve enough information to perform the
filtering. This might seriously hamper the efficiency of the AL. Another issue
identified during the filtering of information was that using the UDDI entities makes
it hard to establish one unambiguous security context from the security labels. This
generates the need for even further interaction between the AL and the UDDI server.

For military purposes it is desirable for dynamic information to be stored in the
service registry. One example of such information is the position of a service; this will
give the client the option to, for instance, only retrieve services in a given area of
interest. This use of dynamic information is not consistent with the purpose and
design of UDDI. Highly dynamic information, such as continuously changing position
information for mobile sensors, would have to be updated frequently by service
providers and retrieved by service consumer, leading to overload of the UDDI server.

Another issue identified during design and implementation of the AL and service
registry is the total lack of support for registering WS-Notification services in UDDI.
Our solution to this issue is to create a tModel hierarchy modeling topic spaces and
topics and including this in the businessService entities representing a WS-
Notification services. This enables a client to identify such services and the topics to
which it produces. In addition, the client might search for services providing
information on a given topic space or a specified topic.

4.2 Publish/Subscribe
In order to create a subscription to a NotificationProducer, clients need to acquire the
following parameters from the UDDI service registry:

• Address of the service endpoint, as defined by the WS-Addressing
specification [27]

• Topic, containing the namespace and the name of the service
• Data format of messages

The data format of messages is defined by an application-specific XML schema
(XSD), and all messages are exchanged in XML format.

It is important to note that WS-Notification applies a point-to-point message
distribution on the transport layer. In our scenario, we have tested a
NotificationProducer with approximately 10 valid subscribers. Each time a
notification is generated, it will need to set up 10 separate point-to-point links and
transfer the notification to each individual subscriber. This could affect the
performance if the number of subscribers is large, and it would be necessary to

 12

improve the efficiency of the notification distribution. Therefore, multicast
distribution mechanisms at the transport level need to be considered.
Large notification messages can also downgrade the service performance. Our tests
produced relatively large notifications with sizes up to 500 Kb, caused by complex
MIP data structures. We expect the size to be significantly larger in a more complex
operational scenario. Our demonstrator transfers the complete common operational
picture (COP) in each notification. Transferring only the changes since last
notification would also reduce the notification size, although this may require
additional functionality such as state synchronization.

Put in a military context, coalition members must rely on each other’s systems in
order to receive meaningful and correct data, at correct times. However, the WS-
Notification standard does not specify any QoS parameters for the publish/subscribe
communication mechanism. Flow control is a missing feature in WS-Notification,
which is a clear disadvantage in our scenario.

After the initial subscription setup, clients will receive notifications from the
NotificationProducer as long as the subscription is valid. Clients have no way of
controlling the size, amount, and frequency of notifications to receive, so if the
NotificationProducer generates notifications frequently, the NotificationConsumers
may become flooded with large amount of messages. Consequences are increased
CPU processing time, memory, and bandwidth usage. In addition, there is a need to
formalize the data contents of the notifications, whether the content is the change (i.e.,
the delta) since the last notification or a full update containing all the tracks in the
operational picture.

The WS-Notification specification does define an optional field called
SubscriptionPolicy, which may be included in the subscription creation phase.
However, the content of the field is not specified (it is defined as XML "Any" type).

Figure 7: WS-Notification specification defines the optional SubscriptionPolicy field, but does not

specify its content

In order to use the SubscriptionPolicy field for specifying the QoS parameters of
military applications using the publish/subscribe mechanism, we need to define a
common understanding of the SubscriptionPolicy content throughout the coalition.

The SubscriptionPolicy parameters need to be specified in an XML schema and
integrated into NotificationProducer implementations. We consider the following
SubscriptionPolicy parameters to be necessary:

• Message size. Specify the maximum size of the notification. Useful if the
client has limited communication bandwidth or processing power

• Message frequency. Specify whether the notifications will arrive
asynchronously, or periodically. If periodically: specify the period time

 13

• Message content. Specify whether the message contains the “full dump” of the
operational picture, or only the updates since the last notification.

The publish/subscribe implementation is realized in Java using Globus Toolkit [7], an
open source framework which implements WS-BaseNotification (version 2).

4.3 Security Mechanisms
While implementing the security mechanisms, two distinct packages were identified;
the Security Protection Component (SPC) and the Label Handling Component (LHC).
The SPC is a generic component for signing and encrypting SOAP messages and it is
implemented using various COTS software available from Apache and standard Java
APIs for certificate handling. The LHC is a special purpose component developed for
generating and comparing security labels for access control. This is also implemented
using standard Java XML handling software.

The most significant challenge we experienced during the implementation of these
security mechanisms was integration with the chosen COTS products, both for
publish subscribe message exchange and the service registry.

As a result of the choice of using the Systinet UDDI registry as our service registry,
the Abstraction Layer had to include, and make use of, both the SPC and LHC. To
enable access control to and ensure the integrity of the UDDI content, all records must
be labeled and signed. Since records in UDDI often are comprised of numerous small
entities with only loose connections, e.g., service descriptions with associated
tModels, it becomes hard to establish one security context to label and sign. In our
demonstrator we chose to only label business and service entities, since tModels often
can be shared. To minimize the changes that had to be made to standard UDDI v3
client implementations, we chose to extract the security label associated with the
SOAP messages when storing records in UDDI. This was possible since the content
of these messages is identical to the records to be stored in the UDDI and should thus
be graded at the same level under the same security policy.

The Access Control to the UDDI records is also performed by the Abstraction Layer
at the Inquiry API. This includes checking the security label of the record against the
users privileges and verifying the signature to ensure that the record has not been
tampered with. Again, as with filtering of e.g., service expiration, the need to perform
numerous interactions with the backend registry in order to retrieve enough
information may reduce the performance of the Abstraction Layer (see Section 4.1).

The actual integration of the SPC and LHC with UDDI Abstraction Layer proved to
be one of the major challenges faced. Although the Abstraction Layer uses Apache
Tomcat and Axis, which enabled us to do low level SOAP message manipulation,
differences in the serialization of java objects to actual XML documents often resulted
in broken signatures. The lesson learned is that care has to be taken in order to
preserve the signatures.

Integrating the SPC and LHC with the Globus Toolkit used for WS-Notification also
proved to be challenge. In order to ensure that no subscribers are receiving messages
that they are not authorized for, all outgoing SOAP messages must be filtered. This is
based on the fact that on time of subscription it is not guaranteed which security level

 14

the produced messages on a given Topic will have, and this may even change during
execution. As a result, the Globus Toolkit Manager must store the privileges, or a link
to the NotificationConsumers certificate, in order to do the matching between the
XML security label of the SOAP message and the privileges. Furthermore, the SOAP
messages must be encrypted and signed in addition to the fact that Globus Toolkit
only provides access to high-level data structures and not the actual SOAP message.
While this provides an easy to use interface to WS-Notification developers, it is a
challenge when wanting to manipulate the actual SOAP message. It was solved by
extending the Globus Toolkit source code to include the filtering mechanisms.

4.4 Data Exchange Using MIP
As described earlier, we realized the WS-Notification functionality using Globus
Toolkit. Our initial plan was therefore to use this toolkit also to generate Java classes
from the XML Schema. However, our experiments showed that the Globus Toolkit
was not able to handle the complexity of the miniMIP. In particular, the de-
serialization of XML-documents frequently failed, and in addition, there were several
issues concerning the use of namespaces, making it very difficult to produce valid
XML documents. We therefore chose to use JAXB for the serialization and use
Globus Toolkit only for the WS-notification service.

During the development of the demonstrator, it also became clear that the complexity
of the data model represented a considerable challenge for the participants.
Substantial effort was required both to achieve a common understanding of the model
among the participants, as well as making the national systems able to handle both
translation and serialization/de-serialization correctly.

Finally, as our national COP format and the miniMIP exchange are not equal with
respect to the information they can convey, it is not always clear how the information
should be translated. In particular, our national COP model is richer, meaning that we
lose information when translating to the miniMIP model. Thus, the miniMIP data
model cannot replace our internal COP format, and we also need to consider whether
it fulfills our needs for information exchange with external partners.

5 Discussion
In this section we discuss the technologies and implementations used to realize the
demonstrator described in this paper. We intend to highlight both benefits and
potential problems, and outline the maturity of the chosen standards.

Regarding the service registry we have used a combination of both a commercial
UDDI registry and open source software for the Abstraction Layer. The backend
commercial Systinet Registry worked as expected, and the implementation of the
abstraction layer also worked satisfactory. However, the need for implementing an
abstraction layer itself points out some weaknesses in the UDDI v3 specification.
Even though this specification is one of the most mature standards used in this
demonstrator, it has some deficiencies. In particular, UDDI handles dynamic metadata
less than satisfactory. A good example is the position of a sensor providing a service,
as frequent updates of this information would possibly cause performance issues. In
our case this problem is solved by using external services to provide highly dynamic

 15

metadata, and placing the URL to this service in the registry. UDDI is often used
more as a design-time rather than run-time registry and this can explain the missing
support for dynamic metadata. It is also our view that advanced service discovery will
include semantics and other extended metadata, something which is not part of the
current UDDI specification [4].

The Publish/Subscribe mechanism proved to be a reliable communication mechanism
in our demonstrator. However, the challenges may become more obvious if the
number of subscribers is significantly larger than in our system. Message distribution
is a potential bottleneck since web services utilize point-to-point communication, and
more efficient mechanisms, such as multicast of SOAP, need to be considered. The
large size of notification messages could be reduced by transferring the full MIP data
model initially, and subsequently only transferring the updates since the last
notification. In addition, various methods could be applied to reduce the overhead of
XML data structures, such as binary XML and data compression. However, the flow
control and QoS mechanisms are missing. These need to be introduced and
standardized throughout the coalition, in order to give clients better control of
notification message frequency and size.

We believe that the implementation of the security concept and mechanisms described
in this paper will be a key enabler for realizing NBD, in accordance with the goals
outlined in the NNEC Feasibility Study [14]. The lesson learned during the
implementation of the demonstrator is that extending the security context all the way
to the end systems will provide the possibility of better need-to-know separation and
protection against Computer Network Attacks (CNA). We consider this
implementation as a first step towards implementing a more object-based security
infrastructure. Management of these security concepts will also be an important
challenge. At the same time it should be acknowledged that these are not merely
technical issues, but also a question of policy. Migration towards these concepts may
be taken step by step, but we believe that the introduction of these is important to
provide the flexible and secure information exchange needed in NBD.

With respect to the data exchange, there is clearly a trade-off between data
redundancy and complexity of the services. In this demonstrator, we chose a service
that always sent the entire operational picture, a solution that leads to a relatively
simple service, since the clients did not have to maintain any state between the
notifications. The problem of this solution is that it induces large notification
messages, and if this is combined with a relatively high notification frequency, both
network bandwidth and processing capacity may become issues.

In general, our implementation is heavily revolved around the use of early releases of
both existing and proposed standards. In addition, we have to a large extent been
using early versions of software implementing these standards, predominantly open
source software. The positive side of this approach is that open source software gives
us the opportunity to make adaptations as needed. The strength of this proved
valuable when introducing security in many of the components. On the other hand,
open source software often tends to be lacking the necessary accuracy in
documentation. This, combined with the fact that the state of the open source software
is very immature, proved to be a challenge when implementing the demonstrator.

 16

In particular, different releases of the same software often turned out to differ in
functionality to such an extent that they could not work together in a system. In order
to be able to communicate, the different partners were forced to use the same software
versions.

6 Conclusions and Further Work
Service Oriented Architecture is highlighted as one of the key enablers for NBD. The
focus of the work presented in this paper has therefore been on technologies
envisaged as important for the realization of the NBD SOA. We have presented our
demonstrator, which utilizes these technologies and shows how they provide powerful
and flexible tools to ensure seamless and secure information exchange.

In this paper, we have only focused on the technology side of NBD; the
organizational aspects of introducing these technologies have not been an issue.
However, it is important to realize that technology itself cannot solve all the problems
inherent in implementing NBD. An important issue is the need to revise procedures
and policies, and one of the greatest challenge here lies in the provision of flexible
security policies and management.

Although our work has only scratched the surface, it is clear that the security
challenges may become a serious showstopper for NBD if they are not handled
properly. There is unquestionably a need for more research in areas like privilege
management, object level security, and risk based approaches. Furthermore, the
security labels and the process of labeling the information must be standardized.

It should also be noted that the end-to-end security mechanisms can, in a transitional
period, be deployed as an extension to today’s lower layer security mechanisms.
Related to this, we have also proven how legacy systems can be wrapped to become
parts of a Service Oriented Architecture, and, thus, a possible way of utilizing these as
far as possible. This will become important for the future NBD.

In addition to security, we have identified several areas needing further research
efforts. First of all, the use of XML is common for all technologies used for this
demonstrator, resulting in considerable bandwidth consumption. To be able to use
Web Services over unreliable and/or low bandwidth networks we need to minimize
this. Thus, binary XML solutions, compression, and other alternatives to reduce
bandwidth consumption should be investigated further.

Furthermore, it is clear that creating a dynamic service registry is hard; hence more
research effort should be put into this. From our point of view this would involve
using semantics and defining a common vocabulary for enabling the extended use of
metadata. In general, we found that both the implementation of the demonstrator and
the information exchange with other countries were complicated by our use of
immature standards and software. Thus, we were forced to be very detailed when
writing specifications; in many cases having to specify particular software versions to
be used.

In this paper, we have also shown that there are several issues related to the use of
WS-Notification to realize the publish/subscribe pattern for Web Services. Although a

 17

promising solution, our opinion is that it is too early to conclude that WS-Notification
is the best approach for this pattern. Other alternatives are proposed and we believe it
would be worthwhile investigating these further.

One of our goals when we started this work was to confirm the potential value-added
by SOA-enabling technologies. Our conclusion from the work described in this paper,
is that we recognize the significant potential the described technologies have for the
construction of a NBD. Some deficiencies and shortcomings have been discovered,
but all in all the technologies look promising and the work should be continued. It
should be mentioned that this is our first attempt at implementing a dynamic and
secure SOA and we plan to further develop the demonstrator to gain more experience
and identify requirements for the national NBD. By using early releases of standards
we believe that we are now in a better position to evaluate these technologies.

7 Acknowledgements

The work presented in this paper is sponsored by The Royal Norwegian Ministry of
Defence, Department of Defence Policy and Long Term Planning (FD IV). We would
also like to extend our acknowledgement to the members of NATO RTG-027 research
group and Thales Norway AS for their contributions into our work. Particular thanks
to Morten Andreassen at Thales Norway AS. In addition, the other members of this
and other projects deserve to be acknowledged for their contributions.

References
[1] Apache Axis (2006): http://ws.apache.org/axis/

[2] Apache Tomcat (2006): http://tomcat.apache.org/

[3] D. K. Barry (2003): Web Services and Service-Oriented Architectures - The
Savvy Managers Guide, Morgan Kaufman Publishers, San Francisco, USA.

[4] Gagnes T, Bjørnstad R, Langmyr A (2006): An Architecture for Service
Discovery in Network Based Defence, FFI/NOTAT-2006/00115

[5] Gagnes T, Eggen A, Hedenstad O E, Rasmussen R, Sletten G (2005):
Information and integration services for command and control – future Network
Based Defence, FFI/REPORT-2005/03584. (In Norwegian).

[6] Gagnes T, Bråthen K, Hansen B J, Mevassvik O M, Rose K (2004): Peer-to-
Peer Technology – An Enabler for Command and Control Information Systems
in a Network Based Defence?, Proceedings of the 9th International Command
and Control Research and Technology Symposium, San Diego, USA, 2004.

[7] Globus Toolkit, Globus Alliance (2006): http://globus.org/toolkit

[8] Hafnor H, Olafsen R (2005): Ad hoc Organization of Distributed Picture
Compilation and Support for Situation Awareness in Network Based Defence –
An Exploratory Experiment, Proceedings of the 10th International Command and
Control Research and Technology Symposium, Washington, USA, 2005.

[9] Hansen B J, Mevassvik O M, Bråthen K, Rose K (2004): A Picture Compilation
Concept for Network Based Defence, FFI/REPORT 2004/00983, Unclassified

[10] The Internet Engineering Task Force (IETF) (2006): http://www.ietf.org/

 18

[11] IETF - RFC 2634 Enhanced Security Services for S/MIME:
http://www.ietf.org/rfc/rfc2634.txt

[12] Java Architecture for XML Binding (JAXB) (2006):
http://java.sun.com/webservices/jaxb/

[13] Multilateral Interoperability Programme (MIP): http://www.mip-site.org

[14] NATO NEC Feasibility study, version 2.0 (2005), NATO UNCLASSIFIED.

[15] Organization for the Advancement of Structured Information Standards
(OASIS) (2006): http://www.oasis-open.org/

[16] OASIS UDDI (2006): http://www.uddi.org

[17] OASIS UDDI Version 3 Specification (2006): http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

[18] OASIS, Using WSDL in a UDDI Registry, Version 2.0.2, Technical Note
(2004): http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-
wsdl-v2.htm

[19] OASIS WS-Notification (2006): http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn

[20] OASIS WS-Security (2006): http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[21] OpenLDAP (2006): http://www.openldap.org/

[22] Rasmussen R E, Eggen A and Haakseth R(2006): An architecture for
experimenting with secure and dynamic Web Services, Proceedings of the 2006
Command and Control Research and Technology Symposium, San Diego, USA,
2006.

[23] Rasmussen R, Gagnes T, Gustavsen R, Hafnor H, Hansen B, Haakseth R,
Mevassvik O M, Olafsen R, Rose K (2004): Exploratory Experiment “Ad hoc
Organization of Picture Compilation” Conducted during Blue Game 2004:
Evaluation Report, FFI/REPORT-2004/01940. Norwegian Defence Research
Establishment (FFI).

[24] Safelayer Secure Communication S.A.(2006): http://www.safelayer.com

[25] Systinet(2006): http://www.systinet.com

[26] World Wide Web Consortium (W3C) (2006): http://www.w3.org/

[27] WS-Addressing Specification (2004): http://www.w3.org/Submission/ws-
addressing/

[28] WS Security Roadmap: http://www.ibm.com/developerworks/library/ws-
secroad/

[29] X.411: http://www.itu.int/ITU-T/asn1/database/itu-t/x/x411/

[30] XML Encryption: http://www.w3.org/Encryption/2001/

[31] XML Signatures: http://www.w3.org/Signature/

 19

	1 Introduction
	2 Relevant Theories and Standards
	2.1 Dynamic Service Discovery
	2.2 Publish/Subscribe
	2.3 Secure Web Services
	2.4 Data Exchange Format

	3 Architecture
	3.1 Architecture Overview
	3.2 Service Registry
	3.3 Publish/Subscribe
	3.4 Security
	3.5 Data Exchange Model

	4 Experience and Lessons learned
	4.1 Service Registry
	4.2 Publish/Subscribe
	4.3 Security Mechanisms
	4.4 Data Exchange Using MIP

	5 Discussion
	6 Conclusions and Further Work
	7 Acknowledgements

