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Abstract 
 
Recent advances in Command and Control (C2) modelling have developed 
algorithmic representations of the command decision making process at both 
the tactical (Rapid Planning) and operational (Deliberate Planning) levels of 
command.  In this paper, the development of methods by which indicators of 
enemy/group behaviour can be extracted is discussed.  The aim of this work 
is to use the grouping techniques to establish, with more certainty, force size 
and direction.  We describe a multi-agent model approach, based on a 
hierarchical framework, suitable for identifying indicators of collaborative 
behaviour associated with enemy agile mission groups that commonly feature 
in the modern Networked Era.     
 
Introduction 
 
The Cold War era was dominated by a predictable monolithic and structured 
enemy using tactics that could be templated. However today and in the 
foreseeable future we will be presented with a much more complex 
battlespace paradigm with several opponents, agents and actors (with some 
adopting asymmetric tactics). UK and coalition forces will leverage Network 
Enabled Capability (NEC), C2 tempo, and information dominance to achieve 
success − techniques such as envisaged in this paper will be needed in order 
to understand decision-making in the modern Networked era.        
 
A key improvement to the current C2 models [1] would be to develop model 
algorithms that can dynamically infer enemy intentions from signature 
properties or indicators of enemy behaviour where á priori knowledge of 
possible enemy courses of actions is unnecessary.  This paper describes the 
first steps towards such an algorithm.   
 
This paper introduces a computational method, which in the context of 
modern warfare, that concentrates initially on identifying movement and 
behaviour as collaborative indicators.  The method can be extended to build in 
other indicators in the future. 
 
Although the Deliberate Planner [1] utilises Game Theory and Bayesian 
techniques to avoid the limitations of earlier rule-based approaches, it still 
requires a large data set to span the set of all enemy courses of action 
against which enemy intent is assessed. Thus, such models are inherently 
restrictive since the decision outcomes are pre-determined from a set of 
‘tramlines’. 
 
In this paper, simulation results show how properties are dynamically 
discovered, leading to inferences about enemy activity and intent.  The multi-
agent model avoids the need for a deterministic rule-based system or for all 
possible options to be data-driven.  The nature of this paper is investigative:  
focussing on those computational methods suitable for group behaviour 
prediction.   
 



 

 

The challenging work investigated in this paper is how, from observations of 
complex multiple agent behaviours and interactions, it be may possible to 
deduce which entities are acting in concert or behaving as groups, either in 
temporary sub-sequences of events or throughout the operations. This is in 
some sense an ‘inverse problem’ with respect to the design of tactical 
operations from known cooperation between sets of agents. The approach 
described in this paper does not assume a known behavioural model. This 
choice was made in order to avoid simplifying the problem at hand by limiting 
it to situations where more information is available than may be available in 
many practical situations. 
 
It is intended that the model will complement current C2 decision models such 
as the Deliberate Planner, and will support the Comprehensive Approach 
(CA): where inference about the enemy’s activity/intent plays a leading role in 
gaining information superiority.  This will be achieved by using the model 
described in this paper to provide a more accurate picture of the size and 
structure (i.e. groupings) of the enemy to generate a more confident basis for 
decision-making. 
 
Background: the Deliberate Planning process 
 
To place this work into context a brief outline of the main parts of the 
Deliberate Planning process is provided.  The Deliberate Planning process is 
based on an analytical decision-making paradigm often referred to rational 
choice decision-making [1].  In this paradigm the emphasis is placed upon the 
explicit generation, and subsequent evaluation, of multiple Course of Action 
(CoA).  The Deliberate Planning process has three distinct phases [1]: 
 

• selection of a CoA and the development of a plan to carry out that 
CoA; 

• issuance of directives to carry out the plan; 
• supervision of the planned action. 

 
This paper presents a computational method aimed at improving the first part 
of the Deliberate Planning process, by removing the need for prior knowledge 
of a CoA set; therefore, removing need for ‘an explicit generation’ of the CoA.  
Our modelling process is aimed at ‘discovering’ those indicators that could 
lead to the prediction of the set of CoA undertaken by adversarial entities. 
 
The current version of the Deliberate Planner model is used to facilitate C2 
decision-making in combat simulations.   The Deliberate Planner is embedded 
in the Wargame Infrastructure and Simulation Environment (WISE) model [2]; 
WISE will be used as a testbed for the method for dynamic discovery of 
collaborative behaviour, once the capability of the Deliberate Planner is 
enhanced by the introduction of the new method.  This should result in a more 
dynamic assessment of enemy force size, structure and intention.  It will also 
result in the removal of pre-conceived decision paths. 



 

 

 
 
Modelling approach 
 
Initial computational investigations have focussed on developing ideas based 
on movement and behaviour as collaborative indicators.  The modelling 
approach presented in this paper was based on a multi-agent model.  
Independent decision mechanisms were used to model different aspects of 
the agent behaviour and a higher level coordination module combines their 
output.  The decision mechanisms are summarized here; however, further 
details may be found in reference [3].  The decision components are as 
follows: 
 

• The Navigation Module is responsible for leading a single agent from a 
source location to a destination location, avoiding “danger” and 
obstacles. 
 
The interaction between an enemy (i.e. hostile agent) and an agent is 
modelled by an associated risk.  The goal of the agent is to minimize a 
function G, used to define a Reinforcement Learning Reward (RLR) 
function as follows: 
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A series, Ri {i ∈ 1, 2,…, n}, is defined to represent success reward 
values, which are used to keep a track (Ti) of a smoothed reward given 
by: 

 
 iii RbbTT )1(1 −+= −  (2)

where 0 < b < 1. 
 

The decision-making element is a fully-connected Recurrent Neural 
Network (RNN) comprising 8 neurons (each representing a possible 
decision).  The training is performed by reinforcing the weights of each 
neuron, depending on the latest and smoothed awards; b acts as a 
control parameter to reflect the ‘staleness’ of information.  By using 
previously acquired information and current sensory input, the 
Navigation Module ensures that an agent can start with near-optimal 
estimates of the rewards and, thus, focus on adapting to the dynamic 
changes in the environment. 
 

• The Grouping Module is responsible for keeping a group of agents 
together in particular formations throughout the mission, and therefore 
drives the collaborative behaviour. 
 
Group behaviour is based on the idea of social potential field [4] that is 
a distributed-control approach inspired by the attractive and repulsive 



 

 

forces between charged particles in physics.  The force between 
agents i and j is of the form: 
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           where a, b, α, and β are dynamic parameters and the force vector jiV ,

r
 

describes the effect of the position of agent  j on the decision of agent i. 

Different behaviours, such as attraction to an agent, repulsion from an 
agent or maintaining a specified distance from an agent can be 
simulated by varying the instantiations of the dynamic parameters.  The 
study of collaborative behaviour often requires the control of distances 
– for the purpose of sensitivity analysis – between agents that are 
associated as members of the same group; stable equilibrium points 
are used to model such properties.  When there is a stable equilibrium 
point, it can be shown that an entity experiencing such a force will be 
separated from the force source by a distance R0 given by: 
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The total grouping effect on agent i can be calculated as follows: 
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where the parameter c is a scalar that models the degree of 
cohesiveness of the  group of associated agents. 

The distance separator (as expressed in equation (4)) being especially 
important in forming localized groups, which are similar in effect to the 
collision avoidance and flock centring rules as described in 
reference [5]. 

• The Imitation Module is modelling the case when an inexperienced 
agent will try to mimic the behaviour of the most successful agents in 
the group and thus increase its chance of success.  This can be 
expressed as follows: 
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The decisions of these modules are combined at a higher-level module called 
the Coordinator Module.  Thus, mathematically, at each time step a weighted 
sum of the separate decisions recommended by each basic module can be 
represented by a 2D velocity vector: 

 
intVkVkVkV imtgrpgrpnavnavoverall

rrrr
++= (7)

where the k’s correspond to weighting scalars, adjustable to reflect system 
emphasis on different behaviour type characteristics. 



 

 

Observation of the spatial and behavioural agent configurations and their 
respective evolution with respect to time provided valuable clues as to what 
type of clustering algorithms may be appropriate.  
 
One of the problems of standard clustering methods is that they tend to work 
well when provided with large volumes of raw data.  The scenarios presented 
here for presentation purposes involve relatively small number of agents that 
usually cannot provide statistical data of acceptable quality. As a result, a 
bespoke clustering algorithm that is particularly well suited for the type of 
scenarios with a relative small number of enemy agents:  such as those 
typically found in agile mission groups in the context of conventional warfare. 
 
The description of the algorithm is as follows: 
 

1. Suppose there are N agents. Consider agent system as a fully-
connected bi-directional weighted graph with N vertices and 
M=N*(N-1)/2 edges.  Given that the vertices represent agents and the 
weights of the edges are a measure of how well agents are related.  (In 
the spatial clustering case, edge weights are geometric distances 
between agents, while in behavioural clustering the edge weights 
represent angular difference between the directions in which each 
agent moves.); 

2. Build a Minimum Spanning Tree (MST) for this graph.  Only a few of 
the M edges will be part of the MST; 

3. Compute a density approximation of the distribution of MST edges 
(Gaussian Parzen Window estimation with parameter σ); 

4. Find the maximum peak in the density estimation and compute a cut-
off edge threshold (located on the right of the peak) at which the 
density drops to half of the peak value; 

5. Remove the edges in the MST that have values above the cut-off 
threshold.  The end result is a collection of sub-trees of the MST that is 
usually referred to as a forest; each tree in this forest represents a 
separate group. 

 
An example of how this algorithm works is shown graphically Figure 1: 
(a) shows the map representation including the trace from previous positions; 
(b) represents the MST based on spatial metrics (as outlined by the algorithm 
described above); (c) is the histogram resulting from the density of the MST 
edges); (d) results from the thresholding to produce a partial MST – this 
consists of forests (unconnected graphs) that are associated with the 
separate groups.   
 
In all the results presented in this paper there are three groups of agents 
(colour-coded as Red, Green and Blue, 5 agents in each group represented 
as a “team”: 15 agents in total), which have the following objectives: 
 

• Blue team has to go to the destination (represented by the shaded 
rectangle) while avoiding the Red team; 

• Red team has to intercept and destroy the Blue team while avoiding 
the Green team; 



 

 

• Green team has to support the Blue team by trying to intercept and 
destroy the Red team. 

 
The terrain also contains a number of simple obstacles (trees, represented as 
green circles of varying radii).   
 
The agents in the experimental scenario that is presented in this paper exhibit 
a range of behaviours that make this framework a good candidate for a 
platform for studying methods of group behaviour discovery. Throughout the 
experiments, a number of interesting situations (both expected and 
unexpected) were observed at different times. Some of these are: 
 

• Spatially well-formed and distinct groups behaving in accordance with 
their instructions; 

• Adversarial groups fusing into a single group; 
• Friendly groups which are spatially indistinguishable from each other 

due to spatio-temporal proximity of their trajectories; 
• Partial break-up of a group due to inability of some group members to 

‘keep pace’ with the rest of the group; 
• Complete break-up of a group because of a dominant goal (i.e. urge to 

evade adversaries dominates other goals such as staying together, 
and as a result the group is scattered). 

 



 

 

a) Simulation screenshot, 15 agents. 
 

b) MST based on spatial metrics. 
 

c) Histogram and density estimation of MST 
edges. 

 

d) Partial MST forest after removal of edges 
above the cut-off limit. 

 
   

Figure 1:  Illustration of the MST-based clustering algorithm 
 
Results and discussion 
 
Prior to selecting a particular approach for group detection, agent behaviour 
was assessed with the purpose of gaining an insight into the nature of the raw 
data that will be used for group differentiation. 
 
First, the investigation is focussed upon the spatial behaviour of agents. To 
carry this out, simulation runs both within the normal terrain and in an 
obstacle-free environment were assessed. Using Figures 2 and 3 for 
comparison, showing snapshots of simulation runs at successive times within 
the simulations, the effect of ‘synthetic’ terrain may be examined. The agent 
trajectories are shown as coloured trails. These trails provide information on 
the evolution of the spatial configuration of the different teams throughout the 
simulations. 



 

 

 

a) steps = 0 
 

b) steps = 300 
 

c) steps = 600 d) steps = 900 
 

 
Figure 2:  Evolution of the spatial configuration of the agents with 
respect to time in a terrain with obstacles 

 
 



 

 

a) steps = 0 
 

b) steps = 300 

c) steps = 600 
 

d) steps = 900 
 

  
 

Figure 3:  Evolution of the spatial configuration of the agents with 
respect to time in a terrain without obstacles 

 
The groups in Figure 3 (with the exception of the Red team) seem to maintain 
more cohesion and are better defined than those in Figure 2, indicating that 
terrain has the effect of reducing the ability of agents to act as a team.  
Essentially, this is due to the addition of repulsive forces experienced by the 
agents as they come within close proximity of the ‘terrain objects’. 
 
Besides spatial configuration, instantaneous agent behaviour was also 
measured as a function of time. Within the setting of these simulations, 
instantaneous agent behaviour refers to the direction in which an agent 
moves (i.e. velocity). Figure 4 provides measurement of the direction of 
motion with respect to time (direction is measured in radians from -π to π).  As 
an additional property, to simulate warfighting in the scenario, weapons are 
added to the mix; such a property is simulated by strengthening the repulsive 



 

 

forces (as represented by equation 3, and is described in the previous 
section) between adversarial groups.  As time increases the Blue team 
exhibits a fairly constant velocity, indicating that their goal is within 
achievement and group cohesiveness is strong. 
 

 
a) 

 
b) 

 
c) 

 
d)  

Figure 4:  Evolution of the instantaneous agent behaviour with respect to time 



 

 

 
Comparing Figure 4(a) with Figure 4(b) it can be deduced that terrain has 
small effect on behaviour when weapons are enabled; presumably, this is 
caused by the stronger influence of the repulsive forces due to the 
introduction of weapons, in comparison with the ‘terrain avoidance’ forces.  
This reasoning can be further substantiated by comparing Figure 4(c) with 
Figure 4(d): with weapons disabled, terrain has the effect of introducing ‘noise’ 
to the system thus weakening group cohesiveness.  Interestingly, the 
significant effect of the introduction of weapons can be seen in the latter 
stages of the simulation:  more stability in group cohesiveness is evidenced in 
those scenarios with weapons deployed.   
 
Expanding upon the initial assessment, it is believed that temporal analysis of 
spatial and behavioural clustering can be a valuable tool for automated 
situation assessment. As a proof of concept Figures 5 and 6 are illustrative of 
a simple scheme for detection of certain events that may be of interest 
(separation of a group into smaller groups or combination of two or more 
groups into one); the spatial clustering statistics are displayed to the left of the 
behavioural clustering statistics. 
 

 
 

Figure 5: Spatial and behavioural clustering - detection of group 
separation 

 



 

 

 
 

Figure 6: Spatial and behavioural clustering example - detection of 
group 

 
Detection of group separation and combination is shown in Figures 5 and 6, 
respectively.  This is reflected in the partial MSTs and histograms associated 
with each figure:  the connectivity of clusters (forests) as exhibited by the 
partial MSTs for both the spatial and behavioural metrics.   
 
As part of the experimentation it can also be noticed that spatial and 
behavioural clustering may be used to complement each other – sometimes 
one of them can disambiguate groups that the other cannot distinguish. An 
example of good spatial and poor behavioural separation is shown in 
Figure 7: exhibited by the difference in connectivity of the partial MSTs. 
 

 
Figure 7:  Example of good spatial clustering, but poor behavioural 
clustering 



 

 

 
The opposite case (poor spatial but good behavioural separation) is shown in 
Figure 8.  Comparison of the degree of connectivity between the spatial and 
behavioural metrics show the opposite properties to those found in Figure 7. 
 

 
 

Figure 8:  Example of good behavioural clustering, but poor 
behavioural clustering 

 
 
Summary and conclusions 
 
The success C2 decision-making in the Networked Era will become crucial in 
determining the outcome of military operations; information superiority will be 
achieved by those capable of making accurate and timely decisions primarily 
based on inferences from an evolving battlespace environment comprising 
agile mission groups.   
 
This paper has presented a model and discussed ideas to address the 
problem of identifying the key factors that indicate collaborative behaviour, 
particularly in relation to enemy agile mission groups, which contribute to 
achieving a level of information superiority. 
 
A modelling technique using a multi-agent approach that does not require 
á priori data or information has been presented; this feature of the model 
avoids both the need for a large volume of input data and the need for a fixed 
rule-base decision engine.  A neuron network framework facilitates the ability 
to ‘learn’, by accumulating knowledge (via inferences or pattern recognition) 
about the behaviour of enemy agents during model execution time.  The need 
for decisions to follow ‘tramlines’, artificially imposed by the inclusion of a fixed 
rule database featured in some of the other modelling approaches, has been 
completely removed.  This gives our model the portability to be inserted into 
C2 decision modelling architectures, such as the Deliberate Planner, without 



 

 

the need to accommodate a complex input/output interface or pre-determined 
rules. 
 
This work has presented a method that uses a combination of metrics (in the 
current paper, a spatial and a behavioural metric has been presented) to form 
indicators to identify group behavioural.  However, it is intended that the 
model be extended to include other metrics (indicators of behaviour, e.g. 
traffic communications, locations of enemy assets, etc.), which when fused 
together will give a more substantive reflection of emerging behavioural in the 
context of agile mission groups.  In parallel with this additional work, 
investigations into how to represent prior ‘uncertainty’ in group structure will 
be conducted; further results will be tested against the output of combat 
simulation using their movement files. 
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