
1

The Impact of SOA Policy-Based
Computing on C2 Interoperation and
Computing

R. Paul, W. T. Tsai, Jay Bayne

2

Table of Content

Introduction
Service-Oriented Computing

Acceptance of SOA within DOD
Policy-based Computing

What is a “Policy”?
Policy Specification Languages

Two different Schools of Thoughts on SOA
for Enterprise C2 Systems
Other Consideration Issues and Open Issues

3

Features and Challenges in New NC
C2 Systems.

Network-centric nature
Service-Oriented architecture (SOA) and associated
the Service-Oriented Computing (SOC)
Policy-based computing

Policies are specified as a part of the system
Policies can be changed and updated at runtime in real
time during warfighting

These features distinguish new C2 systems
from the traditional C2 systems.

4

Motivation

Addressing the impact of SOA on modern network-centric enterprise
and policy-based C2 systems.
Network-centric operation is already a difficult issue, but SOA involves
additional issues such as C2 policy specifications, V&V and
enforcement.
In an SOA system, a service can be:

Discovered, bound, executed, verified and validated at runtime and in real-
time; and
The entire system is organized as a loosely coupled system of services.

While this kind of loose coupling provides flexibility and adaptability, it is difficult
to enforce C2 policies in such a network as it will involve policy synchronization.

Each computation unit in such a system is actually a collection of
services possibly composed in real time and at runtime. So, how can
one enforce C2 policies in such an environment as it is not known what
service will be used before application?

5

Consensus on SOA-based EC2 Systems

Policies must be specified and embedded in the
enterprise C2 system because these policies may
be dynamically composed and changed in real time
and at runtime;
Policies should not be hard coded into the system –
this will make changes very difficult for agile
warfighitng;
Policies must be enforced in a distributed manner
involving policy synchronization and coordination;
and
Actions and tasks must be checked and enforced
against stated C2 policies in real time and at runtime.

6

Service-Oriented Computing
The key concepts of SOC are as follows:

Each computing unit is considered as a service, and each
service is considered self-contained and independent of other
services;
A service publishes its interfaces using a standard language
such as WSDL or OWL-S;
The service provider registers its services with an intermediate
broker such as a UDDI server.
A client that wishes to obtain a service inquires the UDDI server
and requests specific services that it needs;
After receiving the user request, the UDDI matches the need with
the most appropriate service in its repository, and sends the ID of
the service to the client;
The client then makes a call to the service requesting specific
kind of tasks to be performed; and
All communications among all parties are through standard
protocols such as XML and SOAP.

7

Difference between SOC & OOC

SOC may looks similar in many ways to OOC,
but it is a different computing paradigm;
Like OOC is much different from procedural
computing, SOC is fundamentally different
from OOC;
Designers are thinking in terms of services,
runtime service discovery and composition,
runtime system re-composition, and runtime
system verification and validations. These are
different from the OOC concepts.

8

Difference between SOC & OOC
(Continued)

Services are available and accessible on-line. A
user or a software agent can use runtime search to
discover new services. A user may not need to buy
and install;
SOC also has a significant impact on the system
structure and dependability such as system
reliability, system composition (and re-composition),
and security; and
The SOA is robust and survivable because most of
binding is done at runtime, thus services can be
removed and/or added to the service pool without
changing the overall architecture and protocols
among all the parties.

9

SOA Development Process
Essentially, SOC will change the whole landscaping in system
and software development from requirement to V&V. Specifically,
in the requirement stage, knowledge of existing services is
critical as reusability will be the key enabler. Thus, rather than
construction of new requirements, reuse of existing requirements
including existing service specifications will be critical.
In the design stage, the loosely coupled SOA allows dynamic
composition, dynamic re-composition, and dynamic
reconfiguration. In the sense, the design is never completed
because new service may arrive after the current design is
completed, and the new service may replace the already
selected services at runtime in real time.

10

SOA Development Process (continued)

In the implementation phase, majority of work will
be composition and linking rather than code
development as services will be reused.
In the V&V phase, CV&V (Collaborative Verification
and Validation) will be used rather than IV&V as the
source code of many services may not be available.
Service specification will be extensively used
because often a service customer has access to
specification and URL only, no source code or even
binary code would be available.

11

Differences (continued)

Dynamic certification based on historyStatic certification centerCertification

Dynamic profiling and group testingInput domain & Reliability
growth models

Reliability model

Just-in-time dynamic model checkingBased source code or statesModel checking

Dynamic and distributedStatic and centralizedProfiling

Specification& Usage basedStructural & functionalTesting coverage

Dynamic reconfiguration & bindingStatic configuration & linkingIntegration

On-line regressionOff-line regressionRegression

On-line just-in-time testingOff-line field testingApproach

Collaboration among multi-partiesBy independent teamDefinition

Service-Oriented CV&VTraditional IV&V (OO)

12

Available SOA System Engineering
Techniques

Automated completeness and consistency checking.
Verification and analysis techniques including both static and
dynamic verification techniques;
Automated state model generation;
Formal model checking;
Runtime verification and constraint checking with simulation;
Automated test case generation;
Test coverage analysis based on the service specification and
risk analysis;
Automated dependency identification and analysis;
Automated concurrency analysis; and
Autonomous distributed test execution via remote agents.

13

What is a Policy?

A policy is a statement of the intent of the controller
of some computing resources, specifying how he
wants them to be used.

Policies are ubiquitous in most, if not all, computing
systems.
However, most policies implemented are hard coded into a
system by functional requirements, language features, and
design decisions.
For example, if a policy says, “passwords must be at least
8 characters long”, there must exist a segment of code in
the system that checks the length of passwords.

14

What is a Policy? (Continued)

A policy allows or denies subjects (such as
processes) that satisfy some conditions to
perform designated actions on objects (such
as files).
Policy,

A course or general plan of action.
A contract of insurance governing a plan of action.
The rules or constraints governing a general plan
of action.

15

What is a Policy? (Cont’d)

The common pattern of a policy takes the
form of:

{allow | deny | require} {subject} performs {action} on {object} when {conditions}

Policy specification, enforcement and
revision are the three basic mechanisms a
policy-handling system must provide.

16

Limitations of Traditional Policy
Handling Systems

It does not separate policy specification from
policy implementation.
Policies are difficult and expensive to change.
Adding new policies or updating / removing
existing policies requires modifying the
policies, recompiling and redeploying these
policies into the system.

17

Benefits of Policy Specification Languages
in Enterprise C2 (EC2)

Policy specification languages enable policies to be
defined, independent from a concrete system
implementation;
Policy specification languages are to be interpreted
by a policy engine at runtime, which makes
dynamical policy changes possible;
Policy specification languages formalize the intent of
the commander into a form that can be analyzed
and interpreted by systems; and
Policy specification languages are high-level
languages, which makes it easy to learn and use by
policy makers who are normally non-programmers.

18

Policy-Based Computing in GIG

Policy-Based Networking: various network
operations will be possible but they will be controlled
by policies in an EC2 SOA.
Common Open Policy Service: this is a query and
response protocol that can be used to exchange
policy information between a policy server and its
clients.
Routing Protocol Specification Language: this
allows a network operator to specify routing policies
at various levels.
Internet Protocol (IP) Security Policy: this is a
repository-independent information model for
supporting IP security policies.

19

Policy-based Computing

Each computing unit has a formal and self consistent set of C2
policies,
It has a set of C2 policy execution processes (mechanisms),
It has a set of C2 process performance measures and
measurement processes, and
It has an accountability structure governing allocation of assets
required in and consumed by the execution of any given policy
or set of policies
Each policy will be applicable to a policy domain. The EC2
accountability structure defines a policy tree spanning selected
activities of the joint field combatant commanders up through
the President of the United States. This “nested” set of
interdependent policy domains constitutes a containment
hierarchy. Generally, enterprise policy trees include high-level
strategic, mid-level operational and low-level tactical policy
domains.

20

Executable Policies in EC2 SOA

A policy in an EC2 SOA must be executable as
policies will be enforced at runtime in real time, and
thus it is essential policies can be executed at
runtime and in real time to enforce their constraints.
The execution capability of a policy language
support simulation of adding or modifying policy
prior to their deployment throughout relevant policy
domains, and
Provide a formal means of verification and validation
that policies are “correct” with respect to quality of
service (QOS) and service level agreements (SLA)
established for their respective containment
domains at runtime and in real time.

21

Policy Enforcement and Operations

A policy language must allow policies specified to be enforced either
statically or at runtime. Both static and runtime policy enforcement
follows a 3-step process:

Policy C&C checking: This ensures that policies specified are
complete with external requirements and regulations, as well as
consistent with each other before application of these policies to
evaluate the concerned system. Sample security policies can be
Bell-LaPadular security policies or Chinese Wall security policies;
Embed policies with the system specification: Once the policies
specified are determined to be of reasonable quality, the policies
specified using PSEL can now be embedded into the system
specification for evaluation; and
Evaluation of the system with respect to policies specified: This
step evaluates the system to see if it satisfies the policies
specified.

22

Binary code analysis &
code generation tool

Binary code for
data capture

Dynamic
policy

enforcement

Error detected

Pass test

Final specification

Verified?

Functional specification

System requirements

Static V&V

Policy specification in a PSL

Policy specifying in a PSLFunction specifying

Static V&V

Specificatio
n

refinement

Specificatio
n

refinement

Verified?

Final policies

Automated code
generation

Execution
history

Error detected

Pass test

Deployment to main processor

Binary code

Test case
generation

Main processor Data capture processor

Deployment

Policy
database

Reasoning
Patching

Code
generation

RMC computer

Policy Enforcement and Operations
(Cont’d)

23

Different Schools of Thoughts

One school of thought (School A):
SOA is simply an implementation technology just like
programming languages or design techniques such as
OOC;
Emphasize that fundamental C2 policies remain the same,
and thus focus on generic EC2 architecture independent of
implementation technology.
Policies are passive, and treated as static XML text for
constraint checking and enforcement.
Processes used to enforce policies must be synchronized.
Frequent changes in policies can be problematic, and thus
policies will change but a slower pace. Updating policies
may involve updating related processes (services).

24

Different Schools of Thoughts (Cont’d)

Another school of thoughts (School B)
Treat policies as services in an SOA. In other
words, policies are active processes, and can be
published, disseminated, executed and monitored
in real time and at runtime.
Change of policies will be done similar to change
in services in a uniform way. The SOA already
has the overhead of service discovery and
execution, and this overhead can be used to
support policy-based computing.
The flexibility and adaptability will be better.

25

Comparisons

Policy V&V will be equivalent to service
V&V, a variety of static and dynamic
V&V techniques can be used including
test case generation, simulation, and
runtime monitoring.

Various static and dynamic V&V mechanisms can be
used, e.g., completeness and consistency checking,
and policy simulation.

Policy V&V

Policy can be updated by replacing the
existing policy service by a new policy
service.

Policy can be updated by updating the related policy
files, and possibly policy processing services as
well.

Policy Update

Policy services is just like another services.
The overhead is the added complexity
of activating policy services while
doing regular computing.

As policies are treated as static objects, the overhead of
policy is the overhead of accompanied
computation in managing and enforcement of
policies.

Policy Overhead

Policy services are active services that can
perform enforcements. Multiple
services may cooperate together to
accomplish service enforcement.

Policies will be enforced by execution services, different
enforcement algorithms and software can be used.

Policy Enforcement

Policies specified as servicesPolicies specified as data such as XML files.Policy Specification

Policies as active services (School B)Policies as passive objects (School A)

26

Comparison (Cont’d)

System can be easily reconfigured using a
DRS, and policy services will be a part of
reconfiguration process.

Systems can be easily reconfigured using a DRS
(dynamic reconfiguration service) and policy files need
to be updated to ensure that new policies are consistent
with the new system structure.

System
Reconfiguration

Enterprise C2 systems will be organized in
an SOA-manner and policy services will be
treated like a regular service.

Enterprise C2 systems will be organized in an SOA, but
policies will be treated as objects or data used by
services.

System Structure

Policy synchronization is needed whenever a
policy service is updated or system is
reconfigured. Policy services may actively
pursue their own service synchronization
protocols.

Policy synchronization is needed whenever a policy is
updated or the system is reconfigured. Formal
synchronization protocols need to be employed to ensure
completeness and consistency.

Policy synchronization

Two systems can communicate their policies
by sending service specifications or the URL
of the related services.

Two systems can send policies to each other like
sending a regular electronic message as policies are
treated as data.

Policy communication

As a policy service is just another service in
an SOA, policy simulation can be carried
using any SOA simulation.

Policy can be simulated by running the system using
policy data.

Policy Simulation

Policies as active services (School B)Policies as passive objects (School A)

27

Other Consideration Issues and Open Issues

The EC2 SOA still face many open problems such as:
A formal yet easy to use policy specification language
that can be used to specify, analyze, simulate and
enforce distributed policies in an EC2 SOA federated
systems;
Distributed policy synchronization and enforcement;
and
Policy dependency analysis to assist real-time policy
evolution;
These and other related issues must be addressed
before policy-based computing can be realized.

28

Demo

A network-centric policy enforcement on an
embedded system is available.
This is to demonstrate that it is possible to do
real-time code generation, dynamic
reconfiguration, verification, policy
specification, policy enforcement, simulation
at runtime. These usually take days if not
weeks or months to do, now they can be
performed on-the-fly using an SOA
technology in seconds automatically.

29

C&C

Dynamic
reconfiguration

Model
checking

Policy
enforcement

Code
generation

Simulation

Real-Time and Network-Centric V&V

Reliability
modeling Testing

30

Acceptable Scenario
SOF Team lies down
before Fire Order
is issued

No policy violation
detected

31

Scenario Violating Policy
SOF Team doesn’t
lie down before Fire
Order is issued

Policy violation
detected

